

Keyword(s):

Abstract:

©

Extremely Fast Text Feature Extraction for Classification and Indexing

George Forman, Evan Kirshenbaum

HP Laboratories
HPL-2008-91R1

text mining, text indexing, bag-of-words, feature engineering, feature extraction, document categorization,
text tokenization

Most research in speeding up text mining involves algorithmic improvements to induction algorithms, and
yet for many large scale applications, such as classifying or indexing large document repositories, the time
spent extracting word features from texts can itself greatly exceed the initial training time. This paper
describes a fast method for text feature extraction that folds together Unicode conversion, forced
lowercasing, word boundary detection, and string hash computation. We show empirically that our integer
hash features result in classifiers with equivalent statistical performance to those built using string word
features, but require far less computation and less memory.

External Posting Date: August 21, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: August 21, 2008 [Fulltext]

To be published and presented at Conference on Information & Knowledge Management, Napa, CA Oct 27, 2008

Copyright Conference on Information & Knowledge Management

 1

Extremely Fast Text Feature Extraction
for Classification and Indexing

George Forman
Hewlett-Packard Labs

Palo Alto, CA, USA
ghforman@hpl.hp.com

Evan Kirshenbaum
Hewlett-Packard Labs

Palo Alto, CA, USA
evan.kirshenbaum@hp.com

ABSTRACT
Most research in speeding up text mining involves algorithmic
improvements to induction algorithms, and yet for many large
scale applications, such as classifying or indexing large document
repositories, the time spent extracting word features from texts
can itself greatly exceed the initial training time. This paper
describes a fast method for text feature extraction that folds
together Unicode conversion, forced lowercasing, word boundary
detection, and string hash computation. We show empirically that
our integer hash features result in classifiers with equivalent
statistical performance to those built using string word features,
but require far less computation and less memory.

Categories and Subject Descriptors
H.3.1 [Information Storage and Retrieval]: Content Analysis
and Indexing. I.5.2 [Pattern Recognition]: Design
Methodology– feature evaluation and selection.

General Terms
Algorithms, Measurement, Performance, Experimentation.

Keywords
text mining, text indexing, bag-of-words, feature engineering,
feature extraction, document categorization, text tokenization.

1. INTRODUCTION
Most text analysis—such as document classification or
clustering—includes a step of text feature extraction to determine
the words or terms that occur in each document. This step is
straightforward, runs in linear time, and is generally not a topic of
study. Research towards fast and scalable methods tends to focus
on algorithmic issues such as model induction, typically O(N2) in
the number of training cases. By contrast, scoring documents in
production with a learned model is merely O(N)—yet for a
different meaning of N, the number of production documents,
which can be very large for enterprise-scale applications or when
analyzing the world’s web pages. The scoring time (aka testing
time) for large scale deployment can easily dominate the

induction time, especially for the common case where it is
difficult to obtain a large quantity of training examples labeled by
domain experts. An example would be an Information Lifecycle
Management (ILM) application that periodically applies
classifiers to huge document repositories for content management,
such as the automatic application of file retention, archiving and
security policies. Our recent research in this space found that the
time to extract the words from a text file can be roughly on par
with the time to fetch the file from a local disk [5]. Finally, full-
text indexing also must perform text feature extraction on large
volumes of files or web pages. Hence, text feature extraction can
take considerable computational resources for large scale systems.
The tremendous increase of online text annually, together with the
proliferation of large scale text analysis applications, yields a
valuable opportunity to speed up the core text scanning subroutine
that is so ubiquitous. We demonstrate a way to perform this
scanning step up to two orders of magnitude faster, with little or
no effect on the quality of the text analysis. The method, which
includes character table lookup and hashing in its inner loop,
inexpensively supports forced lowercasing, multi-word phrases,
and either word counts or boolean features, as desired. It can also
supplant common Unicode conversion, eliminating some buffer
copying and character expansion. We demonstrate its use and
speedup in applying multiple classifiers to texts, without having
to write out different feature vectors for different feature-selected
classifiers. The method yields word and phrase features
represented as hash integers rather than as strings.
The obvious use for faster feature extraction is to process more
text per second, run more classifiers per second, or require fewer
servers to handle the text processing load. Alternately, where the
rate of text per second is limited, the benefit may be to lower the
impact on a user’s machine, e.g. where text analysis agents
operate constantly in the background to ‘understand’ the texts the
user is reading or writing.
The following section describes both baseline and proposed
methods for text feature extraction. Section 3 provides an
empirical comparison for speed and classification accuracy.
Section 4 analyzes the collision behavior and memory
requirements. Section 5 discusses practical matters for real-world
use: the effect for end-users and an extension of our method that
folds in the processing of text encoded using Unicode UTF-8 at
little incremental cost. Section 6 places this work in the broader
context of related work. Section 7 gives conclusions and future
work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10...$5.00.

 2

2. METHODS
We begin by laying out the fundamentals of text feature
extraction and describe a straightforward baseline method. After
this, we describe the steps of our method. An extension for
processing Unicode UTF-8 texts is included in Section 5.2.
Text feature extraction depends on some definition of which
characters are to be treated as word characters vs. non-word
characters. Besides the letters A–Z (in both upper and lower
cases variants), word characters may also include accented letters,
digits, the underscore, and generally all Unicode characters
having one of the Unicode “Letter” general categories (uppercase,
lowercase, titlecase, modifier, or other), depending on the
application. Let the boolean function isWord(char) determine the
status of any given character. For this paper, we take the common
approach that a maximal sequence of adjacent word characters in
the text stream constitutes a word.
Typical text processing applications normalize the capitalization
of each word by forcing each character to lowercase. Let this
conversion be determined by the character function
toLowerCase(char). The mapping is non-trivial for some Unicode
letters. Additionally, if underscores or digits are included among
the word characters, then their lower case mapping is the identity
function.
For indexing applications, one needs to determine the sequence of
each word that appears, but for text classification or clustering
applications, one typically distills the text to the well-known bag-
of-words as the feature vector representation—for each word, the
number of times that it occurs, or, for some situations, a boolean
value indicating whether or not the word occurs. The feature
vector needed by a classifier depends only on the words that
occurred in the training set, and in some cases, may use only a
subset of these. Feature selection methods may be used to select a
subset of the most predictive words in order to improve the
accuracy of the trained classifier [4]. This selection depends on
the class labels of the training set, and if multiple classifiers are to
be applied to the same text, then each classifier may require a
different selection of features for its feature vector.
Text classifiers can often be made more accurate if they also
include features that represent word phrases, the most benefit
coming from 2-word phrases (aka bi-grams) with diminishing
returns for longer phrases [12]. By including word phrases, the
dictionary of potential terms is greatly increased, emphasizing the
need to select only the most useful terms for the classification task

at hand. It is not uncommon for a training set to contain hundreds
of thousands of distinct terms and for the final classifier to operate
with a subset of, say, 1,000 of the best terms.

2.1 Baseline Method
Table 1 presents pseudo-code that performs text word extraction
for boolean features in a straightforward manner. Although many
variations and minor optimizations are possible, the common
thread of all baseline methods is to gather the contiguous
sequence of word characters together in an accumulator buffer
(line 5) until the end of the word is encountered, and then to
register the word String with some feature vector representation
(line 8).
This pseudo-code computes the set of words, but if instead one
required the bag-of-words, then the appropriate hash table would
be a HashMap<String,Integer> that maps each occurring word to
the number of times it occurred (or to a position in an array of
counters for faster incrementing). Note that to add a word of type
String to a hash table of words will require a hash function to be
computed over the String that is used as an index into the hash
table array, and may require at least one String-vs-String
comparison in order to verify that the correct hash table entry has
been located or to differentiate this word from other words whose
hash representations collide in the hash table representation. We
are able to eliminate this overhead with our method.

2.2 Our Method: SpeedyFx
Table 2 presents equivalent pseudo-code for the basic skeleton of
our method, which we call SpeedyFx. In structure it appears
much the same as before, but with two key differences. Foremost
is that the current word accumulator is represented by an integer
hash (line 2 & 6) instead of a String. (We analyze the strength of
our chosen hash function in Section 4.1.) The second major
difference is that all function calls have been removed from the
inner text processing loop. A lookup (line 4) into a pre-computed
table replaces two much slower function calls: isWord(char) and
toLowerCase(char). Even if one could get these functions
compiled inline, their joint processing overhead would greatly
exceed a single table lookup. And the many word occurrences are
simply overwritten to the boolean feature array (line 9), avoiding
many calls to the hash table add() function inside the loop. Note
that there is no need to check whether the particular word hash
has already been noted in the feature array. (In systems that want
a count of each word, the array can be an array of integers rather

Table 1. Baseline text word extraction.
HashSet<String> extractWordSet(text):
1 HashSet<String> fv = new HashSet<String>();
2 StringBuilder word = new StringBuilder();
3 foreach (char ch: text) {
4 if (isWord(ch)) {
5 word.append(toLowerCase(ch));
6 } else {
7 if (word.size() > 0) {
8 fv.add(word.toString());
9 word.clear();
10 }
11 }
12 }
13 return fv;

Table 2. Basic SpeedyFx text feature extraction.
boolean[] extractWordSet(text):
1 boolean fv[] = new boolean[N];
2 int wordhash = 0;
3 foreach (byte ch: text) {
4 int code = codetable[ch];
5 if (code != 0) {// isWord
6 wordhash = (wordhash>>1) + code;
7 } else {
8 if (wordhash != 0) {
9 fv[wordhash % N] = 1;
10 wordhash = 0;
11 }
12 }
13 }
14 return fv;

 3

than an array of booleans.) In practice, N will be chosen to be a
power of two, allowing the modulus operation (line 9) to be
replaced by a simple bitwise AND.
If a more compact representation of the resulting feature vector is
required, a quick, linear scan of the boolean array can be used to
insert each occurring word hash into a hash table or into an array
containing the word hashes found. In many cases, though,
features are extracted in order to be used immediately for some
task, an in such cases the boolean array representation is often
sufficient.
A reasonably large bits array of size N=220 is suggested. Larger
values of N result in a greater memory demand momentarily for
the bits array, whereas smaller values of N effectively restrict the
size of the hash space, conflating features that have different 32-
bit integer hash values together into a smaller space. Using N=220
is easily sufficient for corpora or training sets with hundreds of
thousands of unique terms. For perspective, a corpus of 804,414
Reuters news articles contains 47,236 unique words, and a corpus
of 62,369 Arxiv.org astrophysics papers contains 99,757 unique
words [8]. Regarding the memory demands, most compilers will
allocate one byte per boolean for good performance, rather than
packing them tightly into bits. Thus, for N=220 the size of this
bits table is 1 MB, which is a fraction of the L2 cache for modern
CPU chips. If instead one needs to track the word count for the
bag of words representation, this array can instead be used to
contain 8-bit or 16-bit word frequency counters.
The pre-computed code table actually serves four different
functions simultaneously: word character determination,
lowercasing, hash randomization, and, as will be introduced later
in Section 5.2, Unicode processing. Table 3 shows pseudo-code
to prepare the table appropriate for 8-bit character streams. For
any character that is not a word character, the table contains zero.
For word characters, it maps the character to its lowercase
equivalent and maps the result a distinct fixed random integer
code. This randomization substantially improves the hashing
function over just using the lowercase character code directly, as
the Java String.hashCode() method does. (For reference, Java
Strings use multiplicative hashing [10], computing their hashes by
iterating hash = 31*hash + char over their characters).
It should be noted that while in our tests our word characters were
letters and numbers an our normalization is lowercasing, this is all
embodied in the creation of the code table. Any other set of rules
could be used by providing a different table. The only restriction
is that the mapped and normalized character (if any) be decidable
from a single character. This can be relaxed, but the mechanisms
for doing so are beyond the scope of this paper.
Our hashing function, which we call Mapped Additive Shift
Hashing (MASH), consists of a simple arithmetic right shift, a
table lookup (from a very small table), and an addition. As such,
it is very efficient and easy for a compiler to optimize. Although
the rightward direction of the bit-shift operation (line 6) is

somewhat non-intuitive, it actually produces substantially better
hashes than using a left-shift. The reason is that we end up using
only the low order bits of the resulting word hash (line 9), and if a
left-shift were used instead, then these lowest order bits would be
largely unaffected by the first characters of the word, especially
for a longer word. (In the case in which the modulus is a power of
two for efficiency, they would be completely unaffected by
them.) If the rightmost ten bits are kept, then only the final ten
characters can contribute to the hash. By using a right-shift, on
the other hand, and by ensuring that each character contributes 32
bits to the value, a character’s influence continues (in a degrading
fashion) for at least 31 following characters. Even for the
occasional word longer than 32 characters, note that we use a
sign-extended right-shift, so that the parity of initial letters
continues to have some effect on the hash. Of course, this
influence does diminish, and so MASH is certainly not suitable
for hashing long texts, which is the goal of typical hash function
designs such as SHA1, MD5 and Rabin hashing, which are each
much more involved to compute.
If one wishes to also produce features for each phrase bi-gram,
then at the moment when the hash is registered (line 9), we can
also register a phrase hash consisting of the current hash
combined with the previous word hash, using a symmetric
combination (such as XOR or addition) if it is desired to have
features that are independent of the order of the words or an
asymmetric combination (such as subtraction or XOR with a
shifted value) if order is to be preserved. Working in integer
space, such combination is much more efficient than working in
string space, in which typically a new string must be constructed
(or at least a new heap-based object that refers to the two strings).

2.3 Use in Full-Text Indexing
So far the discussion has primarily focused on the use case of
extracting a bag or set of words, which is needed for use in
classification or clustering applications. But the speed benefits of
our method can also be leveraged for the widespread use case of
full-text indexing of large document repositories (either large
documents or many of them or both). In this case, the indexing
engine needs to extract the sequence of words/terms in a text, and
build reverse indices of them for later information retrieval. The
key difference for our features would be that the term features are
integers rather than Strings. When later a query is submitted, the
words that the user enters are submitted to the exact same hash
processing, yielding the same integer hashes that the text has
previously been indexed by. Note that for this usage, one can use
the full 32-bit integer hash space (i.e. without the modulo N and
the bit array on lines 1 and 9 of Table 2).

3. EXPERIMENTS
In this section we present a series of experiments to evaluate the
speed and other qualities of our method compared with various
baselines. In all cases our compiler is Java JDK 1.6. Where
speed measurements are concerned, the measurements were
performed on a 2.4 GHz Intel® Xeon™ CPU, which is a 64-bit
architecture, running a version of Linux derived from Red Hat
version 4. Measuring elapsed time for performance can be quite
tricky, since other processes and threads regularly interrupt
processing for uncontrolled amounts of time, occasionally
slowing down the overall or average measurement substantially.
For this reason, we measure the throughput for each test over 50
separate iterations and use the measurement that shows the best

Table 3. Code table pre-compilation for SpeedyFx.
prepTable():
1 int rand[256] = 256 fixed random integers;
2 foreach (ch: 0..255) {
3 codetable[ch] = isWord(ch) ?
4 rand[toLowerCase(ch)] : 0;
5 }

 4

performance, which excludes non-essential delays for thread
interruptions. To exclude the impact and variability of disk
transfer speeds, we cache the file bytes in memory before
beginning the series of time measurements.
We use two sources for publicly available benchmark texts. To
measure speed for tokenization, we use the text of Leo Tolstoy’s
War and Peace, which is 3.1 MB in ASCII and is available from
Project Gutenberg.1 To measure speed over feature extraction
and classification, we use the popular 20 Newsgroups dataset,
which has roughly 1000 Usenet postings for each of 20
categories.2 We use the ‘bydate’ version, which has had
duplicates and some headers removed and which prescribes a
specific train/test split. The dataset contains 34.2 MB of mostly-
ASCII text in 18,846 documents. Thus the average document is
about 1.9 KB.

3.1 Raw Tokenization Speed
First we measure the raw speed of text tokenization. For this
measurement, we simply produce the sequence of word Strings or
word hash integers that occur in the text and discard them without
further processing. This is the most basic processing skeleton that
needs to be computed regardless of the text analysis application.
For example, in a text indexing system, this sequence of terms
would be used to build a reverse index by later sorting all <term
hash, document ID> pairs.
Table 4 shows the processing speed for a variety of methods
measured on the War and Peace text. The first line shows our
best processing rate of 136.2 MB/second using SpeedyFx with
MASH and calling down to a user-provided function on each
word hash found. The same speed was attained using an inlined
version of Java’s hash algorithm. When Rabin fingerprinting was
substituted, the performance dropped to 111.9 MB/second..
Typically tokenization is performed by using an iterator-like class
that returns successive tokens each time a method is called.
When our algorithm was embodied in such a class, returning a
word hash each time, the performance dropped to 116.0
MB/second using MASH and Java’s hashing and to 87.0
MB/second using Rabin fingerprints. Since both approaches
entail a single method call per discovered word, this speedup of
approximately 17% appears to imply that the Java compiler is
more aggressive about inlining calls to methods within the same
object for (necessarily final) anonymous classes than it is to calls
of objects of different classes.
All of these numbers compare very favorably with existing
baseline approaches to tokenization. Java provides a String-
Tokenizer class, which takes a string and a string containing
delimiter characters (characters to not be considered part of any
word) and provides hasMoreTokens() and nextToken() methods.
Besides the overhead of the extra call to find out whether more
words are available, this suffers from several problems common
to many approaches we looked at.

1 Version 11, http://www.gutenberg.org/dirs/etext01/wrnpc11.txt.

The size includes Project Gutenberg boilerplate text at the
beginning and end.

2 http://people.csail.mit.edu/jrennie/20Newsgroups/20news-
bydate.tar.gz

First of all, it requires a string as input rather than being able to
work directly from a byte array. This involves converting bytes
to characters and creating a string from the characters, both of
which imply copying the data. Second, each of the produced
tokens needs to be created as a String object.3 And third, any
normalization (in this case lowercasing) needs to be done
externally on each produced string. In addition, the
StringTokenizer class searches in its delimiter string for each
character it sees. The class is designed for use with a small set of
delimiters (e.g., commas and tabs), but for our purposes, we need
to include all non-alphanumeric characters, and so this check is
quite slow. The net result is that StringTokenizer processed War
and Peace at a rate of only 4.1 MB/second, just 3% that of
SpeedyFx.
A slightly more efficient approach is to use a regular expression,
in the form of a Java Pattern object matching all Unicode non-
alphanumeric characters, to split each line and then lowercase
each word.. This processed War and Peace at 11.1 MB/second,
or 8% of SpeedyFx.
Another approach is to use classes supplied by a library. The
Lucene v2.2 library [7] provides two methods. The most
commonly used of the two is their StandardAnalyzer class, but it
is not strictly an apples-to-apples comparison, since that class
incorporates a full lexical analyzer (built from JavaCC [3]), which
attempts to recognize more complex objects, such as e-mail
addresses and hostnames, which ours cannot. On War and Peace,
the Lucene StandardAnalyzer performed at 1.9 MB/second, 1% of
SpeedyFx.
Lucene also provides set of Tokenizer classes to allow the
programmer to specify the rules directly, and a CharTokenizer
subclass that defines tokens as sequences of allowable characters,
arbitrarily normalized. We tested a subclass that allows
alphanumeric characters and normalizes by lowercasing. Unlike
tokenizers that require strings as input, this can read directly from
a character stream and so performs much better, processing War
and Peace at a rate of 25.7 MB/second (19%).

3 In the case of the StringTokenizer class, the tokens are

substrings of the input string, which are themselves small, but
which refer to the larger string. This would appear to have
severe memory implications if the tokens are stored in long-
lived structures, as they would prevent the memory for the full
text string from being garbage collected.

Table 4. Raw text tokenization speed.

Tokenizer MB/second %

SpeedyFx 136.2 100%

SpeedyFx as Iterator 116.0 85%

Table-based tokenizer 64.5 47%

Lucene CharTokenizer 25.7 19%

WEKA alphabetic tokenizer 21.8 16%

Java Pattern 11.1 8%

Java StringTokenizer 4.1 3%

Lucene StandardAnalyzer 1.9 1%

 5

The popular Weka v3.4 [16] library contains a class StringTo-
WordVector to convert a dataset with String attributes into bag-
of-words features. At its core, it uses its own text tokenizer
AlphabeticStringTokenizer, which has specialized code for
recognizing sequences of (only) ASCII alphabetic characters.
When put in a framework that processes a stream and does
lowercasing of the words it finds, it processes War and Peace at a
rate of 21.8 MB/second (16%).
One question that arises is the extent to which the speed-up we
see is due to the table-driven approach rather than the decision to
use hashing rather than creating strings. To test this, we
constructed a tokenizer that used the same tables as SpeedyFx but
which constructed a string rather than computing a hash. This
processed War and Peace at 64.5 MB/second, 47% of the rate at
which the full algorithm worked. A similar approach, suggested
by a reviewer, is to use pre-computed arrays in place of the
isWord() and toLowerCase() functions (to remove the function
call overhead) and to yield the hash of the constructed string
rather than the string itself. This approach processed War and
Peace at 31.6 MB/second, 26% of the rate of the full algorithm.

3.2 Feature Vector Extraction Speed
Next, we measure the text processing speed for text feature
extraction, i.e. to determine the complete set or bag of terms in a
text, which is a task typically performed during clustering
analysis and classification, especially during the training phase
(i.e. before any feature selection has been performed). For these
tests, we use all 18,846 articles of the 20 Newsgroups benchmark
and measure the time it takes to extract a representation of the set
of words contained in each article, where a word is, as before,
considered to be the lowercase version of a maximal sequence of
alphanumeric characters (or the closest that can be approximated
using a given method). Over and above the tokenization task, this
task adds the problems of (1) recognizing that a word has already
been seen and (2) constructing a representation that can be used to
enumerate the words seen and to decide whether a word of
interest was seen.
For methods that enumerate strings, a Java HashSet<String> was
chosen as the representation, while for methods that enumerate
hash values, an array was used. The size of the array was 220
elements.
Table 5 shows the text extraction speeds for extracting sets of
words. Again, we see that extraction using a hash-based
tokenizer runs many times faster (9–65x) than the existing string-
based methods, and the difference is even greater than with
tokenization. This is not surprising, as the use of the hash set
imposes its own significant overhead over simply writing a value
in an array. First of all, a hash value must be computed over the
string to be added, which is linear in the length of the string.
Then, if there are already entries in the appropriate slot in the
hash table’s array, each must be compared against the current
string, which is a constant-time operation unless the strings’
(recorded) hash values match. And when a word is seen for the
second or subsequent time, a full string comparison must be
performed to determine that a new entry does not need to be
added, which is again linear in the length of the string. Finally,
whenever the table’s capacity threshold is exceeded, it needs to be
grown, which is linear in the number of elements currently in the
table. This additional overhead due to the hash table explains
why even when using the table-based tokenizer, the performance

is only marginally better (11% vs. 151% for tokenization) than
that of the fastest other string-based extractor.
Table 5 illustrates another interesting point about extraction using
hash-based tokenization. SpeedyFx methods show up both at the
top and near the bottom of the table. The numbers at the bottom
are for the method essentially as described in Table 2, in which
the feature vector representation is an array of boolean values
which are set to true each time a hash computation is completed.
When run on War and Peace, this method had essentially the
same performance (116.0 MB/second vs. 120.5 MB/second) as
the faster method.
The problem is that while it is, indeed, inexpensive to set the
array item to true each time a word is seen, in order to be usable
as a feature vector, this requires that all array items are set to false
before the process begins. With 220 elements in the array needing
to be reset (or initialized) for each of 18,846 cases, this meant that
19.8 billion false values were being set in order to distinguish
them from the approximately 6 million hash values actually seen–
over three thousand times as many. Indeed, the 18.4 GB of
feature vector initialization dwarfed the 34.2 MB of text that had
to be processed. Clearly, the cost of initializing the feature vector
(not as big a problem with hash sets, whose internal arrays are
proportional to the size of their contents) needs to be taken into
account when dealing with smaller texts.
We tried two approaches to get around this problem. In the first,
we maintained a trail–a separate array of indices of the feature
array values changed from false to true. This necessitated that
before we wrote a feature value, we first checked to see whether
we had already done so, but it also meant that to reset the feature
vector to prepare it for the next case, we needed merely to walk a
list proportional to the number of unique words seen. This
improved the performance to 82.2 MB/second, or 70% of our
eventual best speed.
The second—and best—approach was to replace the boolean
array with an array of values indicating the document in which
the corresponding hash value was last encountered. The extractor
keeps track of the value indicating the current case and sets the
appropriate array element to that value when a hash computation
is completed. To check whether the current case contained a
word hash, the array element is compared against the current case
indicator. If they are the same, the answer is “yes”.
For our implementation, the case indicator was a number,
incremented with each new case and allowed to wrap on
overflow. Doing it this way has an interesting side effect, though.
If the last case in which a particular word hash was seen was
exactly 256 cases ago (for byte indicators; 65,536 cases ago for
short indicators), the feature extractor would incorrectly report

Table 5. Feature vector extraction speeds.

Extractor MB/second %
SpeedyFx (with case index array) 117.1 100%
Table-based tokenizer 15.2 13%
Lucene CharTokenizer 13.7 12%
WEKA alphabetic tokenizer 11.1 9%
Java Pattern 7.3 6%
SpeedyFx (with boolean array) 2.7 2%
Lucene StandardAnalyzer 1.8 2%

 6

that the case contained that word hash. In theory, this should not
be expected to happen very often, but if the possibility is
unacceptable, the array can be reset every 255 (or 65,535) cases,
amortizing the cost of doing the reset. Doing so with byte
indicators reduced the speed to 102.1 MB/second (87%).

3.3 Multiple Text Classifier Speed
As described earlier, often one needs to apply many text
classifiers to each text, and our method can support this common
use case efficiently. To test this, feature selection was performed
on the training cases for each of the 20 newsgroups in the 20
Newsgroups dataset to extract the 1,000 most informative features
for each using bi-normal separation as the metric and separately
for word hash and string features. This resulted in 18,030
selected word hash features and 18,175 selected string features
(some of which were selected by multiple classifiers). We then
scored each article in the entire 20 Newsgroups dataset for each of
the 20 classes, by summing weights associated with features seen
(noting each weight only once per article), as would be the case
when using an SVM or Naïve Bayes classifier.
In these experiments we compared SpeedyFx-based classifiers
with string-feature-based classifiers. For the string-feature-based
classifiers, we used hand-crafted classifiers based on the table-
based tokenizer that consistently performed the best of the string-
based methods in the tokenization and extraction tests. In
addition, each of these methods was implemented three ways,
each considering articles one at a time. The first two approaches
began by performing feature extraction on the article. In the first
approach, the resulting feature vector (array or HashSet) was
filtered (based on the complete list of selected features) to an
array of booleans. Each classifier was then asked to score the
article based on this array. In the second approach, for each class,
the feature vector representation was used directly to score the
article.
The third approach skips feature extraction entirely. Instead, a
single multi-class classifier is built that contains an target set, an

internal data structure mapping features selected to the classes
that selected them and the associated weights. (This data
structure is an array for SpeedyFx and a hash map for the string-
based method.) For each, the main extraction loop is performed,
but now when a feature is determined, rather than adding it
idempotently to a feature vector, the classifier checks the target
set to see whether it contains the determined feature. If so, the
classifier uses the associated classes and weights to update the
appropriate scores. It then removes it from the target set and adds
it to a trail, which is used to repopulate the target set to prepare
the classifier for the next article. By removing the feature from
the target set, the classifier ensures that if it occurs again in the
same article, it will be ignored.
 As can be seen in Table 6, in all cases, SpeedyFx clearly
dominated the string-based equivalents. Also, for both SpeedyFx-
and string-based approaches, inline classification overwhelmingly
dominated classification that begins with feature extraction.

3.4 Classification Accuracy
Ultimately the superior speed of any extraction method would be
unimportant if the features it produced led to poor
characterization of the data. In this section, we demonstrate that,
on the contrary, there is substantially no difference in
classification accuracy when using traditional bag-of-word
features as opposed to using our hash features.
Figure 1 shows the F-measure (harmonic average of precision and
recall) for each of the 20 binary “one-class-vs-others”
classification tasks defined by the 20 Newsgroups dataset. The
classifier used is the WEKA v3.4 Support Vector Machine (SVM)
[16] using the best 4096 binary features selected separately for
each training set via Bi-Normal Separation [4]. (We chose this

 0.5

 0.6

 0.7

 0.8

 0.9

 1

co
m

p.
sy

s.
ib

m
.p

c.
ha

rd
w

ar
e

ta
lk

.r
el

ig
io

n.
m

is
c

sc
i.e

le
ct

ro
ni

cs
co

m
p.

os
.m

s-
w

in
do

w
s.

m
is

c
ta

lk
.p

ol
it

ic
s.

m
is

c
co

m
p.

gr
ap

hi
cs

co
m

p.
sy

s.
m

ac
.h

ar
dw

ar
e

al
t.

at
he

is
m

co
m

p.
w

in
do

w
s.

x
ta

lk
.p

ol
it

ic
s.

gu
ns

sc
i.m

ed
re

c.
au

to
s

m
is

c.
fo

rs
al

e
ta

lk
.p

ol
it

ic
s.

m
id

ea
st

re
c.

sp
or

t.
ba

se
ba

ll
so

c.
re

lig
io

n.
ch

ri
st

ia
n

sc
i.s

pa
ce

sc
i.c

ry
pt

re
c.

m
ot

or
cy

cl
es

re
c.

sp
or

t.
ho

ck
ey

F
-m

ea
su

re

BOW
hash

Figure 1. F-measure for each class for an SVM.

Table 6. Classification speeds (MB/second).

Approach SpeedyFx String-based

extract, filter, classify 6.2 11% 1.2 2%

extract, classify 8.1 14% 1.3 2%

inline classify 57.7 100% 23.5 41%

0.68

0.70

0.72

0.74

0.76

 100 1000 10000 100000

F
-m

ea
su

re

Number of features selected

SVM+BNS

SVM+IG

NB+IG

BOW hash
 Figure 2. Macro-averaged F-measure is affected more by
choice of classifier, number of features selected and the choice
of feature selection metric than it is by whether we use bag-of-
words features (BOW) or our hash features.

 7

number of features to maximize macro-averaged F-measure
overall.) The results show essentially no difference in
performance between bag-of-words features (BOW curve) and
our hash features (hash). A paired t-test over the F-measures for
the 20 classification tasks shows that any apparent difference is
statistically insignificant (p=0.31). Furthermore, we next show
for perspective that other common factors affect the performance
much more than the type of features generated.
Figure 2 shows the F-measure under various models macro-
averaged over all 20 binary classification tasks. For each model,
we see that the performance with bag-of-words features or with
our hash features has a small effect (the two curves are close
together). Overall, choice of feature generation has a much
smaller effect on performance than the choice of classifier (SVM
vs. multinomial Naïve Bayes), the number of features selected, or
the feature selection metric by which to judge features (Bi-
Normal Separation vs. Information Gain). This brings up an
additional point of motivation for this work: If in practice one
needs to try many different model parameters and select the best
via cross-validation, then it may be even more important to the
practitioner to have fast text feature extraction.

4. ANALYSES
4.1 Hash Collisions
For a good hash function, accidental hash collisions should be as
rare as or rarer than misspellings in the text or naturally occurring
homonyms (two words that are written the same but have
different meanings, e.g. the ‘boxer’ dog breed vs. the ‘boxer’
athlete). Just as misspellings and homonyms occasionally detract
from our text analysis goals, so too will hash collisions of
unrelated words. We show in this section that our chosen hash
function, MASH, is stronger than the ubiquitous multiplicative
hashing, used by Java’s String.hashCode() function, and the well-
known Rabin hash function, which is generally purported to be
fast to compute with the use of a pre-computed lookup table.
Table 7 compares the three hash functions in terms of the
collisions over words in the 20 Newsgroups dataset, considering
only the bottom 20 bits of each hash value. The 20 Newsgroup
dataset contains 5,984,079 “words” (maximal sequences of
alphanumeric characters) which comprise 168,461 distinct
(lowercased) values. The first two rows are the number of distinct
hash values seen using the given hash function and the number of
those values that are the result of hashing distinct words. (The
numbers do not add up to the number of distinct words since a
small number of values will be shared among more than two
words).
The third line is the resulting probability that a given word will
result in a hash value that is shared with some other word in the
corpus. This is a static probability, which does not take into

account word frequency. As can be seen from the table, words
are considerably less likely to share their 20-bit hash values using
MASH than using either Java’s string hashing or Rabin
fingerprinting. Only approximately one in 13 words has a shared
hash value for MASH, compared to nearly one in ten for Java
string hashing and nearly one in three for Rabin fingerprinting.
But static collisions are not the whole story. In any corpus, the
the words will tend to follow a Zipf distribution with the vast
majority occurring very seldom and only a small minority
occurring with noticeable frequency. Since hash collisions do not
depend on the frequencies of the words, this implies that for the
vast majority of collisions, one or (much more likely) both will be
very infrequent. For instance, using MASH, the words “bit” and
“wx3” both hash to 128,278, but the former occurs in 2,597
articles, while the latter appears in only one. The implication for
classification is that a colliding hash is either unlikely to be
selected as a feature (since both words are infrequent) or will
almost always represent the word that led the classifier to select it.
To take this into account, we consider a measurement of a
probability of “word confusion” that focuses on the dynamic
impact of collisions. This is the conditional probability that if two
words chosen at random from the corpus hash to the same value,
they are, in fact different words. It is computed as

 Words

Hashes

(1)
(confusion) 1

(1)

w w
w

h h
h

n n
P

n n
∈

∈

−
= −

−

∑
∑

where nw and nh are, respectively, the number of occurrences of
words and hashes in the corpus. As is apparent in Table 7, this is
over five times as likely to happen with Java string hashing (and
71 times as likely to happen with Rabin fingerprinting) as it is
with MASH.
The actual collisions seen appear to be unlikely to cause much
problem. Looking at MASH with the “rec.motorcycles” group,
the most significant term is a collision between “bikes”, clearly a
relevant word, which occurs in 233 articles in the corpus and
“kom”, which occurs once. Of the top 1,024 features for the
group, in only two is there a collision between words both of
which occur more than ten times. The first such collision, the
1,001st most important feature as selected by Bi-Normal
Separation, is a collision between “noemi” (13 articles) and

Table 7. Comparison of hash function quality over words.

 MASH 31*h+c Rabin

Hashes seen 155,620 150,613 113,817

Colliding hashes 12,178 15,661 24,436

P(static collision) 0.0762 0.1059 0.3244

P(dynamic confusion) 0.0012 0.0065 0.0841

Table 8. All pairs of frequent words confused by MASH.

key (3,395)
vs (1,075)

pp (443)
96 (199)

assembly (173)
responded (107)

research (2,044)
easy (841)

xt (393)
sharks (207)

senator (155)
helsinki (113)

heard (1,607)
mu (280)

club (290)
nih (141)

brings (120)
iq (112)

90 (712)
medium (108)

dseg (268)
lying (183)

scope (115)
badly (107)

vms (645)
floppy (482)

discovered (249)
watson (218)

alone (501)
duke (424)

drink (175)
signals (160)

 8

“8mhz” (11). The second such collision is an actual example of
what might be considered the introduction of a homonym: “sin”
(692 articles) and “executed” (83 articles) both hash to 998,868.
In the entire corpus of 168,461 words, there were only sixteen
pairs of words that each occurred in at least 100 articles and
which hashed to the same value using MASH. These, shown in
Table 8, represent just 0.01% of the 155,620 hash values seen and
0.13% of all (static) collisions. If the threshold is lowered to
those that have at least ten instances each, the number of such
hashes rises to only 367 (0.24%).
So far, the analyses have all used a bit table space of N=220.
Naturally, the collisions will increase if we decrease N, e.g. in
order to reduce memory demands for small portable devices.
Figure 3 shows the number of collisions produced by the set of
words and phrases used previously, as we vary the table size
modulus N from 500,000 to 220. Most noticeably, the 31*h+c
multiplicative hash function used by Java has erratic performance.
It gets many more collisions for particular values of N—multiples
of 31 (the JDK 1.6 HashMap and HashSet implementations avoid
such table sizes by always using a power of two). Likewise, the
Rabin hash function also shows erratic performance, though it
very often has fewer collisions than the multiplicative hash
function. Finally, observe that MASH performs consistently well
at every table size (labeled ‘ours’). For a near-lower bound
comparison, we repeated this experiment for a random set of
integers and find that their collision performance is only
marginally better than MASH (labeled ‘ideal’).
For indexing applications, in which the task is simply to extract
the complete sequence of tokens, it is perfectly reasonable to store
much larger hashes of 4 to 8 bytes per token. Using 6-byte
hashes, one would not expect to see a single collision in fewer
than nineteen million distinct words, assuming hash uniformity.
For a web indexing application with a vocabulary of, say, five
million words, 48 bits would suffice to give you a probability of
96% of not having a single collision.

4.2 Size
In addition to processing speed, another efficiency consideration
is size. In the present context this can be interpreted in two ways:
(1) the size of a representation of a classifier having a certain
number of selected features and (2) the amount of memory that is
needed to perform feature extraction or classification. In what
follows, we give a summary of our results. Readers interested in

the details of the analysis are invited to see Appendix 10.1. The
analysis presumes a straightforward implementation using Java
JDK 1.6 on a 32-bit machine. It also assumes the use of 20-bit
hashes.
The size of a classifier representation has implications primarily
with regard to transmitting the classifier from one machine to
another or writing it to permanent storage. This will be especially
important in settings in which there are a large number of
classifiers being used. With hash-based methods, classifiers can
be represented with 7 bytes per selected feature (4 bytes for the
weight and 3 bytes sufficient to identify the feature hash). With
string-based methods, the number will depend on the distribution
of strings. For the 20 Newsgroups dataset, for which words
average 6.5 characters, a classifier can be represented on the wire
with 11.5 bytes per selected feature on average (4 bytes for the
weight and 6.5 UTF-8 bytes on average, plus a null terminator),
for an increase of 64% over the use of hash-based features.
The second concern is the memory footprint used temporarily
during feature extraction and classification. For SpeedyFx, the
memory used will be an array of either one or two bytes per
possible hash code, so a 20-bit hash space will require 1 MB or 2
MB. For string-based methods, we analyzed the memory used by
the HashSet feature set representation. Our analysis implies that a
HashSet of Strings will require for each word approximately 80
bytes + 2 bytes/character, or 93 bytes per word on average for the
20 Newsgroups dataset. The articles in the corpus average 317.5
distinct words apiece, and so processing them should require a
HashSet whose overall memory footprint is approximately 29 KB,
substantially less than SpeedyFx. For longer texts, the difference
is not as clear-cut. The 17,816 different words in War and Peace
average 7.5 characters long, and overall the HashSet can therefore
be expected to require 1.6 MB.
One further consideration is that the arrays used by SpeedyFx are
contiguous and self-contained. The HashSets used by string-
based methods, on the other hand, comprise hundreds or
thousands of individual small objects which will not exhibit the
same degree of locality and which will need to be individually
garbage collected when no longer needed. In addition, while the
1 or 2 MB size of the SpeedyFx array is larger than the HashSets
used by string-based methods for small texts, it is small enough to
fit in cache on most modern architectures.

5. DISCUSSION
For perspective on the speed improvement, consider the
motivation of enterprise-scale text indexing from the introduction.
For each 100GB of enterprise files to be indexed, the off-the-shelf
StandardAnalyzer in the Lucene package would spend 15 hours of
CPU time just to tokenize the text. Even going to the effort of
hand-coding an extension to Lucene’s CharTokenizer would only
reduce this to just over an hour. By contrast, with SpeedyFx this
comes down to less than 13 minutes (from Table 4).
The remainder of this section contains a discussion of the
practical impact of occasional hash collisions and an extension to
SpeedyFx that folds in the ability to handle Unicode UTF-8 text
with minimal loss of efficiency.

5.1 Impact of Hash Collisions
Hash collisions, when not too common, behave similarly to
homographs. Consider first information retrieval: a search for
documents containing the word ‘shift’ will return some about

Figure 3. Number of hash collisions modulo table size.

 9

‘gear shift,’ some about ‘night shift,’ and others about ‘shift’ in
the slang sense of ‘move it.’ We usually discover the confusion
after viewing the initial search results, and then use natural means
to cope with these situations. We may add disambiguating search
terms such as ‘shift AND (gear OR transmission)’, we may place
the word in an unambiguous search phrase such as ‘gear shift,’ or
rarely, we may give relevance feedback to refine the hits without
caring which terms are involved. The major difference for hash
features is that our background knowledge does not provide
intuition for which words will have troublesome pseudo-
homographs due to random hash collisions. If we search for ‘cat’
and we get an equal mix of documents containing ‘strawberry,’
then we may be surprised, but the same coping techniques apply
as above. With our intuition, we might know that ‘shift’ is going
to be ambiguous and plan for it from the very first query, but for
the ‘cat’ example, we could not know in advance. Since most
words occur rarely according to a Zipf distribution, it is much
more likely that the pseudo-homograph would be some more
obscure word. For example, if we search for ‘cat’ and we also get
documents containing ‘schadenfreude,’ then the precision of our
results may hardly be noticeably polluted, especially when
considering the already difficult signal-to-noise problems in
everyday, practical searches.
Next, consider the homograph-collision problem for text
classification: the classifier is sure to use a variety of terms
together to predict the class. Thus, a small amount of term
confusion (typically from rarely occurring words) is unlikely to
impact classification accuracy significantly. Nevertheless, it
could occasionally happen that a particularly important word for
classification is conflated with a very common word, such as the
common stopword ‘the’, which ruins the predictive value of the
joint feature. So, although there may be no substantial
degradation for the average text classification problem, hash
collisions may impair classification accuracy for a single, specific
classification task at hand. A potential work-around would be to
try a different initial hash seed to avoid the unfortunate collision.
This workaround is not practical for the information retrieval
scenario, where the queries of interest are not known until after
the large document repositories have already been indexed with a
fixed hash function.

5.2 Unicode extension
Although traditionally most text processing has been done on 7-
bit ASCII or 8-bit characters of various encodings, more and more
one must process texts encoded using the Unicode character
set [15], either in the fixed-width two-byte UCS-2 encoding or in
the variable-length UTF-8 encoding. Typical software for
Unicode text processing, especially in Java, first calls a function
to translate a UTF-8 byte stream into a buffer of 16-bit Unicode
characters, upon which all remaining text processing is done. But
this requires a substantial amount of copying and writing to a
large block of buffer RAM (writing is slower than reading for
most modern CPUs).
The table-driven MASH algorithm can be easily modified to
handle both the 16-bit characters and the variable-length UTF-8
encoding, working directly on the byte stream and with only a
minor reduction in throughput. The modifications do not entail
the construction of a 65,536-element code table, but take
advantage of the fact that most texts contain characters from only
one or a few code pages, often ASCII or Latin-1 (on page 0) and

one other, e.g., Greek characters on code page 3 or Devanagari
characters on code page 9. Because of this, the table can be
sparse and constructed lazily. The reader is invited to see the full
description in Appendix 10.2.

6. RELATED WORK
The restricted problem of searching text for a previously selected
set of useful features for a classifier may be cast in a broader
context that is generally familiar in computer science. The
problem of searching for a limited number of known query strings
in large volumes of text is a traditional string search problem.
The most well-known algorithms that treat multiple strings
simultaneously and do not first require extensive indexing of the
target text are the Aho-Corasick algorithm [1], the Commentz-
Walter algorithm [2], and the Rabin-Karp algorithm [9].
Although they each have an expected run time linear in the size of
the target text, they were designed in a historical context where
the number of query patterns was in the dozens (e.g. information
retrieval via UNIX grep). Research towards scalable methods that
handle thousands of query patterns continues (e.g. [14]), but all
these algorithms are expected to operate under general-purpose
conditions, i.e. no restrictions on the query strings. In our setting,
we can be sure that a query string is a word (or a bi-gram), which
eliminates a great deal of dictionary checking. Another major
difference is that for many statistical text processing applications,
we can accept a certain risk of false positive matches in the form
of hash collisions, considering that the natural misspellings,
homographs, and variations in word choice in real-world text.
Thus, for our purposes, traditional string search algorithms are not
competitive, nor do they address the more general problem of text
feature extraction for unrestricted words.
Just recently there have been two papers that promote hash
features for classification, though neither focuses on text
extraction speed, supervised feature selection, or applications
besides classification, as we do. A short paper by Ganchev and
Dredze [6] suggests using Java’s String.hashCode() function
modulo N for text classification features. Their focus is to obtain
small classifiers for mobile devices with little RAM: the
description of a linear classifier then needs only retain an array of
weights—the index implicitly names the associated feature rather
than a String word. The main result is that the number of features
N was reduced to 10,000–20,000 without substantial loss in
classification accuracy. To this we note that feature selection
methods provide a principled approach for limiting the number of
features, and classifiers with the best 500–2000 features are often

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 256 1024 4096 16384 65536 262144

F
-m

ea
su

re

Number of features

fx selection

reduce bit table width
[Ganchev and Dredze]

Figure 4. Eliminating features by selection vs. collisions.

 10

more accurate than models using all features [4]. We illustrate
this point in Figure 4, which compares the F-measure of an SVM
using our hash features where we select the top features via BNS
(the top curve as Figure 2), vs. simply reducing the width N of the
bit table N and using all the features created. We see that as N
decreases, the increasing number of random collisions generally
harm the predictive quality of the features. Instead, it is much
better to produce features in a large bit array and then select the
best of these, sometimes resulting in improved performance.
The other recent work promoting hashes for classification is by
Rajaram and Scholz [13]. In their case, their goal is to compute
unsupervised, similarity-preserving hashes for texts such that
1000–4000 bits could be a sufficient feature vector for many
different classification tasks. Their computations are
heavyweight by comparison to ours, and first rely on a text word
extractor. SpeedyFx could be used as their raw text scanning
subroutine, since they only depend on the statistical properties of
the features, not the actual letter sequences.

7. CONCLUSIONS & FUTURE WORK
We have shown that using SpeedyFx integer hashes in place of
actual words is faster, requires less memory for transmission and
use of multiple classifiers, and has an effect on classification
performance that is practically noise compared to the effect of
other common parameters in model selection. We showed that
MASH has strong, uniform performance for words, though not
appropriate for long blocks of text. Moreover, we have
demonstrated the ability to classify a text by many classifiers
many times faster than is possible with typical code.
The primary implication of this is that it allows significantly more
efficient indexing and classification of large document
repositories, e.g. to support information retrieval over all
enterprise file servers with frequent file updates. It also enables
lower impact to a user’s computer, e.g. when there are many
classification agents examining all text the user sees or types, for
the purpose of ‘understanding’ what the user is thinking about and
providing appropriate support. The savings in computation may
also make it feasible to run on certain small mobile devices and/or
consume less battery power.
Whenever a CPU bottleneck is resolved by more efficient
algorithms, it often exposes the I/O transfer speed as the next
bottleneck. Although with SpeedyFx we can easily process over a
hundred megabytes per second per processor core, if there is only
a single disk attached, the data transfer bottleneck may be just 2–
70 MB/sec. Multiple disks or a 100 gigabit Ethernet feed from
many client computers may certainly increase the input rate, but
ultimately (multi-core) processing technology is getting faster
faster than I/O bandwidth is getting faster.
One potential avenue for future work is to push the general-
purpose text feature extraction algorithm closer to the disk
hardware. That is, for each file or block read, the disk controller
itself could distill the bag-of-words representation and then
transfer only this small amount of data to the general-purpose
processor. This could enable much higher indexing or
classification scanning rates than is currently feasible.
Another potential avenue is to investigate varying the hash
function to improve classification performance, e.g. to avoid a
particularly unfortunate collision between an important, predictive
feature and a more frequent word that masks it. At the least, this

could amount to trying different random seeds and selecting the
most favorable via cross-validation. In the limit, perfect hashing
techniques could attempt to generate a hash function that
produces dense, unique positive integers for each of the selected
features, and negative values for features to be discarded.

8. ACKNOWLEDGMENTS
We wish to thank Kave Eshghi, Rajan Lukose, Shyam Rajaram,
Martin Scholz, and Craig Soules for discussions and motivations
in this area.

9. REFERENCES
[1] Aho, AV. and Corasick, MJ. 1975. Efficient string

matching: an aid to bibliographic search. Communications of
the ACM 18 (6): 333–340.

[2] Commentz-Walter, B. 1979. A string matching algorithm
fast on the average. In Proc. of the 6th Colloquium, on
Automata, Languages and Programming (July 16-20, 1979).
Lecture Notes in Comp. Sci.,v.71, Springer-Verlag, 118-132.

[3] Copeland, T. 2007. Generating Parsers with JavaCC.
Centennial Books, Alexandria, VA.

[4] Forman, G. 2003. An extensive empirical study of feature
selection metrics for text classification. J. Mach. Learn. Res.
3 (Mar. 2003), 1289-1305.

[5] Forman, G. and Rajaram, S. 2008. Scaling up text
classification for large file systems. In Proc. ACM SIGKDD
Intl. Conf. on Knowledge Discovery and Data Mining (Las
Vegas, USA, August 24-27, 2008). KDD '08, 239–246.

[6] Ganchev, K. and Dredze, M. 2008. Small statistical models
by random feature mixing. In Workshop on Mobile
Language Processing, Annual Meeting of the Association for
Computational Linguistics (June 20, 2008). ACL’08.

[7] Gospodnetic, O., and Hatcher, E. 2004. Lucene in Action (In
Action Series). Manning Publications Co.

[8] Joachims, T. 2006. Training linear SVMs in linear time. In
Proc. ACM SIGKDD Intl. Conf. on Knowledge Discovery
and Data Mining (Philadelphia, USA, August 20 - 23, 2006).
KDD '06, 217-226.

[9] Karp, RM and Rabin, MO. 1987. Efficient randomized
pattern-matching algorithms. IBM Journal of Research and
Development 31 (2), 249-260.

[10] Knuth, DE. 1973. The Art of Computer Programming,
Volume 3: Sorting and Searching, Addison-Wesley,
Reading, MA.

[11] McKenzie, B. J., Harries, R., and Bell, T. 1990. Selecting a
hashing algorithm. Software Practice and Experience 20, 2
(Feb. 1990), 209-224.

[12] Mladenic, D. and Grobelnik, M. 1998. Word sequences as
features in text-learning. In Proc. 17th Electrotechnical and
Computer Science Conference (ERK98), Slovenia.

[13] Rajaram, S. and Scholz, M. 2008. Client-friendly
classification over random hyperplane hashes. In European
Conf. on Machine Learning and Principles and Practice of
Knowledge Discovery in Databases (ECML/PKDD’08).

 11

[14] Salmela, L., Tarhio, J., and Kytöjoki, J. 2007. Multipattern
string matching with q-grams. J. Exp. Algorithmics 11 (Feb.
2007), 1.1.

[15] The Unicode Consortium. 2006. The Unicode Standard,
Version 5.0. Addison-Wesley.

[16] Witten, I., and Frank, E. 2005. Data Mining: Practical
Machine Learning Tools and Techniques (Second Edition).
Morgan Kaufmann, June 2005.

10. APPENDICES
Here we give the details of how we estimated the memory usage
for a bag-of-words feature vector implemented with the Java JDK
HashSet, and we give a full exposition of SpeedyFx, including the
extension to process Unicode text encoded in UTF-8.

10.1 Bag-of-Words HashSet Memory Size
A reasonable implementation for a bag-of-words data structure in
Java would be a HashMap<String,Integer>, which maps each
word to the Integer count of the number of times it occurs. For
the fairly common situation where one dispenses with the count
and simply keeps track of the set of words that appear in a
document, the natural representation is a HashSet<String> of
words. Of course, there are a wide variety of data structures that
could be used, but these are the most straightforward given the
Java JDK library, and we have seen them used in practice.
In Java JDK 1.6, a HashSet is implemented as a HashMap in
which the elements of the set all map to a distinguished value. So
the size of the HashSet will be the size of the underlying
HashMap. And since there is only a single, reused Integer object
allocated in memory for the low integers, the HashMap data
structure will consume roughly the same amount of memory as
the HashSet version for most short documents. The remainder of
the analysis focuses on the memory consumption of the HashMap
itself.
A HashMap contains an array of “buckets,” each representing
elements whose keys have the same hash when masked to the
low-order bits. The array is kept at a power of two and is doubled
whenever the number of elements in the map exceeds a factor of
the size of the array (by default three-fourths). Thus the size of
the array will be between 4/3 and 8/3 of the number of elements
in the set, which yields two buckets (references) per stored
element on average.
Within each bucket is a chain of Entries, where each Entry
contains a reference to the key, a reference to the value, the hash
of the key (as an int), and a reference to the next Entry in the
same bucket.
The key itself will be a String object which will contain three
integers, and a reference to an array, which will contain an integer
and some number of characters. The precise number will be
corpus-dependent.
Thus, the whole size of the HashSet as a function of the number
of elements is therefore six (4-byte) references, five (4-byte)
integers, some number of (2-byte) characters, and the overhead of
three objects. This last will vary based on implementation, but
appears to be typically 12 bytes per object. So the total size of the
HashSet is proportional to 80 bytes per element plus the
characters themselves. In the 20 Newsgroups dataset, there are,
on average 6.5 characters per unique word, for a total factor of 93
bytes per element. For War and Peace, there are an average of
7.5 characters per unique word, for a total factor of 95 bytes per
element.
We verified this analysis by measuring the memory used by a
HashSet<String> loaded with 1000 seven-letter words using the
Sun Java JVM and JRE 1.6.0: 95,960 bytes. And for a
HashMap<String,Integer> loaded with the same words where the
counts fell in the range [0,128]: 95,944 bytes.

10.2 Inline Unicode Processing for SpeedyFx
The basic SpeedyFx algorithm is as follows:
int pos = start;
while (pos < end) {
 byte b = text[pos++];
 int code = codetable[b];
 if (code != 0) {
 hash = (hash >> 1) + code
 } else if (hash != 0) {
 process hash
 hash = 0;
 }
}

with a final step, invoked when text has been completely
processed (which may involve several calls to the basic
algorithm) of
if (hash != 0) {
 process hash
}

to handle the case in which the text ended without a terminating
non-word character.
The “process hash” step will depend on the particular task at
hand. For tokenization, it will be a callback (or faster, a “call-
down” to an overridden inlined method) to a provided function;
for feature extraction, it will involve setting an array element to
indicate that the feature with that hash has been seen; and for in-
line classification, it will involve adjusting weights on various
classes based on having seen the hash.
The code table is used to map single-byte characters to codes,
where a code of zero signals the end of a “word”. The code table
serves three functions: identifying word characters, normalizing
them, and mapping each normalized character onto a full integer
value. The construction of this table can be thought of as being
parameterized by a function mapChar(), which maps one (one-
byte) character to another or to the zero character for non-word
characters. The mapping function used in the paper mapped
letters to their lower-case equivalents, digits to themselves, and all
other characters to zero.
The creation of the code table is a two-step process:
int[] random = new int[256];
Random r = new Random(seed);

for (int i=0; i<256; i++) {
 random[i] = r.nextInt();
}

int[] codetable = new int[256];
for (int i=0; i<256; i++) {
 byte mapped = mapChar(i);
 if (mapped != 0) {
 codetable[i] = random[mapped];
 }
}

with care taken when choosing the seed so that none of the
elements in the random array are zero.
In UTF-8, each character is encoded by one, two, or three bytes.
One-byte characters are signified by the high-order bit being 0,
two-byte characters by the high-order bits of the first byte being

 13

110, and three-byte characters by the high-order bits of the first
byte being 1110. All following bytes have the 10 for their high-
order bits. To compute the 16-bit character value, the remaining
unspecified bits are simply concatenated. A key feature of the
UTF-8 encoding is that 7-bit ASCII characters, which necessarily
have a high-order bit of 0, simply encode as themselves, so any
purely ASCII text is automatically legal UTF-8-encoded Unicode.
As a first cut, the UTF-8 version of the SpeedyFx algorithm is
simply
int pos = start;
while (pos < end) {
 byte b = text[pos++];
 char ch;
 if (b is single byte char) {
 ch = b;
 } else if (b is first byte of two-byte char) {
 byte b2 = text[pos++] & 0x3F;
 ch = ((b1 & 0x1F)<<6) | b2;
 } else if (b is first byte of three-byte char) {
 byte b2 = text[pos++] & 0x3F;
 byte b3 = text[pos++] & 0x3F;
 ch = ((b1 & 0x0F)<<12) | (b2<<6) | b3;
 } else {
 // ill-formed UTF-8. Ignore.
 ch = 0;
 }
 int code = codetable[ch];
 if (code != 0) {
 hash = (hash >> 1) + code
 } else if (hash != 0) {
 process hash
 hash = 0;
 }

}
with the code table expanded to hold mappings for all 65,536
possible characters.
Unfortunately, there are several problems with implementing it
this way. First, and probably most important, the code for
checking whether the initial byte is the beginning of a one-byte,
two-byte, or three-byte character involves a bit mask and a test
against zero, which, while not exactly expensive, is more than is
required and more than we would like, especially in the common
case in which the vast majority of characters are one-byte
characters. To handle this, we note that we have to do a table
lookup anyway, so we might as well use that lookup to let us
know that we have multi-byte characters. We create a second,
256-element array, the dispatchTable, as follows: elements 00
through 7F are copied from the main code table, elements C0
through DF are set to a special flag value TWO_BYTE_CHAR,
elements E0 through EF are set to THREE_BYTE_CHAR, and all
other elements are set to ILLEGAL_CHAR. The values of these
constants are the top three values that an integer can take, and that
no element of the random array has any of these values. Thus, it
is efficient to test for any of the special flag values with a single
comparison against an integer threshold.

The code then becomes
int pos = start;
while (pos < end) {
 byte b = text[pos++];
 int code = dispatchTable[b];
 if (code > THRESHOLD) {
 char ch;
 if (code == TWO_BYTE_CHAR) {
 byte b2 = text[pos++] & 0x3F;
 ch = ((b & 0x1F)<<6) | b2;
 } else if (code == THREE_BYTE_CHAR) {
 byte b2 = text[pos++] & 0x3F;
 byte b3 = text[pos++] & 0x3F;
 ch = ((b & 0x0F)<<12)|(b2<<6)| b3;
 } else {
 // ill-formed UTF-8. Ignore.
 ch = 0;
 }
 code = codetable[ch];
 }
 if (code != 0) {
 hash = (hash >> 1) + code
 } else if (hash != 0) {
 process hash
 hash = 0;
 }
}

The second problem is that due to the variable-length characters,
it may be the case that a given byte array might end in the middle
of a two- or three-byte character. This can happen in the common
case that the array represents a buffer of bytes read from a file or
socket. We outline two ways to handle this.
First, if main loop is nested within a loop reading from a source
into a single array, the inner loop can note that it has run out of
bytes and signal that the partial character is to be moved from the
end of the array to the beginning, as
offset = 0;
while ((nRead = src.read(text, offset,
 len-offset)) != 0)
{
 end = nRead + offset;
 start = offset = 0;
 main loop (with changes)
 for (int i=0; i<offset; i++) {
 text[i] = text[len-offset+i];
 }
}

with the main loop augmented to check for overflow and set the
offset if necessary, as
 } else if (code == THREE_BYTE_CHAR) {
 if (pos == end) {
 offset = 1;
 break;
 }
 byte b2 = text[pos++] & 0x3F;
 if (pos == end) {
 offset = 2;
 break;
 }
 byte b3 = text[pos++] & 0x3F;
 ch = ((b1 & 0x0F)<<12)|(b2<<6)| b3;
 }

 14

In text with many two- and three-byte characters, these checks
may be a significant performance hit. To remove them, we can
note that the only time that we can run off the end of the array is
if we’re looking for the initial byte of a character in the last two
bytes of the array. Therefore, if the main loop is performed twice,
as
int earlyEnd = end-2;
while (pos < earlyEnd) {
 main loop without checks
}
while (pos < end) {
 main loop with checks
}

then the overhead of the checks (and possible break) need only
occur on at most two iterations of the loop.
When SpeedyFx is to be called with arbitrary byte arrays without
control over the outer loop that reads from the source stream as
above, the object encapsulating the algorithm needs to be able to
keep track of the fact that a prior invocation resulted in a partial
character. To do that, we give the object two members, state,
which takes an enumeration of LIVE, ONE_OF_TWO,
ONE_OF_THREE, and TWO_OF_THREE, and partial, which
contains the partial character built up so far. With such an
arrangement, two modifications to the code are needed. First, in
the main loop (in the second version with checks), the end-of-
array tests become
 } else if (code == THREE_BYTE_CHAR) {
 if (pos == end) {
 state = ONE_OF_THREE;
 partial = (b&0x0F) << 12;
 break;
 }
 byte b2 = text[pos++] & 0x3F;
 if (pos == end) {
 state = TWO_OF_THREE;
 partial = ((b&0x0F)<<12)|(b2<<6);
 break;
 }
 byte b3 = text[pos++] & 0x3F;
 ch = ((b1 & 0x0F)<<12)|(b2<<6)| b3;
 }

Second, any partial characters must be finished the before the first
loop:
if (pos == end) { return; }
if (state != LIVE) {
 char ch;
 if (state == ONE_OF_TWO) {
 byte b2 = text[pos++] & 0x3F;
 ch = partial | b2;
 } else if (state == ONE_OF_THREE) {
 byte b2 = text[pos++] & 0x3F;
 if (pos == end) {
 state = TWO_OF_THREE;
 partial |= (b2<<6);
 return;
 }
 byte b3 = text[pos++] & 0x3F;
 ch = partial |(b2<<6)| b3;
 } else if (state == TWO_OF_THREE) {
 byte b3 = text[pos++] & 0x3F;
 ch = partial |(b2<<6)| b3;
 }

 state = LIVE;
 int code = codetable[ch];

 if (code != 0) {
 hash = (hash >> 1) + code
 } else if (hash != 0) {
 process hash
 hash = 0;
 }
}

For runtime situations where memory is at a premium and the
64K code table poses a concern, a further modification may be
worthwhile. We take advantage of the fact that most texts take
their characters from relatively small contiguous subsets
(typically fewer than 256 characters) of the Unicode space. (The
exception would be texts in languages like Chinese and Japanese.)
If we think of a 16-bit Unicode character as comprising an 8-bit
page indicator and an 8-bit index within the page, instead of
having one table of 64K elements, we instead have a 256-element
array of references to lazily-constructed 256-element tables. We
are now faced with two tasks: (1) determining the page number
and index for the next character in a stream of bytes and
(2) obtaining the appropriate code table for that page.
A two-byte UTF-8 character will specify five bits in the first byte
and six in the second, for a total of eleven bits. Thus, there are
eight possible pages that can be referred to by two-byte
characters. These eight pages cover all of the Latin-derived
scripts, Greek, Cyrillic, Arabic, Hebrew, and several others.
Instead of a single value of TWO_BYTE_CHAR, we reserve eight
special values starting at TWO_BYTE_BASE, each indicating a
page from 0 through 7. To handle the very common case of
successive two-byte characters being taken from the same page,
we keep track of the most recently used two-byte table and the
dispatchTable code that referred to it. Similarly, we keep track of
the last three-byte page and the code that referred to it. The
multi-byte lookup (ignoring end-of-array) thus becomes

 15

 if (code > THRESHOLD) {
 if (code == last2BCode) {
 byte b2 = text[pos++] & 0x3F;
 code = last2BTable[((b&0x03)<<6)|b2];
 } else if (code >= TWO_BYTE_BASE) {
 last2BCode = code;
 int page = code - TWO_BYTE_BASE;
 last2BTable = getTable(page);
 byte b2 = text[pos++] & 0x3F;
 code = last2BTable[((b&0x03)<<6)|b2];
 } else if (code == THREE_BYTE_CHAR) {
 byte b2 = text[pos++] & 0x3F;
 int page=((b&0x0F)<<4)|(b2&0x3C)>>2);
 if (page != last3BPage) {
 last3BPage = page;
 last3BTable = getTable(page);
 }
 byte b3 = text[pos++] & 0x3F;
 code = last3BTable[((b2&0x03)<<6)|b3;
 } else {
 // ill-formed UTF-8. Ignore.
 code = 0;
 }
 }

With the state-based implementation described above for handling
end-of-array, we can ensure that last2BTable and last3BTable are
set to the correct tables, and so only the partial index into the table
needs to be preserved.
When constructing the tables, we use the same process as
described above, calling a mapChar function to map the character
and using tables of random numbers to map the result. The table
of pre-computed random numbers could be a full 64K-element
array, but it suffices to have two 256-elment arrays whose values
are XORed, the high and low bytes being taken from the
respective tables. To do this, it is important that the XOR of any
pair of values from the two tables not be zero or any of the special
flag codes, but this turns out to not be difficult.

10.3 Calculating Probability of Collision
The probability of getting through n b-bit hashes without a single
collision can be computed as

b

b

nn
nPP

2
2

1
−

= −

which reduces in closed form to

)!2(2
!2

nbbn

b

−

Table 9 shows the results of computing this value for various
values of b, assuming a random hash distribution. The top rows
of the table show the cutoff value of n before the value of P drops
below various thresholds. For example, with 40 bits (5 bytes) per

hash, one can add just over 1.2 million entries before it is more
likely than not that there will be a collision. Unfortunately, the
Java floating point types make it difficult to perform this
computation for hash sizes of more than 53 bits, but from the
table, which appears to go up by a factor of 16 for every byte, it is
clear that with full 64-bit hashes one could expect to handle
around 112 million entries at the 90% threshold or around 315
million at the 50% probability.
The bottom part of the table gives the probability of not getting a
collision for various values of n. For an n of five million, for
example, with 48 bits, the probability of having zero collisions is
approximately 95.7%.
Of course, this whole calculation presumes that there is a reason
why one would be concerned with the expectation of getting even
a single collision. This was a point raised by a reviewer, and so
we cover it here, but it seems to us to be a relatively unimportant
point, as we discuss in section 4.1 above. While too-high a
collision rate is likely to be problematic, the distribution of
collisions is also important. Although it is true that in query
applications false positives are more annoying than with
classification applications (which are less likely to rely on a single
extracted feature), one must also keep in mind the likelihood that
neither of a pair of colliding words will ever be part of a query,
rendering such a collision non-problematic, as well as the
likelihood that the false positive will go unnoticed.

Table 9. Probability of No Collisions

Bits Per Hash
P

32 40 48 53

99% 9,290 148,663 2,378,620 13,455,509

95% 20,990 335,849 5,373,597 30,397,661

90% 30,083 481,341 7,701,473 43,566,113

80% 43,780 700,497 11,207,972 63,401,867

50% 77,162 1,234,603 19,753,661 > 100M

20% 117,578 1,881,272 30,199,389

10% 140,636 2,250,207 36,003,334

5% 160,414 2,566,647 41,006,375

1% 198,890 3,182,273 50,916,406

N

1M 63.5% 100.0% 100.0%

2M 16.2% 99.3% 100.0%

5M 1.7% 95.7% 99.9%

10M 83.7% 94.7%

20M 49.1% 97.8%

50M 1.2% 87.0%

100M 57.9%

