
 

                                                      
       

 
 
 
 
 
 
 
Keyword(s):   
 
 
 
Abstract: 
 

 

 

 
                                                                                                      
                                                                                                                      
 

  

   

                                                       

©  

Extremely Fast Text Feature Extraction for Classification and Indexing

George Forman, Evan Kirshenbaum

HP Laboratories
HPL-2008-91R1

text mining, text indexing, bag-of-words, feature engineering, feature extraction, document categorization,
text tokenization

Most research in speeding up text mining involves algorithmic improvements to induction algorithms, and
yet for many large scale applications, such as classifying or indexing large document repositories, the time
spent extracting word features from texts can itself greatly exceed the initial training time. This paper
describes a fast method for text feature extraction that folds together Unicode conversion, forced
lowercasing, word boundary detection, and string hash computation. We show empirically that our integer
hash features result in classifiers with equivalent statistical performance to those built using string word
features, but require far less computation and less memory.

External Posting Date: August 21, 2008 [Fulltext]          Approved for External Publication
Internal Posting Date: August 21, 2008 [Fulltext]

To be published and presented at Conference on Information & Knowledge Management, Napa, CA Oct 27, 2008

Copyright Conference on Information & Knowledge Management



 

 1

Extremely Fast Text Feature Extraction 
for Classification and Indexing 

George Forman 
Hewlett-Packard Labs 

Palo Alto, CA, USA 
ghforman@hpl.hp.com 

Evan Kirshenbaum 
Hewlett-Packard Labs 

Palo Alto, CA, USA 
evan.kirshenbaum@hp.com 

 
ABSTRACT 
Most research in speeding up text mining involves algorithmic 
improvements to induction algorithms, and yet for many large 
scale applications, such as classifying or indexing large document 
repositories, the time spent extracting word features from texts 
can itself greatly exceed the initial training time.  This paper 
describes a fast method for text feature extraction that folds 
together Unicode conversion, forced lowercasing, word boundary 
detection, and string hash computation.  We show empirically that 
our integer hash features result in classifiers with equivalent 
statistical performance to those built using string word features, 
but require far less computation and less memory. 

Categories and Subject Descriptors 
H.3.1 [Information Storage and Retrieval]: Content Analysis 
and Indexing.  I.5.2 [Pattern Recognition]: Design 
Methodology– feature evaluation and selection. 

General Terms 
Algorithms, Measurement, Performance, Experimentation. 

Keywords 
text mining, text indexing, bag-of-words, feature engineering, 
feature extraction, document categorization, text tokenization. 

1. INTRODUCTION 
Most text analysis—such as document classification or 
clustering—includes a step of text feature extraction to determine 
the words or terms that occur in each document.  This step is 
straightforward, runs in linear time, and is generally not a topic of 
study.  Research towards fast and scalable methods tends to focus 
on algorithmic issues such as model induction, typically O(N2) in 
the number of training cases.  By contrast, scoring documents in 
production with a learned model is merely O(N)—yet for a 
different meaning of N, the number of production documents, 
which can be very large for enterprise-scale applications or when 
analyzing the world’s web pages.  The scoring time (aka testing 
time) for large scale deployment can easily dominate the 

induction time, especially for the common case where it is 
difficult to obtain a large quantity of training examples labeled by 
domain experts.  An example would be an Information Lifecycle 
Management (ILM) application that periodically applies 
classifiers to huge document repositories for content management, 
such as the automatic application of file retention, archiving and 
security policies.  Our recent research in this space found that the 
time to extract the words from a text file can be roughly on par 
with the time to fetch the file from a local disk [5].  Finally, full-
text indexing also must perform text feature extraction on large 
volumes of files or web pages.  Hence, text feature extraction can 
take considerable computational resources for large scale systems.   
The tremendous increase of online text annually, together with the 
proliferation of large scale text analysis applications, yields a 
valuable opportunity to speed up the core text scanning subroutine 
that is so ubiquitous.  We demonstrate a way to perform this 
scanning step up to two orders of magnitude faster, with little or 
no effect on the quality of the text analysis.  The method, which 
includes character table lookup and hashing in its inner loop, 
inexpensively supports forced lowercasing, multi-word phrases, 
and either word counts or boolean features, as desired.  It can also 
supplant common Unicode conversion, eliminating some buffer 
copying and character expansion.  We demonstrate its use and 
speedup in applying multiple classifiers to texts, without having 
to write out different feature vectors for different feature-selected 
classifiers.  The method yields word and phrase features 
represented as hash integers rather than as strings.   
The obvious use for faster feature extraction is to process more 
text per second, run more classifiers per second, or require fewer 
servers to handle the text processing load.  Alternately, where the 
rate of text per second is limited, the benefit may be to lower the 
impact on a user’s machine, e.g. where text analysis agents 
operate constantly in the background to ‘understand’ the texts the 
user is reading or writing. 
The following section describes both baseline and proposed 
methods for text feature extraction.  Section 3 provides an 
empirical comparison for speed and classification accuracy.  
Section 4 analyzes the collision behavior and memory 
requirements.  Section 5 discusses practical matters for real-world 
use: the effect for end-users and an extension of our method that 
folds in the processing of text encoded using Unicode UTF-8 at 
little incremental cost. Section 6 places this work in the broader 
context of related work.  Section 7 gives conclusions and future 
work. 
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2. METHODS 
We begin by laying out the fundamentals of text feature 
extraction and describe a straightforward baseline method.  After 
this, we describe the steps of our method.  An extension for 
processing Unicode UTF-8 texts is included in Section 5.2. 
Text feature extraction depends on some definition of which 
characters are to be treated as word characters vs. non-word 
characters.  Besides the letters A–Z (in both upper and lower 
cases variants), word characters may also include accented letters, 
digits, the underscore, and generally all Unicode characters 
having one of the Unicode “Letter” general categories (uppercase, 
lowercase, titlecase, modifier, or other), depending on the 
application.  Let the boolean function isWord(char)  determine the 
status of any given character.  For this paper, we take the common 
approach that a maximal sequence of adjacent word characters in 
the text stream constitutes a word.   
Typical text processing applications normalize the capitalization 
of each word by forcing each character to lowercase.  Let this 
conversion be determined by the character function 
toLowerCase(char). The mapping is non-trivial for some Unicode 
letters.  Additionally, if underscores or digits are included among 
the word characters, then their lower case mapping is the identity 
function. 
For indexing applications, one needs to determine the sequence of 
each word that appears, but for text classification or clustering 
applications, one typically distills the text to the well-known bag-
of-words as the feature vector representation—for each word, the 
number of times that it occurs, or, for some situations, a boolean 
value indicating whether or not the word occurs.  The feature 
vector needed by a classifier depends only on the words that 
occurred in the training set, and in some cases, may use only a 
subset of these.  Feature selection methods may be used to select a 
subset of the most predictive words in order to improve the 
accuracy of the trained classifier [4].  This selection depends on 
the class labels of the training set, and if multiple classifiers are to 
be applied to the same text, then each classifier may require a 
different selection of features for its feature vector. 
Text classifiers can often be made more accurate if they also 
include features that represent word phrases, the most benefit 
coming from 2-word phrases (aka bi-grams) with diminishing 
returns for longer phrases [12].  By including word phrases, the 
dictionary of potential terms is greatly increased, emphasizing the 
need to select only the most useful terms for the classification task 

at hand.  It is not uncommon for a training set to contain hundreds 
of thousands of distinct terms and for the final classifier to operate 
with a subset of, say, 1,000 of the best terms. 

2.1 Baseline Method 
Table 1 presents pseudo-code that performs text word extraction 
for boolean features in a straightforward manner.  Although many 
variations and minor optimizations are possible, the common 
thread of all baseline methods is to gather the contiguous 
sequence of word characters together in an accumulator buffer 
(line 5) until the end of the word is encountered, and then to 
register the word String with some feature vector representation 
(line 8).   
This pseudo-code computes the set of words, but if instead one 
required the bag-of-words, then the appropriate hash table would 
be a HashMap<String,Integer> that maps each occurring word to 
the number of times it occurred (or to a position in an array of 
counters for faster incrementing).  Note that to add a word of type 
String to a hash table of words will require a hash function to be 
computed over the String that is used as an index into the hash 
table array, and may require at least one String-vs-String 
comparison in order to verify that the correct hash table entry has 
been located or to differentiate this word from other words whose 
hash representations collide in the hash table representation.  We 
are able to eliminate this overhead with our method.  

2.2 Our Method:  SpeedyFx 
Table 2 presents equivalent pseudo-code for the basic skeleton of 
our method, which we call SpeedyFx.  In structure it appears 
much the same as before, but with two key differences.  Foremost 
is that the current word accumulator is represented by an integer 
hash (line 2 & 6) instead of a String.  (We analyze the strength of 
our chosen hash function in Section 4.1.)  The second major 
difference is that all function calls have been removed from the 
inner text processing loop.  A lookup (line 4) into a pre-computed 
table replaces two much slower function calls: isWord(char) and 
toLowerCase(char).  Even if one could get these functions 
compiled inline, their joint processing overhead would greatly 
exceed a single table lookup.  And the many word occurrences are 
simply overwritten to the boolean feature  array (line 9), avoiding 
many calls to the hash table add() function inside the loop.  Note 
that there is no need to check whether the particular word hash 
has already been noted in the feature array.  (In systems that want 
a count of each word, the array can be an array of integers rather 

Table 1.  Baseline text word extraction. 
HashSet<String> extractWordSet(text): 
1 HashSet<String> fv = new HashSet<String>(); 
2 StringBuilder word = new StringBuilder(); 
3 foreach (char ch: text) { 
4  if (isWord(ch)) { 
5   word.append(toLowerCase(ch)); 
6  } else { 
7   if (word.size() > 0) { 
8    fv.add(word.toString()); 
9    word.clear(); 
10   }  
11  } 
12 } 
13 return fv; 

Table 2.  Basic SpeedyFx text feature extraction. 
boolean[] extractWordSet(text): 
1 boolean fv[] = new boolean[N]; 
2 int wordhash = 0; 
3 foreach (byte ch: text) { 
4  int code = codetable[ch]; 
5  if (code != 0) {// isWord 
6   wordhash = (wordhash>>1) + code; 
7  } else { 
8   if (wordhash != 0) { 
9    fv[wordhash % N] = 1; 
10    wordhash = 0; 
11   } 
12  } 
13 } 
14 return fv;
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than an array of booleans.)  In practice, N will be chosen to be a 
power of two, allowing the modulus operation (line 9) to be 
replaced by a simple bitwise AND. 
If a more compact representation of the resulting feature vector is 
required, a quick, linear scan of the boolean array can be used to 
insert each occurring word hash into a hash table or into an array 
containing the word hashes found.  In many cases, though, 
features are extracted in order to be used immediately for some 
task, an in such cases the boolean array representation is often 
sufficient. 
A reasonably large bits array of size N=220 is suggested. Larger 
values of N result in a greater memory demand momentarily for 
the bits array, whereas smaller values of N effectively restrict the 
size of the hash space, conflating features that have different 32-
bit integer hash values together into a smaller space.  Using N=220 
is easily sufficient for corpora or training sets with hundreds of 
thousands of unique terms.  For perspective, a corpus of 804,414 
Reuters news articles contains 47,236 unique words, and a corpus 
of 62,369 Arxiv.org astrophysics papers contains 99,757 unique 
words [8].  Regarding the memory demands, most compilers will 
allocate one byte per boolean for good performance, rather than 
packing them tightly into bits.  Thus, for N=220 the size of this 
bits table is 1 MB, which is a fraction of the L2 cache for modern 
CPU chips.  If instead one needs to track the word count for the 
bag of words representation, this array can instead be used to 
contain 8-bit or 16-bit word frequency counters. 
The pre-computed code table actually serves four different 
functions simultaneously:  word character determination, 
lowercasing, hash randomization, and, as will be introduced later 
in Section 5.2, Unicode processing.  Table 3 shows pseudo-code 
to prepare the table appropriate for 8-bit character streams.  For 
any character that is not a word character, the table contains zero.  
For word characters, it maps the character to its lowercase 
equivalent and maps the result a distinct fixed random integer 
code.  This randomization substantially improves the hashing 
function over just using the lowercase character code directly, as 
the Java String.hashCode() method does.  (For reference, Java 
Strings use multiplicative hashing [10], computing their hashes by 
iterating hash = 31*hash + char over their characters). 
It should be noted that while in our tests our word characters were 
letters and numbers an our normalization is lowercasing, this is all 
embodied in the creation of the code table.  Any other set of rules 
could be used by providing a different table.  The only restriction 
is that the mapped and normalized character (if any) be decidable 
from a single character. This can be relaxed, but the mechanisms 
for doing so are beyond the scope of this paper. 
Our hashing function, which we call Mapped Additive Shift 
Hashing (MASH), consists of a simple arithmetic right shift, a 
table lookup (from a very small table), and an addition.  As such, 
it is very efficient and easy for a compiler to optimize. Although 
the rightward direction of the bit-shift operation (line 6) is 

somewhat non-intuitive, it actually produces substantially better 
hashes than using a left-shift.  The reason is that we end up using 
only the low order bits of the resulting word hash (line 9), and if a 
left-shift were used instead, then these lowest order bits would be 
largely unaffected by the first characters of the word, especially 
for a longer word. (In the case in which the modulus is a power of 
two for efficiency, they would be completely unaffected by 
them.)  If the rightmost ten bits are kept, then only the final ten 
characters can contribute to the hash. By using a right-shift, on 
the other hand, and by ensuring that each character contributes 32 
bits to the value, a character’s influence continues (in a degrading 
fashion) for at least 31 following characters.  Even for the 
occasional word longer than 32 characters, note that we use a 
sign-extended right-shift, so that the parity of initial letters 
continues to have some effect on the hash.  Of course, this 
influence does diminish, and so MASH is certainly not suitable 
for hashing long texts, which is the goal of typical hash function 
designs such as SHA1, MD5 and Rabin hashing, which are each 
much more involved to compute. 
If one wishes to also produce features for each phrase bi-gram, 
then at the moment when the hash is registered (line 9), we can 
also register a phrase hash consisting of the current hash 
combined with the previous word hash, using a symmetric 
combination (such as XOR or addition) if it is desired to have 
features that are independent of the order of the words or an 
asymmetric combination (such as subtraction or XOR with a 
shifted value) if order is to be preserved.  Working in integer 
space, such combination is much more efficient than working in 
string space, in which typically a new string must be constructed 
(or at least a new heap-based object that refers to the two strings). 

2.3 Use in Full-Text Indexing 
So far the discussion has primarily focused on the use case of 
extracting a bag or set of words, which is needed for use in 
classification or clustering applications.  But the speed benefits of 
our method can also be leveraged for the widespread use case of 
full-text indexing of large document repositories (either large 
documents or many of them or both).  In this case, the indexing 
engine needs to extract the sequence of words/terms in a text, and 
build reverse indices of them for later information retrieval.  The 
key difference for our features would be that the term features are 
integers rather than Strings.  When later a query is submitted, the 
words that the user enters are submitted to the exact same hash 
processing, yielding the same integer hashes that the text has 
previously been indexed by.  Note that for this usage, one can use 
the full 32-bit integer hash space (i.e. without the modulo N and 
the bit array on lines 1 and 9 of Table 2).  

3. EXPERIMENTS 
In this section we present a series of experiments to evaluate the 
speed and other qualities of our method compared with various 
baselines.  In all cases our compiler is Java JDK 1.6.  Where 
speed measurements are concerned, the measurements were 
performed on a 2.4 GHz Intel® Xeon™ CPU, which is a 64-bit 
architecture, running a version of Linux derived from Red Hat 
version 4. Measuring elapsed time for performance can be quite 
tricky, since other processes and threads regularly interrupt 
processing for uncontrolled amounts of time, occasionally 
slowing down the overall or average measurement substantially.  
For this reason, we measure the throughput for each test over 50 
separate iterations and use the measurement that shows the best 

Table 3.  Code table pre-compilation for SpeedyFx. 
prepTable(): 
1 int rand[256] = 256 fixed random integers; 
2 foreach (ch: 0..255) { 
3  codetable[ch] = isWord(ch) ? 
4   rand[toLowerCase(ch)] : 0; 
5 } 
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performance, which excludes non-essential delays for thread 
interruptions.  To exclude the impact and variability of disk 
transfer speeds, we cache the file bytes in memory before 
beginning the series of time measurements. 
We use two sources for publicly available benchmark texts. To 
measure speed for tokenization, we use the text of Leo Tolstoy’s 
War and Peace, which is 3.1 MB in ASCII and is available from 
Project Gutenberg.1  To measure speed over feature extraction 
and classification, we use the popular 20 Newsgroups dataset, 
which has roughly 1000 Usenet postings for each of 20 
categories.2  We use the ‘bydate’ version, which has had 
duplicates and some headers removed and which prescribes a 
specific train/test split.  The dataset contains 34.2 MB of mostly-
ASCII text in 18,846 documents.  Thus the average document is 
about 1.9 KB. 

3.1 Raw Tokenization Speed 
First we measure the raw speed of text tokenization.  For this 
measurement, we simply produce the sequence of word Strings or 
word hash integers that occur in the text and discard them without 
further processing.  This is the most basic processing skeleton that 
needs to be computed regardless of the text analysis application.  
For example, in a text indexing system, this sequence of terms 
would be used to build a reverse index by later sorting all <term 
hash, document ID> pairs. 
Table 4 shows the processing speed for a variety of methods 
measured on the War and Peace text.  The first line shows our 
best processing rate of 136.2 MB/second using SpeedyFx with 
MASH and calling down to a user-provided function on each 
word hash found.  The same speed was attained using an inlined 
version of Java’s hash algorithm.  When Rabin fingerprinting was 
substituted, the performance dropped to 111.9 MB/second.. 
Typically tokenization is performed by using an iterator-like class 
that returns successive tokens each time a method is called.  
When our algorithm was embodied in such a class, returning a 
word hash each time, the performance dropped to 116.0 
MB/second using MASH and Java’s hashing and to 87.0 
MB/second using Rabin fingerprints.  Since both approaches 
entail a single method call per discovered word, this speedup of 
approximately 17% appears to imply that the Java compiler is 
more aggressive about inlining calls to methods within the same 
object for (necessarily final) anonymous classes than it is to calls 
of objects of different classes. 
All of these numbers compare very favorably with existing 
baseline approaches to tokenization.  Java provides a String-
Tokenizer class, which takes a string and a string containing 
delimiter characters (characters to not be considered part of any 
word) and provides hasMoreTokens() and nextToken() methods.  
Besides the overhead of the extra call to find out whether more 
words are available, this suffers from several problems common 
to many approaches we looked at.   

                                                                 
1 Version 11, http://www.gutenberg.org/dirs/etext01/wrnpc11.txt. 

The size includes Project Gutenberg boilerplate text at the 
beginning and end. 

2 http://people.csail.mit.edu/jrennie/20Newsgroups/20news-
bydate.tar.gz   

First of all, it requires a string as input rather than being able to 
work directly from a byte array.  This involves converting bytes 
to characters and creating a string from the characters, both of 
which imply copying the data.  Second, each of the produced 
tokens needs to be created as a String object.3  And third, any 
normalization (in this case lowercasing) needs to be done 
externally on each produced string.  In addition, the 
StringTokenizer class searches in its delimiter string for each 
character it sees.  The class is designed for use with a small set of 
delimiters (e.g., commas and tabs), but for our purposes, we need 
to include all non-alphanumeric characters, and so this check is 
quite slow.  The net result is that StringTokenizer processed War 
and Peace at a rate of only 4.1 MB/second, just 3% that of 
SpeedyFx. 
A slightly more efficient approach is to use a regular expression, 
in the form of a Java Pattern object matching all Unicode non-
alphanumeric characters, to split each line and then lowercase 
each word..  This processed War and Peace at 11.1 MB/second, 
or 8% of SpeedyFx. 
Another approach is to use classes supplied by a library.  The 
Lucene v2.2 library [7] provides two methods.  The most 
commonly used of the two is their StandardAnalyzer class, but it 
is not strictly an apples-to-apples comparison, since that class 
incorporates a full lexical analyzer (built from JavaCC [3]), which 
attempts to recognize more complex objects, such as e-mail 
addresses and hostnames, which ours cannot.  On War and Peace, 
the Lucene StandardAnalyzer performed at 1.9 MB/second, 1% of 
SpeedyFx. 
Lucene also provides set of Tokenizer classes to allow the 
programmer to specify the rules directly, and a CharTokenizer 
subclass that defines tokens as sequences of allowable characters, 
arbitrarily normalized.  We tested a subclass that allows 
alphanumeric characters and normalizes by lowercasing.  Unlike 
tokenizers that require strings as input, this can read directly from 
a character stream and so performs much better, processing War 
and Peace at a rate of 25.7 MB/second (19%). 

                                                                 
3 In the case of the StringTokenizer class, the tokens are 

substrings of the input string, which are themselves small, but 
which refer to the larger string.  This would appear to have 
severe memory implications if the tokens are stored in long-
lived structures, as they would prevent the memory for the full 
text string from being garbage collected. 

Table 4.  Raw text tokenization speed. 

Tokenizer MB/second % 

SpeedyFx 136.2 100% 

SpeedyFx as Iterator 116.0 85% 

Table-based tokenizer 64.5 47% 

Lucene CharTokenizer 25.7 19% 

WEKA alphabetic tokenizer 21.8 16% 

Java Pattern 11.1 8% 

Java StringTokenizer 4.1 3% 

Lucene StandardAnalyzer 1.9 1% 
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The popular Weka v3.4 [16] library contains a class StringTo-
WordVector to convert a dataset with String attributes into bag-
of-words features.  At its core, it uses its own text tokenizer 
AlphabeticStringTokenizer, which has specialized code for 
recognizing sequences of (only) ASCII alphabetic characters.  
When put in a framework that processes a stream and does 
lowercasing of the words it finds, it processes War and Peace at a 
rate of 21.8 MB/second (16%). 
One question that arises is the extent to which the speed-up we 
see is due to the table-driven approach rather than the decision to 
use hashing rather than creating strings.  To test this, we 
constructed a tokenizer that used the same tables as SpeedyFx but 
which constructed a string rather than computing a hash.  This 
processed War and Peace at 64.5 MB/second, 47% of the rate at 
which the full algorithm worked. A similar approach, suggested 
by a reviewer, is to use pre-computed arrays in place of the 
isWord() and toLowerCase() functions (to remove the function 
call overhead) and to yield the hash of the constructed string 
rather than the string itself.  This approach processed War and 
Peace at 31.6 MB/second, 26% of the rate of the full algorithm. 

3.2 Feature Vector Extraction Speed 
Next, we measure the text processing speed for text feature 
extraction, i.e. to determine the complete set or bag of terms in a 
text, which is a task typically performed during clustering 
analysis and classification, especially during the training phase 
(i.e. before any feature selection has been performed).  For these 
tests, we use all 18,846 articles of the 20 Newsgroups benchmark 
and measure the time it takes to extract a representation of the set 
of words contained in each article, where a word is, as before, 
considered to be the lowercase version of a maximal sequence of 
alphanumeric characters (or the closest that can be approximated 
using a given method).  Over and above the tokenization task, this 
task adds the problems of (1) recognizing that a word has already 
been seen and (2) constructing a representation that can be used to 
enumerate the words seen and to decide whether a word of 
interest was seen. 
For methods that enumerate strings, a Java HashSet<String> was 
chosen as the representation, while for methods that enumerate 
hash values, an array was used.  The size of the array was 220 
elements. 
Table 5 shows the text extraction speeds for extracting sets of 
words.  Again, we see that extraction using a hash-based 
tokenizer runs many times faster (9–65x) than the existing string-
based methods, and the difference is even greater than with 
tokenization.  This is not surprising, as the use of the hash set 
imposes its own significant overhead over simply writing a value 
in an array.  First of all, a hash value must be computed over the 
string to be added, which is linear in the length of the string.  
Then, if there are already entries in the appropriate slot in the 
hash table’s array, each must be compared against the current 
string, which is a constant-time operation unless the strings’ 
(recorded) hash values match.  And when a word is seen for the 
second or subsequent time, a full string comparison must be 
performed to determine that a new entry does not need to be 
added, which is again linear in the length of the string.  Finally, 
whenever the table’s capacity threshold is exceeded, it needs to be 
grown, which is linear in the number of elements currently in the 
table.  This additional overhead due to the hash table explains 
why even when using the table-based tokenizer, the performance 

is only marginally better (11% vs. 151% for tokenization) than 
that of the fastest other string-based extractor. 
Table 5 illustrates another interesting point about extraction using 
hash-based tokenization.  SpeedyFx methods show up both at the 
top and near the bottom of the table.  The numbers at the bottom 
are for the method essentially as described in Table 2, in which 
the feature vector representation is an array of boolean values 
which are set to true each time a hash computation is completed.  
When run on War and Peace, this method had essentially the 
same performance (116.0 MB/second vs. 120.5 MB/second) as 
the faster method.   
The problem is that while it is, indeed, inexpensive to set the 
array item to true each time a word is seen, in order to be usable 
as a feature vector, this requires that all array items are set to false 
before the process begins.  With 220 elements in the array needing 
to be reset (or initialized) for each of 18,846 cases, this meant that 
19.8 billion false values were being set in order to distinguish 
them from the approximately 6 million hash values actually seen–
over three thousand times as many.  Indeed, the 18.4 GB of 
feature vector initialization dwarfed the 34.2 MB of text that had 
to be processed.  Clearly, the cost of initializing the feature vector 
(not as big a problem with hash sets, whose internal arrays are 
proportional to the size of their contents) needs to be taken into 
account when dealing with smaller texts. 
We tried two approaches to get around this problem.  In the first, 
we maintained a trail–a separate array of indices of the feature 
array values changed from false to true.  This necessitated that 
before we wrote a feature value, we first checked to see whether 
we had already done so, but it also meant that to reset the feature 
vector to prepare it for the next case, we needed merely to walk a 
list proportional to the number of unique words seen.  This 
improved the performance to 82.2 MB/second, or 70% of our 
eventual best speed. 
The second—and best—approach was to replace the boolean 
array with an array of values indicating the document in which 
the corresponding hash value was last encountered.  The extractor 
keeps track of the value indicating the current case and sets the 
appropriate array element to that value when a hash computation 
is completed.  To check whether the current case contained a 
word hash, the array element is compared against the current case 
indicator.  If they are the same, the answer is “yes”. 
For our implementation, the case indicator was a number, 
incremented with each new case and allowed to wrap on 
overflow.  Doing it this way has an interesting side effect, though.  
If the last case in which a particular word hash was seen was 
exactly 256 cases ago (for byte indicators; 65,536 cases ago for 
short indicators), the feature extractor would incorrectly report 

Table 5.  Feature vector extraction speeds. 

Extractor MB/second % 
SpeedyFx (with case index array) 117.1 100% 
Table-based tokenizer 15.2 13% 
Lucene CharTokenizer 13.7 12% 
WEKA alphabetic tokenizer 11.1 9% 
Java Pattern 7.3 6% 
SpeedyFx (with boolean array) 2.7 2% 
Lucene StandardAnalyzer 1.8 2% 
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that the case contained that word hash.  In theory, this should not 
be expected to happen very often, but if the possibility is 
unacceptable, the array can be reset every 255 (or 65,535) cases, 
amortizing the cost of doing the reset.  Doing so with byte 
indicators reduced the speed to 102.1 MB/second (87%). 

3.3 Multiple Text Classifier Speed 
As described earlier, often one needs to apply many text 
classifiers to each text, and our method can support this common 
use case efficiently.  To test this, feature selection was performed 
on the training cases for each of the 20 newsgroups in the 20 
Newsgroups dataset to extract the 1,000 most informative features 
for each using bi-normal separation as the metric and separately 
for word hash and string features.  This resulted in 18,030 
selected word hash features and 18,175 selected string features 
(some of which were selected by multiple classifiers).  We then 
scored each article in the entire 20 Newsgroups dataset for each of 
the 20 classes, by summing weights associated with features seen 
(noting each weight only once per article), as would be the case 
when using an SVM or Naïve Bayes classifier. 
In these experiments we compared SpeedyFx-based classifiers 
with string-feature-based classifiers.  For the string-feature-based 
classifiers, we used hand-crafted classifiers based on the table-
based tokenizer that consistently performed the best of the string-
based methods in the tokenization and extraction tests.  In 
addition, each of these methods was implemented three ways, 
each considering articles one at a time.  The first two approaches 
began by performing feature extraction on the article.  In the first 
approach, the resulting feature vector (array or HashSet) was 
filtered (based on the complete list of selected features) to an 
array of booleans.  Each classifier was then asked to score the 
article based on this array.  In the second approach, for each class, 
the feature vector representation was used directly to score the 
article.   
The third approach skips feature extraction entirely.  Instead, a 
single multi-class classifier is built that contains an target set, an 

internal data structure mapping features selected to the classes 
that selected them and the associated weights.  (This data 
structure is an array for SpeedyFx and a hash map for the string-
based method.)  For each, the main extraction loop is performed, 
but now when a feature is determined, rather than adding it 
idempotently to a feature vector, the classifier checks the target 
set to see whether it contains the determined feature.  If so, the 
classifier uses the associated classes and weights to update the 
appropriate scores.  It then removes it from the target set and adds 
it to a trail, which is used to repopulate the target set to prepare 
the classifier for the next article.  By removing the feature from 
the target set, the classifier ensures that if it occurs again in the 
same article, it will be ignored. 
 As can be seen in Table 6, in all cases, SpeedyFx clearly 
dominated the string-based equivalents.  Also, for both SpeedyFx- 
and string-based approaches, inline classification overwhelmingly 
dominated classification that begins with feature extraction. 

3.4 Classification Accuracy 
Ultimately the superior speed of any extraction method would be 
unimportant if the features it produced led to poor 
characterization of the data.  In this section, we demonstrate that, 
on the contrary, there is substantially no difference in 
classification accuracy when using traditional bag-of-word 
features as opposed to using our hash features. 
Figure 1 shows the F-measure (harmonic average of precision and 
recall) for each of the 20 binary “one-class-vs-others” 
classification tasks defined by the 20 Newsgroups dataset.  The 
classifier used is the WEKA v3.4 Support Vector Machine (SVM) 
[16] using the best 4096 binary features selected separately for 
each training set via Bi-Normal Separation [4].  (We chose this 
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Figure 1.  F-measure for each class for an SVM. 

Table 6.  Classification speeds (MB/second). 

Approach SpeedyFx String-based 

extract, filter, classify  6.2 11% 1.2 2% 

extract, classify  8.1 14% 1.3 2% 

inline classify 57.7 100% 23.5 41% 
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0.72

0.74

0.76

 100  1000  10000  100000
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Number of features selected

SVM+BNS

SVM+IG

NB+IG

BOW hash  
 Figure 2. Macro-averaged F-measure is affected more by 
choice of classifier, number of features selected and the choice 
of feature selection metric than it is by whether we use bag-of-
words features (BOW) or our hash features. 
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number of features to maximize macro-averaged F-measure 
overall.) The results show essentially no difference in 
performance between bag-of-words features (BOW curve) and 
our hash features (hash).  A paired t-test over the F-measures for 
the 20 classification tasks shows that any apparent difference is 
statistically insignificant (p=0.31).  Furthermore, we next show 
for perspective that other common factors affect the performance 
much more than the type of features generated.  
Figure 2 shows the F-measure under various models macro-
averaged over all 20 binary classification tasks.  For each model, 
we see that the performance with bag-of-words features or with 
our hash features has a small effect (the two curves are close 
together).  Overall, choice of feature generation has a much 
smaller effect on performance than the choice of classifier (SVM 
vs. multinomial Naïve Bayes), the number of features selected, or 
the feature selection metric by which to judge features (Bi-
Normal Separation vs. Information Gain).  This brings up an 
additional point of motivation for this work:  If in practice one 
needs to try many different model parameters and select the best 
via cross-validation, then it may be even more important to the 
practitioner to have fast text feature extraction. 

4. ANALYSES 
4.1 Hash Collisions 
For a good hash function, accidental hash collisions should be as 
rare as or rarer than misspellings in the text or naturally occurring 
homonyms (two words that are written the same but have 
different meanings, e.g. the ‘boxer’ dog breed vs. the ‘boxer’ 
athlete).  Just as misspellings and homonyms occasionally detract 
from our text analysis goals, so too will hash collisions of 
unrelated words.  We show in this section that our chosen hash 
function, MASH, is stronger than the ubiquitous multiplicative 
hashing, used by Java’s String.hashCode() function, and the well-
known Rabin hash function, which is generally purported to be 
fast to compute with the use of a pre-computed lookup table. 
Table 7 compares the three hash functions in terms of the 
collisions over words in the 20 Newsgroups dataset, considering 
only the bottom 20 bits of each hash value.  The 20 Newsgroup 
dataset contains 5,984,079 “words” (maximal sequences of 
alphanumeric characters) which comprise 168,461 distinct 
(lowercased) values.  The first two rows are the number of distinct 
hash values seen using the given hash function and the number of 
those values that are the result of hashing distinct words.  (The 
numbers do not add up to the number of distinct words since a 
small number of values will be shared among more than two 
words).   
The third line is the resulting probability that a given word will 
result in a hash value that is shared with some other word in the 
corpus.  This is a static probability, which does not take into 

account word frequency.   As can be seen from the table, words 
are considerably less likely to share their 20-bit hash values using 
MASH than using either Java’s string hashing or Rabin 
fingerprinting.  Only approximately one in 13 words has a shared 
hash value for MASH, compared to nearly one in ten for Java 
string hashing and nearly one in three for Rabin fingerprinting. 
But static collisions are not the whole story.  In any corpus, the 
the words will tend to follow a Zipf distribution with the vast 
majority occurring very seldom and only a small minority 
occurring with noticeable frequency.  Since hash collisions do not 
depend on the frequencies of the words, this implies that for the 
vast majority of collisions, one or (much more likely) both will be 
very infrequent.  For instance, using MASH, the words “bit” and 
“wx3” both hash to 128,278, but the former occurs in 2,597 
articles, while the latter appears in only one.  The implication for 
classification is that a colliding hash is either unlikely to be 
selected as a feature (since both words are infrequent) or will 
almost always represent the word that led the classifier to select it.  
To take this into account, we consider a measurement of a 
probability of “word confusion” that focuses on the dynamic 
impact of collisions.  This is the conditional probability that if two 
words chosen at random from the corpus hash to the same value, 
they are, in fact different words.  It is computed as 

 Words

Hashes

( 1)
(confusion) 1

( 1)

w w
w

h h
h

n n
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n n
∈

∈

−
= −
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where nw and nh are, respectively, the number of occurrences of 
words and hashes in the corpus.  As is apparent in Table 7, this is 
over five times as likely to happen with Java string hashing (and 
71 times as likely to happen with Rabin fingerprinting) as it is 
with MASH. 
The actual collisions seen appear to be unlikely to cause much 
problem.  Looking at MASH with the “rec.motorcycles” group, 
the most significant term is a collision between “bikes”, clearly a 
relevant word, which occurs in 233 articles in the corpus and 
“kom”, which occurs once.  Of the top 1,024 features for the 
group, in only two is there a collision between words both of 
which occur more than ten times.  The first such collision, the 
1,001st most important feature as selected by Bi-Normal 
Separation, is a collision between “noemi” (13 articles) and 

Table 7.  Comparison of hash function quality over words. 

 MASH 31*h+c  Rabin  

Hashes seen 155,620 150,613 113,817 

Colliding hashes 12,178 15,661 24,436 

P(static collision) 0.0762 0.1059 0.3244 

P(dynamic confusion) 0.0012 0.0065 0.0841 

 

Table 8.  All pairs of frequent words confused by MASH. 

key (3,395) 
vs (1,075) 

pp (443) 
96 (199) 

assembly (173) 
responded (107) 

research (2,044) 
easy (841) 

xt (393) 
sharks (207) 

senator (155) 
helsinki (113) 

heard (1,607) 
mu (280) 

club (290) 
nih (141) 

brings (120) 
iq (112) 

90 (712) 
medium (108) 

dseg (268) 
lying (183) 

scope (115) 
badly (107) 

vms (645) 
floppy (482) 

discovered (249) 
watson (218)  

alone (501) 
duke (424) 

drink (175) 
signals (160)  
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“8mhz” (11).  The second such collision is an actual example of 
what might be considered the introduction of a homonym: “sin” 
(692 articles) and “executed” (83 articles) both hash to 998,868.   
In the entire corpus of 168,461 words, there were only sixteen 
pairs of words that each occurred in at least 100 articles and 
which hashed to the same value using MASH. These, shown in 
Table 8, represent just 0.01% of the 155,620 hash values seen and 
0.13% of all (static) collisions.  If the threshold is lowered to 
those that have at least ten instances each, the number of such 
hashes rises to only 367 (0.24%). 
So far, the analyses have all used a bit table space of N=220.  
Naturally, the collisions will increase if we decrease N, e.g. in 
order to reduce memory demands for small portable devices.  
Figure 3 shows the number of collisions produced by the set of 
words and phrases used previously, as we vary the table size 
modulus N from 500,000 to 220.  Most noticeably, the 31*h+c 
multiplicative hash function used by Java has erratic performance.  
It gets many more collisions for particular values of N—multiples 
of 31 (the JDK 1.6 HashMap and HashSet implementations avoid 
such table sizes by always using a power of two). Likewise, the 
Rabin hash function also shows erratic performance, though it 
very often has fewer collisions than the multiplicative hash 
function.  Finally, observe that MASH performs consistently well 
at every table size (labeled ‘ours’).  For a near-lower bound 
comparison, we repeated this experiment for a random set of 
integers and find that their collision performance is only 
marginally better than MASH (labeled ‘ideal’). 
For indexing applications, in which the task is simply to extract 
the complete sequence of tokens, it is perfectly reasonable to store 
much larger hashes of 4 to 8 bytes per token.  Using 6-byte 
hashes, one would not expect to see a single collision in fewer 
than nineteen million distinct words, assuming hash uniformity.  
For a web indexing application with a vocabulary of, say, five 
million words, 48 bits would suffice to give you a probability of  
96% of not having a single collision. 

4.2 Size 
In addition to processing speed, another efficiency consideration 
is size.  In the present context this can be interpreted in two ways: 
(1) the size of a representation of a classifier having a certain 
number of selected features and (2) the amount of memory that is 
needed to perform feature extraction or classification.  In what 
follows, we give a summary of our results.  Readers interested in 

the details of the analysis are invited to see Appendix 10.1.  The 
analysis presumes a straightforward implementation using Java 
JDK 1.6 on a 32-bit machine.  It also assumes the use of 20-bit 
hashes. 
The size of a classifier representation has implications primarily 
with regard to transmitting the classifier from one machine to 
another or writing it to permanent storage.  This will be especially 
important in settings in which there are a large number of 
classifiers being used.  With hash-based methods, classifiers can 
be represented with 7 bytes per selected feature (4 bytes for the 
weight and 3 bytes sufficient to identify the feature hash).  With 
string-based methods, the number will depend on the distribution 
of strings.  For the 20 Newsgroups dataset, for which words 
average 6.5 characters, a classifier can be represented on the wire 
with 11.5 bytes per selected feature on average (4 bytes for the 
weight and 6.5 UTF-8 bytes on average, plus a null terminator), 
for an increase of 64% over the use of hash-based features. 
The second concern is the memory footprint used temporarily 
during feature extraction and classification.  For SpeedyFx, the 
memory used will be an array of either one or two bytes per 
possible hash code, so a 20-bit hash space will require 1 MB or 2 
MB.  For string-based methods, we analyzed the memory used by 
the HashSet feature set representation.  Our analysis implies that a 
HashSet of Strings will require for each word approximately 80 
bytes + 2 bytes/character, or 93 bytes per word on average for the 
20 Newsgroups dataset.  The articles in the corpus average 317.5 
distinct words apiece, and so processing them should require a 
HashSet whose overall memory footprint is approximately 29 KB, 
substantially less than SpeedyFx.  For longer texts, the difference 
is not as clear-cut.  The 17,816 different words in War and Peace 
average 7.5 characters long, and overall the HashSet can therefore 
be expected to require 1.6 MB. 
One further consideration is that the arrays used by SpeedyFx are 
contiguous and self-contained.  The HashSets used by string-
based methods, on the other hand, comprise hundreds or 
thousands of individual small objects which will not exhibit the 
same degree of locality and which will need to be individually 
garbage collected when no longer needed.  In addition, while the 
1 or 2 MB size of the SpeedyFx array is larger than the HashSets 
used by string-based methods for small texts, it is small enough to 
fit in cache on most modern architectures. 

5. DISCUSSION 
For perspective on the speed improvement, consider the 
motivation of enterprise-scale text indexing from the introduction. 
For each 100GB of enterprise files to be indexed, the off-the-shelf 
StandardAnalyzer in the Lucene package would spend 15 hours of 
CPU time just to tokenize the text.  Even going to the effort of 
hand-coding an extension to Lucene’s CharTokenizer would only 
reduce this to just over an hour.  By contrast, with SpeedyFx this 
comes down to less than 13 minutes (from Table 4).   
The remainder of this section contains a discussion of the 
practical impact of occasional hash collisions and an extension to 
SpeedyFx that folds in the ability to handle Unicode UTF-8 text 
with minimal loss of efficiency. 

5.1 Impact of Hash Collisions 
Hash collisions, when not too common, behave similarly to 
homographs.  Consider first information retrieval: a search for 
documents containing the word ‘shift’ will return some about 

 
Figure 3.  Number of hash collisions modulo table size. 
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‘gear shift,’ some about ‘night shift,’ and others about ‘shift’ in 
the slang sense of ‘move it.’  We usually discover the confusion 
after viewing the initial search results, and then use natural means 
to cope with these situations. We may add disambiguating search 
terms such as ‘shift AND (gear OR transmission)’, we may place 
the word in an unambiguous search phrase such as ‘gear shift,’ or 
rarely, we may give relevance feedback to refine the hits without 
caring which terms are involved.  The major difference for hash 
features is that our background knowledge does not provide 
intuition for which words will have troublesome pseudo-
homographs due to random hash collisions.  If we search for ‘cat’ 
and we get an equal mix of documents containing ‘strawberry,’ 
then we may be surprised, but the same coping techniques apply 
as above.  With our intuition, we might know that ‘shift’ is going 
to be ambiguous and plan for it from the very first query, but for 
the ‘cat’ example, we could not know in advance.  Since most 
words occur rarely according to a Zipf distribution, it is much 
more likely that the pseudo-homograph would be some more 
obscure word.  For example, if we search for ‘cat’ and we also get 
documents containing ‘schadenfreude,’ then the precision of our 
results may hardly be noticeably polluted, especially when 
considering the already difficult signal-to-noise problems in 
everyday, practical searches. 
Next, consider the homograph-collision problem for text 
classification:  the classifier is sure to use a variety of terms 
together to predict the class.  Thus, a small amount of term 
confusion (typically from rarely occurring words) is unlikely to 
impact classification accuracy significantly.  Nevertheless, it 
could occasionally happen that a particularly important word for 
classification is conflated with a very common word, such as the 
common stopword ‘the’, which ruins the predictive value of the 
joint feature.  So, although there may be no substantial 
degradation for the average text classification problem, hash 
collisions may impair classification accuracy for a single, specific 
classification task at hand.  A potential work-around would be to 
try a different initial hash seed to avoid the unfortunate collision.  
This workaround is not practical for the information retrieval 
scenario, where the queries of interest are not known until after 
the large document repositories have already been indexed with a 
fixed hash function. 

5.2 Unicode extension 
Although traditionally most text processing has been done on 7-
bit ASCII or 8-bit characters of various encodings, more and more 
one must process texts encoded using the Unicode character 
set [15], either in the fixed-width two-byte UCS-2 encoding or in 
the variable-length UTF-8 encoding.  Typical software for 
Unicode text processing, especially in Java, first calls a function 
to translate a UTF-8 byte stream into a buffer of 16-bit Unicode 
characters, upon which all remaining text processing is done.  But 
this requires a substantial amount of copying and writing to a 
large block of buffer RAM (writing is slower than reading for 
most modern CPUs).   
The table-driven MASH algorithm can be easily modified to 
handle both the 16-bit characters and the variable-length UTF-8 
encoding, working directly on the byte stream and with only a 
minor reduction in throughput.  The modifications do not entail 
the construction of a 65,536-element code table, but take 
advantage of the fact that most texts contain characters from only 
one or a few code pages, often ASCII or Latin-1 (on page 0) and 

one other, e.g., Greek characters on code page 3 or Devanagari 
characters on code page 9.  Because of this, the table can be 
sparse and constructed lazily.  The reader is invited to see the full 
description in Appendix 10.2. 

6. RELATED WORK 
The restricted problem of searching text for a previously selected 
set of useful features for a classifier may be cast in a broader 
context that is generally familiar in computer science.  The 
problem of searching for a limited number of known query strings 
in large volumes of text is a traditional string search problem.  
The most well-known algorithms that treat multiple strings 
simultaneously and do not first require extensive indexing of the 
target text are the Aho-Corasick algorithm [1], the Commentz-
Walter algorithm [2], and the Rabin-Karp algorithm [9].  
Although they each have an expected run time linear in the size of 
the target text, they were designed in a historical context where 
the number of query patterns was in the dozens (e.g. information 
retrieval via UNIX grep).  Research towards scalable methods that 
handle thousands of query patterns continues (e.g. [14]), but all 
these algorithms are expected to operate under general-purpose 
conditions, i.e. no restrictions on the query strings.  In our setting, 
we can be sure that a query string is a word (or a bi-gram), which 
eliminates a great deal of dictionary checking.  Another major 
difference is that for many statistical text processing applications, 
we can accept a certain risk of false positive matches in the form 
of hash collisions, considering that the natural misspellings, 
homographs, and variations in word choice in real-world text.  
Thus, for our purposes, traditional string search algorithms are not 
competitive, nor do they address the more general problem of text 
feature extraction for unrestricted words. 
Just recently there have been two papers that promote hash 
features for classification, though neither focuses on text 
extraction speed, supervised feature selection, or applications 
besides classification, as we do.  A short paper by Ganchev and 
Dredze [6] suggests using Java’s String.hashCode() function 
modulo N for text classification features. Their focus is to obtain 
small classifiers for mobile devices with little RAM: the 
description of a linear classifier then needs only retain an array of 
weights—the index implicitly names the associated feature rather 
than a String word.  The main result is that the number of features 
N was reduced to 10,000–20,000 without substantial loss in 
classification accuracy.  To this we note that feature selection 
methods provide a principled approach for limiting the number of 
features, and classifiers with the best 500–2000 features are often 
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Figure 4.  Eliminating features by selection vs. collisions. 
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more accurate than models using all features [4].  We illustrate 
this point in Figure 4, which compares the F-measure of an SVM 
using our hash features where we select the top features via BNS 
(the top curve as Figure 2), vs. simply reducing the width N of the 
bit table N and using all the features created.  We see that as N 
decreases, the increasing number of random collisions generally 
harm the predictive quality of the features. Instead, it is much 
better to produce features in a large bit array and then select the 
best of these, sometimes resulting in improved performance. 
The other recent work promoting hashes for classification is by 
Rajaram and Scholz [13].  In their case, their goal is to compute 
unsupervised, similarity-preserving hashes for texts such that 
1000–4000 bits could be a sufficient feature vector for many 
different classification tasks.  Their computations are 
heavyweight by comparison to ours, and first rely on a text word 
extractor.  SpeedyFx could be used as their raw text scanning 
subroutine, since they only depend on the statistical properties of 
the features, not the actual letter sequences. 

7. CONCLUSIONS & FUTURE WORK 
We have shown that using SpeedyFx integer hashes in place of 
actual words is faster, requires less memory for transmission and 
use of multiple classifiers, and has an effect on classification 
performance that is practically noise compared to the effect of 
other common parameters in model selection.  We showed that 
MASH has strong, uniform performance for words, though not 
appropriate for long blocks of text.  Moreover, we have 
demonstrated the ability to classify a text by many classifiers 
many times faster than is possible with typical code. 
The primary implication of this is that it allows significantly more 
efficient indexing and classification of large document 
repositories, e.g. to support information retrieval over all 
enterprise file servers with frequent file updates.   It also enables 
lower impact to a user’s computer, e.g. when there are many 
classification agents examining all text the user sees or types, for 
the purpose of ‘understanding’ what the user is thinking about and 
providing appropriate support.  The savings in computation may 
also make it feasible to run on certain small mobile devices and/or 
consume less battery power. 
Whenever a CPU bottleneck is resolved by more efficient 
algorithms, it often exposes the I/O transfer speed as the next 
bottleneck.  Although with SpeedyFx we can easily process over a 
hundred megabytes per second per processor core, if there is only 
a single disk attached, the data transfer bottleneck may be just 2–
70 MB/sec.  Multiple disks or a 100 gigabit Ethernet feed from 
many client computers may certainly increase the input rate, but 
ultimately (multi-core) processing technology is getting faster 
faster than I/O bandwidth is getting faster. 
One potential avenue for future work is to push the general-
purpose text feature extraction algorithm closer to the disk 
hardware.  That is, for each file or block read, the disk controller 
itself could distill the bag-of-words representation and then 
transfer only this small amount of data to the general-purpose 
processor.  This could enable much higher indexing or 
classification scanning rates than is currently feasible.  
Another potential avenue is to investigate varying the hash 
function to improve classification performance, e.g. to avoid a 
particularly unfortunate collision between an important, predictive 
feature and a more frequent word that masks it.  At the least, this 

could amount to trying different random seeds and selecting the 
most favorable via cross-validation.  In the limit, perfect hashing 
techniques could attempt to generate a hash function that 
produces dense, unique positive integers for each of the selected 
features, and negative values for features to be discarded. 
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10. APPENDICES 
Here we give the details of how we estimated the memory usage 
for a bag-of-words feature vector implemented with the Java JDK 
HashSet, and we give a full exposition of SpeedyFx, including the 
extension to process Unicode text encoded in UTF-8. 

10.1 Bag-of-Words HashSet Memory Size 
A reasonable implementation for a bag-of-words data structure in 
Java would be a HashMap<String,Integer>, which maps each 
word to the Integer count of the number of times it occurs.  For 
the fairly common situation where one dispenses with the count 
and simply keeps track of the set of words that appear in a 
document, the natural representation is a HashSet<String> of 
words. Of course, there are a wide variety of data structures that 
could be used, but these are the most straightforward given the 
Java JDK library, and we have seen them used in practice. 
In Java JDK 1.6, a HashSet is implemented as a HashMap in 
which the elements of the set all map to a distinguished value.  So 
the size of the HashSet will be the size of the underlying 
HashMap.  And since there is only a single, reused Integer object 
allocated in memory for the low integers, the HashMap data 
structure will consume roughly the same amount of memory as 
the HashSet version for most short documents.  The remainder of 
the analysis focuses on the memory consumption of the HashMap 
itself. 
A HashMap contains an array of “buckets,” each representing 
elements whose keys have the same hash when masked to the 
low-order bits.  The array is kept at a power of two and is doubled 
whenever the number of elements in the map exceeds a factor of 
the size of the array (by default three-fourths).  Thus the size of 
the array will be between 4/3 and 8/3 of the number of elements 
in the set, which yields two buckets (references) per stored 
element on average. 
Within each bucket is a chain of Entries, where each Entry 
contains a reference to the key, a reference to the value, the hash 
of the key (as an int), and a reference to the next Entry in the 
same bucket.   
The key itself will be a String object which will contain three 
integers, and a reference to an array, which will contain an integer 
and some number of characters.  The precise number will be 
corpus-dependent. 
Thus, the whole size of the HashSet as a function of the number 
of elements is therefore six (4-byte) references, five (4-byte) 
integers, some number of (2-byte) characters, and the overhead of 
three objects.  This last will vary based on implementation, but 
appears to be typically 12 bytes per object.  So the total size of the 
HashSet is proportional to 80 bytes per element plus the 
characters themselves.  In the 20 Newsgroups dataset, there are, 
on average 6.5 characters per unique word, for a total factor of 93 
bytes per element.  For War and Peace, there are an average of 
7.5 characters per unique word, for a total factor of 95 bytes per 
element. 
We verified this analysis by measuring the memory used by a 
HashSet<String> loaded with 1000 seven-letter words using the 
Sun Java JVM and JRE 1.6.0: 95,960 bytes.  And for a 
HashMap<String,Integer> loaded with the same words where the 
counts fell in the range [0,128]: 95,944 bytes. 

 

10.2 Inline Unicode Processing for SpeedyFx 
The basic SpeedyFx algorithm is as follows: 
int pos = start; 
while (pos < end) { 
  byte b = text[pos++]; 
  int code = codetable[b]; 
  if (code != 0) { 
    hash = (hash >> 1) + code 
  } else if (hash != 0) { 
    process hash 
    hash = 0; 
  } 
} 

with a final step, invoked when text has been completely 
processed (which may involve several calls to the basic 
algorithm) of 
if (hash != 0) { 
  process hash 
} 

to handle the case in which the text ended without a terminating 
non-word character. 
The “process hash” step will depend on the particular task at 
hand.  For tokenization, it will be a callback (or faster, a “call-
down” to an overridden inlined method) to a provided function; 
for feature extraction, it will involve setting an array element to 
indicate that the feature with that hash has been seen; and for in-
line classification, it will involve adjusting weights on various 
classes based on having seen the hash. 
The code table is used to map single-byte characters to codes, 
where a code of zero signals the end of a “word”.  The code table 
serves three functions: identifying word characters, normalizing 
them, and mapping each normalized character onto a full integer 
value.  The construction of this table can be thought of as being 
parameterized by a function mapChar(), which maps one (one-
byte) character to another or to the zero character for non-word 
characters.  The mapping function used in the paper mapped 
letters to their lower-case equivalents, digits to themselves, and all 
other characters to zero.   
The creation of the code table is a two-step process: 
int[] random = new int[256]; 
Random r = new Random(seed); 
 
for (int i=0; i<256; i++) { 
  random[i] = r.nextInt(); 
} 
 
int[] codetable = new int[256]; 
for (int i=0; i<256; i++) { 
  byte mapped = mapChar(i); 
  if (mapped != 0) { 
    codetable[i] = random[mapped]; 
  } 
} 

with care taken when choosing the seed so that none of the 
elements in the random array are zero. 
In UTF-8, each character is encoded by one, two, or three bytes.  
One-byte characters are signified by the high-order bit being 0, 
two-byte characters by the high-order bits of the first byte being 
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110, and three-byte characters by the high-order bits of the first 
byte being 1110.  All following bytes have the 10 for their high-
order bits.  To compute the 16-bit character value, the remaining 
unspecified bits are simply concatenated.  A key feature of the 
UTF-8 encoding is that 7-bit ASCII characters, which necessarily 
have a high-order bit of 0, simply encode as themselves, so any 
purely ASCII text is automatically legal UTF-8-encoded Unicode. 
As a first cut, the UTF-8 version of the SpeedyFx algorithm is 
simply 
int pos = start; 
while (pos < end) { 
  byte b = text[pos++]; 
  char ch; 
  if (b is single byte char) { 
    ch = b; 
  } else if (b is first byte of two-byte char) { 
    byte b2 = text[pos++] & 0x3F; 
    ch = ((b1 & 0x1F)<<6) | b2; 
  } else if (b is first byte of three-byte char) { 
    byte b2 = text[pos++] & 0x3F; 
    byte b3 = text[pos++] & 0x3F; 
    ch = ((b1 & 0x0F)<<12) | (b2<<6) | b3; 
  } else { 
    // ill-formed UTF-8.  Ignore. 
    ch = 0; 
  } 
  int code = codetable[ch]; 
  if (code != 0) { 
    hash = (hash >> 1) + code 
  } else if (hash != 0) { 
    process hash 
    hash = 0; 
  } 

} 
with the code table expanded to hold mappings for all 65,536 
possible characters. 
Unfortunately, there are several problems with implementing it 
this way.  First, and probably most important, the code for 
checking whether the initial byte is the beginning of a one-byte, 
two-byte, or three-byte character involves a bit mask and a test 
against zero, which, while not exactly expensive, is more than is 
required and more than we would like, especially in the common 
case in which the vast majority of characters are one-byte 
characters.  To handle this, we note that we have to do a table 
lookup anyway, so we might as well use that lookup to let us 
know that we have multi-byte characters.  We create a second, 
256-element array, the dispatchTable, as follows: elements 00 
through 7F are copied from the main code table, elements C0 
through DF are set to a special flag value TWO_BYTE_CHAR, 
elements E0 through EF are set to THREE_BYTE_CHAR, and all 
other elements are set to ILLEGAL_CHAR.  The values of these 
constants are the top three values that an integer can take, and that 
no element of the random array has any of these values.  Thus, it 
is efficient to test for any of the special flag values with a single 
comparison against an integer threshold. 

The code then becomes 
int pos = start; 
while (pos < end) { 
  byte b = text[pos++]; 
  int code = dispatchTable[b]; 
  if (code > THRESHOLD) { 
    char ch; 
    if (code == TWO_BYTE_CHAR) { 
      byte b2 = text[pos++] & 0x3F; 
      ch = ((b & 0x1F)<<6) | b2; 
    } else if (code == THREE_BYTE_CHAR) { 
      byte b2 = text[pos++] & 0x3F; 
      byte b3 = text[pos++] & 0x3F; 
      ch = ((b & 0x0F)<<12)|(b2<<6)| b3; 
    } else { 
      // ill-formed UTF-8.  Ignore. 
      ch = 0; 
    } 
    code = codetable[ch]; 
  } 
  if (code != 0) { 
    hash = (hash >> 1) + code 
  } else if (hash != 0) { 
    process hash 
    hash = 0; 
  } 
} 

The second problem is that due to the variable-length characters, 
it may be the case that a given byte array might end in the middle 
of a two- or three-byte character.  This can happen in the common 
case that the array represents a buffer of bytes read from a file or 
socket.  We outline two ways to handle this. 
First, if main loop is nested within a loop reading from a source 
into a single array, the inner loop can note that it has run out of 
bytes and signal that the partial character is to be moved from the 
end of the array to the beginning, as 
offset = 0; 
while ((nRead = src.read(text, offset,  
                         len-offset)) != 0) 
{ 
  end = nRead + offset; 
  start = offset = 0; 
  main loop (with changes) 
  for (int i=0; i<offset; i++) { 
    text[i] = text[len-offset+i]; 
  } 
} 

with the main loop augmented to check for overflow and set the 
offset if necessary, as 
    } else if (code == THREE_BYTE_CHAR) { 
      if (pos == end) { 
        offset = 1; 
        break; 
      } 
      byte b2 = text[pos++] & 0x3F; 
      if (pos == end) { 
        offset = 2; 
        break; 
      } 
      byte b3 = text[pos++] & 0x3F; 
      ch = ((b1 & 0x0F)<<12)|(b2<<6)| b3; 
    } 
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In text with many two- and three-byte characters, these checks 
may be a significant performance hit.  To remove them, we can 
note that the only time that we can run off the end of the array is 
if we’re looking for the initial byte of a character in the last two 
bytes of the array.  Therefore, if the main loop is performed twice, 
as 
int earlyEnd = end-2; 
while (pos < earlyEnd) { 
  main loop without checks 
} 
while (pos < end) { 
  main loop with checks 
} 

then the overhead of the checks (and possible break) need only 
occur on at most two iterations of the loop. 
When SpeedyFx is to be called with arbitrary byte arrays without 
control over the outer loop that reads from the source stream as 
above, the object encapsulating the algorithm needs to be able to 
keep track of the fact that a prior invocation resulted in a partial 
character.  To do that, we give the object two members, state, 
which takes an enumeration of LIVE, ONE_OF_TWO, 
ONE_OF_THREE, and TWO_OF_THREE, and partial, which 
contains the partial character built up so far.  With such an 
arrangement, two modifications to the code are needed.  First, in 
the main loop (in the second version with checks), the end-of-
array tests become 
    } else if (code == THREE_BYTE_CHAR) { 
      if (pos == end) { 
        state = ONE_OF_THREE; 
        partial = (b&0x0F) << 12; 
        break; 
      } 
      byte b2 = text[pos++] & 0x3F; 
      if (pos == end) { 
        state = TWO_OF_THREE; 
        partial = ((b&0x0F)<<12)|(b2<<6); 
        break; 
      } 
      byte b3 = text[pos++] & 0x3F; 
      ch = ((b1 & 0x0F)<<12)|(b2<<6)| b3; 
    } 

 

Second, any partial characters must be finished the before the first 
loop: 
if (pos == end) { return; } 
if (state != LIVE) { 
  char ch; 
  if (state == ONE_OF_TWO) { 
    byte b2 = text[pos++] & 0x3F; 
    ch = partial | b2; 
  } else if (state == ONE_OF_THREE) { 
    byte b2 = text[pos++] & 0x3F; 
    if (pos == end) { 
        state = TWO_OF_THREE; 
        partial |= (b2<<6); 
        return; 
    } 
    byte b3 = text[pos++] & 0x3F; 
    ch = partial |(b2<<6)| b3; 
  } else if (state == TWO_OF_THREE) { 
    byte b3 = text[pos++] & 0x3F; 
    ch = partial |(b2<<6)| b3; 
  } 
 
  state = LIVE; 
  int code = codetable[ch]; 
 
  if (code != 0) { 
    hash = (hash >> 1) + code 
  } else if (hash != 0) { 
    process hash 
    hash = 0; 
  } 
} 

 
For runtime situations where memory is at a premium and the 
64K code table poses a concern, a further modification may be 
worthwhile. We take advantage of the fact that most texts take 
their characters from relatively small contiguous subsets 
(typically fewer than 256 characters) of the Unicode space.  (The 
exception would be texts in languages like Chinese and Japanese.)  
If we think of a 16-bit Unicode character as comprising an 8-bit 
page indicator and an 8-bit index within the page, instead of 
having one table of 64K elements, we instead have a 256-element 
array of references to lazily-constructed 256-element tables.  We 
are now faced with two tasks: (1) determining the page number 
and index for the next character in a stream of bytes and 
(2) obtaining the appropriate code table for that page. 
A two-byte UTF-8 character will specify five bits in the first byte 
and six in the second, for a total of eleven bits.  Thus, there are 
eight possible pages that can be referred to by two-byte 
characters. These eight pages cover all of the Latin-derived 
scripts, Greek, Cyrillic, Arabic, Hebrew, and several others.  
Instead of a single value of TWO_BYTE_CHAR, we reserve eight 
special values starting at TWO_BYTE_BASE, each indicating a 
page from 0 through 7. To handle the very common case of 
successive two-byte characters being taken from the same page, 
we keep track of the most recently used two-byte table and the 
dispatchTable code that referred to it.  Similarly, we keep track of 
the last three-byte page and the code that referred to it.  The 
multi-byte lookup (ignoring end-of-array) thus becomes 
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  if (code > THRESHOLD) { 
    if (code == last2BCode) { 
      byte b2 = text[pos++] & 0x3F; 
      code = last2BTable[((b&0x03)<<6)|b2]; 
    } else if (code >= TWO_BYTE_BASE) { 
      last2BCode = code; 
      int page = code - TWO_BYTE_BASE; 
      last2BTable = getTable(page); 
      byte b2 = text[pos++] & 0x3F; 
      code = last2BTable[((b&0x03)<<6)|b2]; 
    } else if (code == THREE_BYTE_CHAR) { 
      byte b2 = text[pos++] & 0x3F; 
      int page=((b&0x0F)<<4)|(b2&0x3C)>>2); 
      if (page != last3BPage) { 
        last3BPage = page; 
        last3BTable = getTable(page); 
      } 
      byte b3 = text[pos++] & 0x3F; 
      code = last3BTable[((b2&0x03)<<6)|b3; 
    } else { 
      // ill-formed UTF-8.  Ignore. 
      code = 0; 
    } 
  } 

With the state-based implementation described above for handling 
end-of-array, we can ensure that last2BTable and last3BTable are 
set to the correct tables, and so only the partial index into the table 
needs to be preserved. 
When constructing the tables, we use the same process as 
described above, calling a mapChar function to map the character 
and using tables of random numbers to map the result.  The table 
of pre-computed random numbers could be a full 64K-element 
array, but it suffices to have two 256-elment arrays whose values 
are XORed, the high and low bytes being taken from the 
respective tables.  To do this, it is important that the XOR of any 
pair of values from the two tables not be zero or any of the special 
flag codes, but this turns out to not be difficult. 
 

10.3 Calculating Probability of Collision 
The probability of getting through n b-bit hashes without a single 
collision can be computed as 

b

b

nn
nPP

2
2

1
−

= −  

which reduces in closed form to  

)!2(2
!2

nbbn

b

−
 

 
Table 9 shows the results of computing this value for various 
values of b, assuming a random hash distribution.  The top rows 
of the table show the cutoff value of n before the value of P drops 
below various thresholds.  For example, with 40 bits (5 bytes) per 

hash, one can add just over 1.2 million entries before it is more 
likely than not that there will be a collision.  Unfortunately, the 
Java floating point types make it difficult to perform this 
computation for hash sizes of more than 53 bits, but from the 
table, which appears to go up by a factor of 16 for every byte, it is 
clear that with full 64-bit hashes one could expect to handle 
around 112 million entries at the 90% threshold or around 315 
million at the 50% probability. 
The bottom part of the table gives the probability of not getting a 
collision for various values of n.  For an n of five million, for 
example, with 48 bits, the probability of having zero collisions is 
approximately 95.7%. 
Of course, this whole calculation presumes that there is a reason 
why one would be concerned with the expectation of getting even 
a single collision.  This was a point raised by a reviewer, and so 
we cover it here, but it seems to us to be a relatively unimportant 
point, as we discuss in section 4.1 above.  While too-high a 
collision rate is likely to be problematic, the distribution of 
collisions is also important.  Although it is true that in query 
applications false positives are more annoying than with 
classification applications (which are less likely to rely on a single 
extracted feature), one must also keep in mind the likelihood that 
neither of a pair of colliding words will ever be part of a query, 
rendering such a collision non-problematic, as well as the 
likelihood that the false positive will go unnoticed. 

Table 9. Probability of No Collisions 

Bits Per Hash 
P 

32 40 48 53 

99% 9,290 148,663 2,378,620 13,455,509 

95% 20,990 335,849 5,373,597 30,397,661 

90% 30,083 481,341 7,701,473 43,566,113 

80% 43,780 700,497 11,207,972 63,401,867 

50% 77,162 1,234,603 19,753,661 > 100M 

20% 117,578 1,881,272 30,199,389  

10% 140,636 2,250,207 36,003,334  

5% 160,414 2,566,647 41,006,375  

1% 198,890 3,182,273 50,916,406  

N  

1M  63.5% 100.0% 100.0% 

2M  16.2% 99.3% 100.0% 

5M  1.7% 95.7% 99.9% 

10M   83.7% 94.7% 

20M   49.1% 97.8% 

50M   1.2% 87.0% 

100M    57.9% 


