

A Semantic Wiki for Continual Collaborative Information Management

John Recker, Tyler Close, Angela Maduko, Craig Sayers
HP Laboratories
HPL-2008-90

Keyword(s):
Wiki, Semantic Web, Ontology, RDF, OWL, Context, Semantic

Abstract:
The Grand Central semantic wiki is designed to merge the benefits of the quick and informal
data entry styles common to wiki platforms with the robust data management capabilities of
traditional enterprise content management systems. Incorporating many recent advances in web
technologies, including wikis, semantic web technologies, RSS, and search as a primary data
access interface, it seeks to speed and simplify collaboration in the enterprise. Based on user
studies, we have developed an experimental prototype and are currently targeting a deployment
to assist some field engineers.

External Posting Date: July 6, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: July 6, 2008 [Fulltext]

Submitted to World Wide Web Conference 2008, WWW'08

© Copyright 2008 Hewlett-Packard Development Company, L.P.

A Semantic Wiki for Continual Collaborative Information
Management

John Recker
Hewlett-Packard Labs

1501 Page Mill Rd
Palo Alto, Ca, 94304
john.recker@hp.com

Tyler Close
Hewlett-Packard Labs

1501 Page Mill Rd
Palo Alto, Ca, 94304
tyler.close@hp.com

Angela Maduko
LSDIS Lab,

Department of
Computer Science,

University of Georgia
maduko@cs.uga.edu

Craig Sayers
Hewlett-Packard Labs

1501 Page Mill Rd
Palo Alto, Ca, 94304
craig.sayers@hp.com

ABSTRACT
The Grand Central semantic wiki is designed to merge the benefits
of the quick and informal data entry styles common to wiki
platforms with the robust data management capabilities of
traditional enterprise content management systems. Incorporating
many recent advances in web technologies, including wikis,
semantic web technologies, RSS, and search as a primary data
access interface, it seeks to speed and simplify collaboration in the
enterprise. Based on user studies, we have developed an
experimental prototype and are currently targeting a deployment
to assist some field engineers.

Categories and Subject Descriptors
H.5.4 [Information Interfaces and Presentation]:
Hypertext/Hypermedia – Navigation, User issues.

General Terms
Documentation, Design, Human Factors.

Keywords
Wiki, Semantic Web, Ontology, RDF, OWL, Context, Semantic

1. INTRODUCTION
The initial design of the Wide World Web centered on authors
publishing documents using HTML. This was a largely “read-
only” environment, with user participation typically limited to
reading content and supplying short responses in web forms.
Wikis [1], blogs [2], and other “Web 2.0” [3] web tools have
changed all this, and they have recently seen explosive growth on
the web. These tools focus on providing a more interactive web
environment, and encouraging 2-way communications between
web sites and users. As such, they are core technologies in social
networking and the creation of web communities. However, in
spite of their widespread adoption in the consumer arena, these
tools have experienced uneven rates of adoption in the enterprise.
This paper examines our investigations into the road blocks
slowing the adoption of these tools in the enterprise and our
efforts to create a tool optimized for collaboration in an office
environment. It begins by presenting the results of a user study of
users of the corporate wiki at HP Labs. In particular, issues
surrounding information discovery and security of corporate data
were raised repeatedly by our interview subjects. Furthermore, our
interview subjects include mobile, intermittently connected users
whose needs differ from those with full time web access. We then
present our approach to address these issues: a browser based

collaboration tool designed to import, navigate and annotate pre-
existing corporate information schemes. To address the needs of
mobile users, the system relies on a local data cache to support
off-line access, and uses filtered RSS 1.0 data feeds to provide a
secure and flexible scheme for cache synchronization. Lastly, we
present the Grand Central Wiki, an implementation of these
concepts designed to support the collection of informal
information generated by field service engineers.

2. USER STUDIES
The success of our notion of a semantic wiki largely depends on
how it is received by users, thus to motivate our work, we
interviewed nine users of the TWiki [4] wiki to learn about their
experiences, and discover opportunities for system improvements.
Interview subjects were selected from both different departments,
and job categories with different technical inclination.
Furthermore, subjects were selected, based on system logs, to
represent different levels of wiki usage – Readers (primarily read-
only users), Editors (users that contribute significantly to page
content) or Designers (editors that also contribute new pages).
Comments made by interview subjects were grouped into the
following categories: editing information, information retrieval,
security/privacy and miscellaneous. Table 1 below shows the
coverage of our sample, based on this classification.

Table 1: Coverage of our Sample

Technical

Designers 3

Editors 5

Readers 1

We summarize the feedback obtained in the following
subsections.

2.1 Editing Concerns
Nearly all editors and designers noted a steep learning curve for
learning the TWiki Markup language and many asked for a more
visual interface (note that TWiki has since added a WYSIWYG
editor option). Users also wanted simpler options for setting
preferences in the wiki, moving attachments, changing styles,
sorting table cells and table management in general, using bullets,
in-lining images with text, creating new or appending to existing
wiki pages from email contents, inserting mathematical formulae
and allowing multiple editing views with an easy way to toggle
across views. A near universal complaint was the difficulty in
importing HTML into wiki pages. All users noted this feature is Copyright is held by the author/owner(s).

WWW 2008, April 21--25, 2008, Beijing, China.

lacking in the wiki and pointed out its importance, especially in a
scenario where there is a desire to move many existing html pages
to the wiki. Some users suggested that the collaborative editing of
wiki pages be extended to attachments, in other words, a
mechanism for locking attachments that have been downloaded
and being viewed or edited by users should be provided.

Most users were of the opinion that TWiki help pages were
difficult to locate and use, although there was disagreement about
better solutions. Some believe it should be laid out in one page
shown during the edit mode while others proposing an indexed
help pages with browse and/or search options. Some wanted an
optional tutorial that should start up when the wiki home page is
loaded. Lastly some more technical users wanted to program the
wiki with, for example, a script that performs a particular function
within a wiki page.

2.2 Information Retrieval Concerns
Information retrieval concerns were grouped around two topics:
wiki inter-page links and information discovery. Several
comments were directed at the wiki inter-page linking mechanism.
Some designers thought the CamelCase page syntax too restrictive
and often incompatible with the natural title for a wiki page. Some
noted that, in the event that pages are renamed or moved, external
links to the old pages are not updated. To this effect, they
suggested supporting redirections from the old pages to the new
ones. Some readers found it distracting to always have to follow
links to retrieve more information about the anchor text and
proposed the use of tooltips to provide additional information
about the anchor text or even a summary of the linked page.
Suggestions were made to allow wiki pages to age gracefully,
targeting pages created for past events which contains information
that is no longer needed.

TWiki allows users to classify pages by category. Some technical
editors and designers proposed incorporating the ability to detect
and suggest the possible categories into which a page can be
placed into the wiki, through, for example, an analysis of the page
contents. They also proposed applying this process of page
content analysis to page similarity detection which they claim is
useful for avoiding page replication.

Information discovery in wikis is typically done through
unstructured keyword searches or by browsing the link structure
of the wiki. One topic in the user interviews focused on the ease
or difficulty of information retrieval in wikis. All technical users
noted that when a search is performed within a category, results
returned are only pages with in that category. Some believe that
users should be given the option of choosing if and how searches
should be expanded to include results from other categories. In
line with this, they preferred a mechanism through which they can
specify some similarity level for results from the expanded search.
However, some other uses believe that it is not a good idea to
expand searches to other categories. Their argument being that by
browsing to a particular category before performing a search, a
user means to narrow down the search, thus requiring a more
focused search. In addition, they believe that such an expansion
will be undesirable if it incurs a lot more time overhead. Finally,
some users also want searches to be extended to the contents of
attached files.

Technical users noted that the categorization mechanism in the
wiki is flat with only one fixed way of being browsed. They
expressed interest in hierarchical categorization which can be
browsed using multiple views that keep a trail of the users
browsing activities. In this scenario, a user can browse for a
certain set of pages starting from different categories. For example
a set of pages related to projects can be reached by browsing from
either a project or a customer category. While they want to have a
more hierarchical browsing technique, they also desire that the
breadth of such hierarchies be coarse so as to avoid information
overload. Users noted that another source of information overload
stems from the presentation of search results. Search results are
mostly wiki pages that are deemed relevant to the search criteria.
However, users pointed out that it is often the case that they have
to sift through these pages to get to the actual information sought.
In other words, the desired information is often embedded in a
page along with other non-desirable content. To this effect, they
consider having a finer granularity of search results which
obviates this sifting process a much more desirable approach.

2.3 Security/Privacy Concerns
While all users are unanimous in the need for security in a wiki,
there is a great disparity in users’ responses about the level of
security that should exist in a wiki. For example most users
expressed interest in a personal space that is accessible only to
them. Some users thought that users will be encouraged to add
comments to pages if they have the ability to restrict access to
their comments. Others believed this would hinder the inherent
collaborative nature of a wiki. Some wanted the ability to limit
changes to a subset of a page – for example, some designers have
some reservations about changes being made to page structure and
templates and wanted a provision for specifying the level of
structural changes expected on wiki pages and templates.

Authentication was a frequently mentioned issue, particularly in
view of the intra-company use of the wiki. Comments are
currently not automatically signed even when users are logged on.

Not only do most technical users believe that users should be
authenticated before they are allowed to add comments to a wiki
page, they also want users to be given the option of authenticating
to view or edit wiki pages. Furthermore, technical designers want
users’ activities in the wiki to be audited to dissuade
personalization and vandalization.

Technical users also proposed the user of groups of users as well
as roles of users for access restriction purposes. In addition, they
proposed having update notification integrated with security so
that one is able to specify who should be notified of the changes
they have made to certain pages and about what topics.

2.4 Other issues
Besides the above issues raised by the users, technical designers
also raised a concern of availability of the wiki at all times,
especially outside the company’s intranet. In the light of this, they
proposed having an offline version of the wiki with
synchronization of updates when online. Users also want the
ability to link up multiple wikis so that content within one wiki
can be accessed from another.

Figure 1: An example screenshot from our Grand Central Wiki. This shows the view of a lighting controller. On the left hand side
is information derived automatically from an operational relational database. On the right a new comment is being created about
this model of device. On the lower right are several existing comments sorted by relevance. Significantly, these comments were not
entered on this “page” but are relevant to the page (because they are about devices of this model type) and were discovered by
search.

A set of questions we asked related to the use of metadata as a
means of improving wiki information access. Generally, all the
users we interviewed shared our views that there were benefits to
be gained with the use of metadata, and that the benefits from
collecting information metadata could outweigh the
inconvenience that may be associated with metadata collection.
However, users indicated their willingness to provide metadata
only so long as it is an extremely simple process.

Based on those user comments we have focused on developing a
wiki which enabled offline operation, leveraged existing corporate
data schemas, and used search as the primary interface. The result
is the Grand Central Wiki.

3. THE GRAND CENTRAL WIKI
Many of the issues identified in the user survey are problematic in
a corporate environment. Security, for example, is essential –
restricting data access to an appropriate set of users can be
dictated by legal mandates and premature release of product
information can adversely affect the success of a product in the
market. On the other hand, the success of the web 2.0 tools
suggest that they are effective tools for promoting collaboration –
clearly as desirable a goal within an enterprise as without. The
Grand Central semantic wiki seeks to preserve the benefits of the
quick and informal data entry styles common to wiki platforms
while addressing the navigation, security and off-line access
concerns of users.

3.1 Navigation
Navigation in a typical wiki can be awkward since the burden of
structuring information is placed on contributors. The manner in
which information is structured by design evolves in an ad-hoc
fashion, and contributors can differ significantly not only in their
understanding of the material being discussed but also in their
familiarity with the tool used to enter the information – all of
which significantly influences the final data layout.

And yet, defining and implementing an optimal structure is hard
work. Enterprises already dedicate significant effort to organizing
their assets – as seen, for example, in source code hierarchies,
relational database schemas, and organization charts.
Fundamental to our approach is deriving information
organizations from these pre-existing structures. In particular,
RDF [5] ontologies are created from the terms and relationships
from these existing structures and data, then a skeleton wiki is
populated with terminology and relationships already familiar to
the target user community, such that contributors need only fill in
their comments.

3.1.1 Faceted Browsing
Navigation in Grand Central is performed by faceted browsing [6]
of the ontologies derived from enterprise data, where each facet is
a node in the skeleton wiki. At each step, the navigation interface
presents both an intensional and extensional view of the facet.
The intensional view allows browsing in terms of the hierarchical
relationship that exists amongst concepts in the ontology to which
they belong. The extensional view presents the set of entities that
are instances of the domains or ranges of the facet view. Our
choice of this approach stems from users needs for the ability to
browse for pages through different categories.
The navigation views are generated from queries of a RDF data
store containing RDF ontologies. It is expected that these data
ontologies will be created primarily through automatic tools from
existing knowledge structures with perhaps some manual
intervention. Manual intervention in this step is not seen as a
problem. First, the goal of importing external knowledge
organizations is to leverage the knowledge of domain experts and
move away from ad-hoc information structures. Thus the
assistance of experts at this step is essential. Next, while it is seen
as crucial to import terminology and relationships from pre-
existing user generated information hierarchies, such hierarchies
often also include structures unique to the tool managing the data,
as opposed to intrinsic to the data itself. Selecting concepts for
inclusion in the wiki is best done once by someone intimately
familiar with the imported information and its structure.

Grand Central site navigation can then proceed using any of
several mechanisms: the wiki can be navigated by moving along
the arcs of the ontology graphs loaded into the system, users can
specify a more traditional text search, or users can specify a
number of classes from the data ontology directly as search
criteria. Alternatively, these approaches can be combined: the user
can navigate the data ontology while simultaneously restricting
the results using keywords or other tests. Once a topic of interest
is found, users of the Grand Central software then fill out the
skeleton wiki by directly composing their comment there. Such a
skeleton wiki can be created for any data source that can be
translated to RDF, making most enterprise data sources ready
subjects for wiki style commenting and collaboration.

3.2 Comments
Unlike a conventional wiki, Grand Central is not based on web
pages, but rather uses a smaller unit of a single comment.
Comments are simply information blocks, with any number of
formats: text blocks, documents, images, etc… Text comments are
entered or edited with a simple WYSIWYG editor, while files are
uploaded with a simple form interface.

Figure 2: Typical RDF comment description.
Comments in this system are stored as a collection of RDF
statements in a RDF data store. In addition to properties one
might expect such as creation time and date and author, comments
are identified as relevant to one or more terms from the SQL RDF
ontologies described above. These terms associations are
automatic and derived from the subject of the page when the
comment was created. Text based comment content is also stored
in the RDF store, while binary files are assigned a unique name
and stored in the file system.
Comments are version controlled (including binary objects), and a
history of each comment is maintained and can be retrieved by the
system. To support this capability, each revision of a comment is
assigned a 128 bit randomly generated ID (GUID) (generated
using the java.security.SecureRandom package) on creation,

which is unique across all Grand Central systems. Comments that
are edited are deemed “replaced” by the new revision and the old
revision’s RDF description is qualified with a “sw:replacedBy”
attribute identifying the GUID of the next newest revision,
resulting in a oldest-to-newest directed graph revision history.
Note that a single comment can replace multiple comments,
acting, for example, as a summary of the group of replaced
comments. Comments currently store the entire new content of
each comment. Eventually it would be desirable to transition to a
difference based delta-compression scheme (such as implemented
by RCS [8] or other version control systems).

3.3 Page Composition
A Grand Central wiki page is composed on the fly by searching
the RDF comment data store for comments related to the page
topic (where the topic is one or more URI from a supporting
ontology) and sorting the result. The search is specified using
SPARQL [9], a W3C standard for querying semantic stores.
SPARQL supports multiple clauses in a search specification, so a
result set can be refined by specifying any number of restrictions.
Search criteria might include both URIs from the page topic, as
well as items that are members of the super-class of the selected
class. Whereas a generic search engine can only offer a sorted list
of results, knowledge of the ontology enables special treatment of
particular results and inclusion of results that might otherwise
require further searching. As a result of broadening the search
criteria, user contributions are displayed not only on the page
where it was created, but also on all pages about a database record
closely related to the original topic.
Comments retrieved from the above search can be formatted
differently depending on the target application. By default, the list
of user contributions on each page is sorted by relevance. For
example, comments directly associated with the URI topics of the
page are displayed first, while comments indirectly related to the
topic would be displayed second. This fits our initial target
application, which is to collect informal comments generated by
the user community. However, wikis, blogs and mailing list
browsers can be seen as presenting different user interactions of a
similar document database. In the case of wikis, the user interface
displays the latest version of a document and previous versions
are accessible as history. In the case of a blog, messages are
displayed in chronological order. Mailing list browsers order
messages both chronologically and by subject. Our long term goal
is to support each of these interaction methodologies.

3.4 Content Synchronization
The comment database can be synchronized with other Grand
Central systems. The approach used is an example of an algorithm
for “optimistic replication” [10]. In these algorithms, to update an
object, a user submits an operation at some site. The site locally
applies the operation to let the user continue working based on
that update. The site also exchanges and applies remote operations
in the background. Such systems are said to offer “eventual
consistency”, because they guarantee that the state of replicas will
converge only eventually. These systems can further employ
“epidemic propagation” [11] to let any two sites that happen to
communicate exchange their local operations as well as operations
they received from a third site - an operation then spreads like a
virus does among humans.
Grand Central publishes the content of its comments store as an
RSS 1.0 [12] formatted RDF/XML document. The RSS feed
published by the system includes the GUID of each comment in

<rdf:RDF
xmlns:sw="http://hpl.hp.com/SmartWiki.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:owl="http://www.w3.org/2002/07/owl#"
xmlns:xml="http://www.w3.org/2001/XMLSchema#"
xmlns:dc="http://purl.org/dc/elements/1.1/" >

 <rdf:Description rdf:about="sw:ISDNLine">
<rdf:type rdf:resource="sw:ISDNLine"/>
<rdf:type rdf:resource="owl:Class"/>

</rdf:Description>
<rdf:Description rdf:about="sw:comment-262800539863397">
<sw:replacedBy rdf:resource="sw:comment-3823569850843"/>
<rdf:type rdf:resource="sw:Comment"/>

</rdf:Description>
<rdf:Description rdf:about="sw:comment-3823569850843">
<dc:description>ISDN issue description.</dc:description>
<dc:date rdf:datatype="xml:dateTime">

2006-10-11T22:43:14.477Z
</dc:date>
<dc:title>ISDN Issues</dc:title>
<sw:commentAbout rdf:resource="sw:ISDNLine"/>
<rdf:type rdf:resource="sw:Comment"/>

 </rdf:Description>
</rdf:RDF>

the system’s comment store. This GUID is used by the system to
implement a distributed version control system using RSS 1.0 &
HTTP for change discovery and data transport. Systems
synchronize their document stores by comparing the RSS feeds
from remote systems with the contents of its own document store
and selectively download missing document.
Internally, Grand Central generates the RSS feed by issuing
SPARQL queries to the RDF data store and reformatting the
resulting XML document into RSS 1.0 protocol. To reduce the
size of the RSS data feed, the RSS feed URL supports a SPARQL
query parameter which allows the queried system to filter items
published to the feed. This RSS feed query parameter can then be
simply combined with the internally generated query to restrict the
domain of the results. Typical query parameters would limit feeds
to comments on topics of interest, or comments published after a
certain date.
Reverse synchronization (e.g. synchronizing the remote database
with the local database) then occurs in one of two ways. In the
case where both systems have public addresses, the remote
database system initiates its own synchronization operation. In the
event where the local machine address is not publicly known or
accessible (as is often the case with systems whose address is
assigned by DHCP or the like), the local system will push
comments present in the local database and missing in the remote
database to the remote system by posting comment descriptions to
the RSS channel using a HTTP POST.

Figure 3: Merging revision trees. A) local comment store. B)
remote comment store. C) merged comment store. Nodes in
red are “Conflict” comments. D) possible conflict resolution.
Merging comments from two separate stores currently consists of
merging the revision history trees from the two stores and
identifying conflicts. The synchronization engine flags new
comments from an imported tree with ancestors in common with
new comments in the local comment store as “conflict” comments.
Currently the system makes no effort to merge the contents of
conflicting comments – the UI identifies conflicting comments
and displays them together, and it is left to the user to decide how
to best resolve conflicting changes. Users can remove conflict
designations by one of two means. A user can simply remove the
conflict designation, which applies to the selected comment and
all older comments from the revision history. Alternatively, the
user can combine multiple comments into one new comment,
which similarly removes the conflict designation from comments
in the revision history of each combined comment.
A Grand Central instance can synchronize with any number of
other Grand Central instances, thus the wiki can span any number

of projects or interests. In typical operation, it is expected that a
Grand Central instance running on some back-end server will act
as a central location for comments related to one or more projects.
However, Grand Central does not require on-line access to a back-
end wiki server for operation. Offline behavior of our wiki is the
same as on-line behavior, with the exception that comments may
be stale and not reflect the latest modifications. Updates between,
for example, mobile nodes, can be performed when the central
system is inaccessible. Eventually, however, it is presumed that
the mobile nodes will synchronize with the back-end service. A
Grand Central instance need not, therefore, be aware of every
Grand Central instance to maintain an up-to-date comment
database.
Synchronization is typically performed periodically as RSS
syndication provides for regular queries of data feeds (it can also
be user initiated), so in on-line use local and remote comment
modifications will be synchronized with a latency of a few
minutes. As a further benefit of this approach, a Grand Central
database can be synchronized with any RSS 1.0 data feed. Thus
an alternate view of the Grand Central wiki is as a read-write RSS
aggregator.

3.5 Security
Security is managed by restricting content exported through the
system’s RSS data feed. Allowing users to perform unrestricted
searches of a system’s comment database would allow any user to
access any or all documents in the system. Instead, items are
published through a filter, or database view, which allows the
system administrator to limit the items published to the RSS data
feed. This RDF dataset view mechanism is implemented using the
language described in [13]. The component which formats the
RSS feeds issues its SPARQL queries to the entry point filtered
by this view. The set of items that is published to the RSS feed is
then the intersection of a client’s query with the view presented by
the content publisher. While this provides a powerful mechanism,
it is also complicated for end-user control and we plan on
exploring alternative user interfaces.

Figure 4: This view specification, when applied to a RSS feed,
limits access to comments about sw:ISDNLine devices.
Like many technologies designed for use on the open Web, RSS
does not specify a means for access control. Just as any HTML
file on a web server, an RSS feed is available to anyone with
knowledge of the URL. However, publishing database updates via
RSS is attractive due to the widely available client software for
receiving and viewing the updates, so an access control technique
that preserves this interoperation is needed. We intend to build on
the Web Calculus [14] work and secure Grand Central RSS feeds
by embedding an un-guessable secret in the https URL identifying
the RDF view granted to a particular user. The RSS client

<rdf:RDF
xmlns:sw="http://hpl.hp.com/SmartWiki.owl#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<view:View rdf:ID=”ISDNLineCommentView”>
 <view:SelectAll/>
 <view:SelectInd rdf:about=“#ISDNLineComments” />
</view:View>
<view:DefineClass

rdf:about=”ISDNLineComments”
view:query=”SELECT ?x

 WHERE (?x sw:commentAbout sw:ISDNLine);” />
</rdf:RDF>

software continues to fetch and display content as before, but the
server can use the embedded secret to determine the user's
authorization and so correctly restrict the RSS items returned by
queries against the database. The system will then be capable of
exporting many RSS “channels”, where each channel can expose
a different view of the underlying database, thus exposing
different datasets to different individuals or group of clients.

4. THE IMPLEMENTATION
We have built a prototype implementation with the goal of
assisting field engineers for a conferencing product. The goal was
to collect and manage informal information generated by these
users. The product team already supports two formal data stores:
version controlled software and project documentation, managed
using a source code control system, and a relational database
containing data necessary for the day-to-day operation of a
conferencing system including information such as room and
device configuration data. Our goal was to collect and manage
data that did not fit one of these two criteria. This data came in a
variety of forms, and included product documentation for external
devices integrated into the system, and practical learnings of
technicians in the field – information such as peculiarities of
specific devices or even the best restaurants near a specific
installation - information which is currently not tracked and non-
uniformly spread by email or word of mouth.
Grand Central was customized for this application and was tightly
integrated with the product team’s formal data store. SquirrelRDF
was used to both extract a data ontology from the project’s
relational database, as well as to extract detailed system
information. This allowed comments to be associated with “hard”
data extracted from the relational database, using the data
organization, names & identifiers with which the field service
organization is already accustomed. Comments could be
associated with video conferencing rooms, locations, individual
devices, or models of devices. Furthermore, because the ontology
generation was automatic, we didn’t require the services of a
knowledge engineer or extensive interviews with the target
community to create the ontology for this system. An example
screenshot of the current prototype is shown in Figure 1.

Figure 5: Implementation system architecture.

4.1 System Architecture
The Grand Central system was implemented using a client-server
architecture. Our goal was build a system with an “intelligent”
client to minimize scaling problems, and a server which
minimizes the use of proprietary protocols.

4.2 The Client
The architectural goal of the client was to implement the
“intelligence” and user interface for the application in the client,
and to rely on the server only for data provisioning. Furthermore,
we wanted a browser based solution to maximize portablity. We
therefore is chose Adobe’s FLEX [15] system for our client
development. The primary functions implemented by the client
were page rendering (using the widgets and graphical editor
provided with the FLEX development environment), formatting
SPARQL queries, populating FLEX widgets from the XML
documents returned from the SPARQL queries, and creating new
RDF comments from the new comment forms.
The client user interface (see Figure 1) was divided into two
components. The left side was for navigation. A HTML frame was
composed by the client from SPARQL queries of the underlying
data ontology. Headers are supplied for each device class
referenced and referencing the class of device currently displayed,
linked to the relevant device type. In our RDF dataset, these are
statements where the current device is either the subject or object
of attributes of another device type. This is the intensional view of
the device. The extensional view depends on the page subject
type. If the page subject is an individual device, then device
specific attributes are displayed. If the page subject is a device
type (or device class in our data ontology), then all device
instances are displayed in a table. Item descriptions are extracted
from the relational database.
The right side of the client user interface was dedicated to
managing comments. The page subject is a URI from the data
ontology embedded as URL encoded parameter in the page URL.
Much like the navigation component, the component first issues a
SPARQL query to discover related items. In the case of a device
instance, this is the device class type. In the case of a device class,
these are the instances of the device. The component then issues a
query to retrieve all relevant comments. Comments are sorted first
according to relevance to the page topic, then chronologically and
displayed on the page. This component also allows users to create
a new comment using a FLEX WYSIWYG editor. On input,
comments are formatted into an XML-RDF comment description,
and submitted to the server. The comment display is then re-
rendered.

4.3 The Server
The server was implemented in Java using three Java servlets
running in a Jetty [16] web server. The first servlet was a Joseki
[7] RDF data store. Joseki implements a SPARQL endpoint, and
responds to all SPARQL queries issued to the system. Joseki does
not easily support run-time changes to its configuration, so
configuration changes made to support changes in security
policies such as changing the view specifications associated with
individual RSS channels, creating new channels, or modifying the
un-guessable secret embedded in a channel URL are performed by
editing Joseki’s RDF configuration files. The Java JMX
framework, which provides low-level operational control of a web
server, and any standard JMX client, such as JConsole or MX4J
can then be used to remotely restart the server with the new
configuration. [27]

The second servlet was a Jena based application which allows a
client to add RDF to the same data store accessed by the Joseki
component. This component uses a proprietary protocol, although
it is envisioned that this will eventually be replaced by
SPARQL/Update [17] or some similar language for RDF graph
updates. The last servlet generates RSS 1.0 data feeds from the
RDF data store. Rather than accessing the data store directly, this
component issues SPARQL queries to the Joseki servlet and the
results reformatted into RDF 1.0 protocol. It is likely that this
servlet could eventually be replaced by a client based XSLT
script.

5. RELATED WORK
The Platypus wiki [18] is probably the first system to describe a
wiki page as an RDF resource and qualify inter-page links with
RDF properties. The Semantic MediaWiki [19] leveraged this
approach to improve search, sorting and re-use of data. [20]
examined the importance and explored the reuse of corporate
metadata schemas by importing existing ontologies into the
Semantic MediaWiki. Their purpose is similar to ours: to
bootstrap a skeleton for filling a wiki. [6] discussed navigating
along conceptual dimensions using hierarchical faceted metadata,
an approach we use extensively in our prototype. [21] explored
the idea of building templates, which in turn are used to generate
HTML forms, directly from RDFS ontologies. Their goal, like
ours, is to allow experts to create data hierarchies and allow users
to focus on content authoring. [22] predicts a “Social Semantic
Desktop” which merges the Semantic Web, Peer-to-Peer (P2P)
Networks, and Online Social Networking. Using RDF encoded
metadata to improve data exchange across P2P networks has been
explored in projects such as [23]. The query, replication and
annotation services featured in their architecture resemble aspects
of our implementation. In our system, however, synchronization is
explicit and performed one peer at a time, so problems such as
distributed search do not apply.
There exist other examples of wikis built on top of distributed
databases. Repliwiki [24] is an example of a Wiki that supports a
distributed database. However, their purpose is different:
Repliwiki seeks to replicate the wiki database for reliability and
bandwidth purposes, not personalization and off-line access.
Wooki [25] is closer is spirit to our approach. This system
maintains wiki page consistency on a P2P network using
automatic document merges and local broadcast of page changes
on an overlay network. However, the back-end servers that are
seen as problematic for the Wooki project are seen as a feature
here: safeguarding corporate data is an essential operation to most
corporations, which typically have both IT departments and
policies to insure that centrally located data is not lost. Lastly,
there exists a number of open source distributed version control
systems including, for example, Git [26] which is used for the
distributed development of the Linux kernel. Like our system,
they are based on exchanging uniquely named “patches”, and we
originally considered building the synchronization system using
such a system. However, this would have made using RSS feeds
for advertising content more complicated – important both for
users wanting to browse system content with standard RSS
readers, and importing data from generic RSS feeds. However, the
delta compression, integrated merging and extensive testing of
these systems is compelling, and it is likely that our system could
benefit from integrating our RSS feed and security mechanism
with one of these proven solutions.

6. CONCLUSIONS AND FUTURE
DIRECTIONS
We have integrated technologies from the semantic web, semantic
wikis, and RSS synchronization into a collaboration system for
intermittently connected users. This addressed many of the
concerns raised by our potential users. We are now considering
how we might generalize the system architecture to address
problems from different domains. For example, we would like to
parameterize the user interface to make it easier to import
different data ontologies, and find easier ways for users to manage
data security. The challenge is to expose the flexibility of our
semantic web technology based infrastructure without
overwhelming non-expert users. We also would like to address the
difficulty some users had in learning a tool by better leveraging
existing user interface paradigms. If these challenges can be met,
then we believe that this framework is appropriate for a next
generation of web users: mobile intermittently connected
corporate users with overlapping concerns and interests. We see
significant value and opportunities in our approach for integrating
existing business data structures with easy to use collaborative
tools.

7. ACKNOWLEDGMENTS
The system is built using Jena and Joseki – many thanks to all
who helped build those tools. Thanks to the many wiki users who
consented to be interviewed. Thanks also to Jeff Thielman, Ted
Beers, and Mike Bialek as well as to Paolo Castagna and our
colleagues here in MMSL and particularly the Personal
Collaboration group for their help and advice.

8. REFERENCES
[1] Cunningham, Ward and Leuf, Bo: “The Wiki Way. Quick

Collaboration on the Web”. Addison-Wesley, 2001

[2] Wikipedia: blog, http://en.wikipedia.org/wiki/Blog

[3] O’Reilly, Tim, “What is Web 2.0”,
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3
0/what-is-web-20.html, 09/30/2005

[4] TWiki wiki: www.twiki.com

[5] RSS-DEV Working Group: “RDF Site Summary (RSS) 1.0”,
http://web.resource.org/rss/1.0/, May 5, 2001

[6] Yee, K.P., et al, “Faceted Metadata for Image Search and
Browsing”, In Proc. SIGCHI ’03, pp. 401–408

[7] Joseki: http://www.joseki.org/

[8] Tichy, Walter, “RCS - A System for Version Control”,
Software – Practice and Experience, July 1985,: pp 637-654

[9] Prud'hommeaux, and Seaborne, Andy, editors, “SPARQL
Query Language for RDF”, W3C working draft, 4, October
2006.

[10] Y. Saito and M. Shapiro, “Optimistic replication”, ACM
Computing Survey, 37(1), 2005.

[11] Demers, A. J., Greene, D. H., Hauser, C., Irish, W., and
Larson, J., “Epidemic algorithms for replicated database
maintenance”, In 6th Symp. on Princ. of Distr. Comp.
(PODC), . Vancouver, BC, Canada, 1987, pp. 1–12.

[12] RSS-DEV Working Group: “RDF Site Summary (RSS) 1.0”,
http://web.resource.org/rss/1.0/, May 5, 2001

[13] Manjunath, G. et al, “Implementing Views for Controlled
Access to the Semantic Web”, Workshop on Semantic Web
for Collaborative Knowledge Acquisition (SWeCKa), 2007

[14] Close, Tyler “Web Calculus”,
http://www.waterken.com/dev/Web/

[15] Adobe Flex: http://www.adobe.com/products/flex/

[16] Jetty web server: http://www.mortbay.org/

[17] Seaborne, Andy and Manjunath, Geetha, “SPARQL/Update:
A language for updating RDF graphs”, Version 2: 2007-08-
09, http://jena.hpl.hp.com/~afs/SPARQL-Update.html

[18] S. E. Campanini, P. Castagna, and R. Tazzoli, “Platypus
wiki: a semantic wiki wiki web”, Proc. of 1st Italian
Semantic Web Workshop, Dec 2004.

[19] Völkel, M., Krötzsch, M., Vrandecic, D., Haller, H., Studer,
R., “Semantic Wikipedia”, Proc. of the 15th International
WWW Conference, Edinburgh, Scotland. (2006)

[20] Vrandecic, D., Krötzsch, M., “Reusing ontological
background knowledge in semantic wikis”, Proc. of the 1st
Workshop on Semantic Wikis, Budva, Montenegro. (2006)

[21] Kawamoto K, Kitamura Y, Tijerino Y, “KawaWiki: A
Semantic Wiki Based on RDF Templates”, Web Intelligence
and International Agent Technology Workshops,
IEEE/WIC/ACM International Conference, 2006, pp. 425-
432.

[22] S. Decker and M. Frank. “The social semantic desktop”.
Tech. Rep. 2004-05-02, DERI, 2004

[23] Wolfgang Nejdl, et al, “EDUTELLA: a P2P networking
infrastructure based on RDF”. In 11th World Wide Web
Conference, May 2002: pp 604-615

[24] Sharma, Vikram, “Summary Hash History for Optimistic
Replication”, USENIX ATC 2007

[25] Stéphane Weiss, Pascal Urso and Pascal Molli, “Wooki: a
P2P Wiki-based Collaborative Writing Tool”, In Web
Information Systems Engineering, Nancy, France, December
2007.

[26] Git version control system: http://git.or.cz/
[27] M. Mesarina, Venugopal K.S, N. Lyons and C. Sayers, “A

Management and Performance Framework for Semantic Web
Servers”, WWW 2007, Banff, Canada

