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ABSTRACT
We consider the budget-constrained bidding optimiza-
tion problem for sponsored search auctions, and model
it as an online (multiple-choice) knapsack problem. We
design both deterministic and randomized algorithms
for the online (multiple-choice) knapsack problems achiev-
ing a provably optimal competitive ratio. This trans-
lates back to fully automatic bidding strategies maxi-
mizing either profit or revenue for the budget-constrained
advertiser. To maximize revenue from sponsored search
advertising, our bidding strategy can be oblivious (i.e.,
without knowledge) of other bidders’ prices and/or click-
through-rates for those positions. We evaluate our bid-
ding algorithms using both synthetic data and real bid-
ding data gathered manually, and also discuss a sniping
heuristic that strictly improves bidding performance.
With sniping and parameter tuning enabled, our bid-
ding algorithms can achieve a performance ratio above
90% against the optimum by the omniscient bidder.

1. INTRODUCTION
Sponsored search auctions generated an estimated

�
15

billion in revenue globally in 2006, and the global on-
line advertising market is expected to reach

�
81 billion

in 2011. 1 The results page of a keyword search is ap-
parently an extremely effective place for advertisers to
reach an engaged audience. Using an automated auc-
tion mechanism, search engines sell the right to place
ads next to these keyword results and alleviate the auc-

∗Work was mostly done while the author was an intern
at HP Labs.
1source: Piper Jaffray & Co.
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tioneer from the burden of pricing and placing ads. The
intent of the consumer is matched with that of the ad-
vertiser through an efficient cost/benefit engine that fa-
vors advertisers who offer what consumers seek.

On the advertiser’s side, large companies spend bil-
lions of dollars each year in marketing with an increas-
ingly large portion of that dedicated to search market-
ing. A number of natural questions arise: Game theo-
retically, how can an advertiser bid strategically against
competitors to maximize relative return? Operationally,
how can an advertiser optimize the bidding process as-
suming that other advertisers have fixed bidding pat-
terns, how to allocate budgets to keywords and how
to bid under budget constraints? In this work we fo-
cus on the bid optimization question under the budget
constraint. Formally, we try to address the following
problem: For each keyword and each time period, how
much should an advertiser bid to obtain which position,
so as to maximize return on investment (ROI) of these
auctions?

The bidding strategies we develop are based on the
current policy used by search engines to display their
ads. We assume that at each query of a keyword, the
highest bidder gets the first position, the second highest
the second and so on. Moreover, the pricing scheme is
the generalized second price scheme [15, 29, 21] where
the advertiser in the i-th position pays the bid of the
(i + 1)-th advertiser whenever the former’s ad is clicked
on. For each user click on its ad, the advertiser obtains
a revenue, which is the expected value-per-click, and
a profit, which is equal to the difference between rev-
enue and cost. The advertiser (or the agent acting on
behalf of the advertiser) has a budget constraint, and
would like to maximize either the revenue or the profit.
These budget constraints arise out of the ordinary oper-
ational constraints of the firm and its interactions with
its partners, as well as being a generic feature of key-
word auction services themselves.

We use competitive analysis to evaluate our bidding
strategies, comparing our result with the maximum profit
attainable by the omniscient bidder who knows the bids
of all the other users ahead of time. This competi-
tive analysis framework has been used in the worst-case



analysis of online algorithms and helps to convert the
problem of devising bidding strategies to designing al-
gorithms for online knapsack problems. Although it is
known [23] that the most general online knapsack prob-
lem admits no online algorithms with any non-trivial
competitive ratio, the auction scenario suggests a few
constraining assumptions which allow us to give inter-
esting and optimal online algorithms. Thus, we con-
tribute to the literature of knapsack problems as well.

The bidding strategies suggested by the online algo-
rithms are very simple to state and very easy to imple-
ment. As an example, the bidding strategy for revenue
maximization can be stated in one sentence:

At any time t, if the fraction of budget spent
is z(t), bid V

Ψ(z(t))
,

where V is the expected value-per-click of the keyword,
and Ψ(z) is a continuous function of z. Thus the bidding
price depends only on the value of the keyword and
the fraction of budget spent. Besides its simplicity, the
strategy is also oblivious, in the sense that it does not
need to consider other player’s bids or how frequently
queries arrive.

1.1 Model Description
Suppose there are N + 1 bidders {0, 1, · · · , N} inter-

ested in a single keyword. Bidder 0 is the default adver-
tiser and his expected value-per-click for this keyword
is V . 2 Bidder 0 has a budget of B over time period
T (e.g., if T is 24 hours, B is the daily budget), and
he wants to maximize his profit over the time period
T . Here the budget constraint is a hard constraint, in
the sense that once exhausted, the budget can not be
refilled; budget remaining at the end of period T is for-
feited; the bidder leaves the auction once his budget is
exhausted.

Bidders bid on the keyword, and are allowed to change
their bids at any moment of time. As soon as a query
for the keyword arrives, the search engine allocates S
slots to bidders as follows: It takes the S highest bids,
b1 ≥ b2 ≥ . . . ≥ bS and displays s-th bidder’s ad in slot
s. Moreover, if any user clicks on the ad at the s-th slot,
the search engine charges the s-th bidder a price bs+1, if
s < S or a minimum fee bmin (usually 10�). Hence, we
may assume that all bids are at least bmin. Each slot s
has a click-through-rate (CTR), denoted α(s), which is
defined as the total number of clicks on an ad divided by
the total number of impressions (displays). Usually α(s)
decreases from upper to lower position slots. 3 Each
time his ad in slot s is clicked, bidder 0 is charged a
cost of bs+1, obtains an expected revenue V , and profit

2For ease of exposition, we restrict our attention to a
single keyword in this paper. All our results extend
naturally to the general case of multiple keywords and
multiple slots per keyword, with V replaced by Vmax, the
maximum valuation-per-click among all the keywords.
3Both the expected value-per-click V and the CTR α(s)
may vary over different advertisers and different ads.
Here we focus on the default advertiser (bidder 0) and
assume that both V and α(s) are fixed over time T .

V − bs+1, where bs+1 is the bid of the advertiser in the
(s + 1)-th slot or bmin if s = S.

The total timespan is discretized into T periods 1, 2,
· · · , T such that, within a single time period t, no bidder
changes his bid. Moreover, suppose Bidder 0 can make
his bid in time period t after seeing all other bidders’
bids. 4 Bidder 0 needs to decide, how much to bid at
each time period t, to maximize its profit (or revenue)
while keeping its total cost within its budget.

1.2 Keyword Bidding and Knapsack Prob-
lems

It is not too hard to see that if we know bids of all the
agents at each time period, then the best bidding strat-
egy corresponds to solving a knapsack problem (This
observation was also made by [8].) Let us start with the
relatively simple single-slot case where there is only one
ad slot. At each time period t, let b(t) be the maximum
bid on the keyword among bidders 1 to N . The omni-
scient bidder knows all the bids {b(t)}T

t=1. To maximize
his profit, the omniscient bidder should bid higher than
b(t) at those time periods which give him maximum
profit and keep his total cost within budget. Winning
at time t costs him w(t) = b(t)X(t)α and earns him
profit v(t) = (V − b(t))X(t)α, where X(t) is the ex-
pected number of queries at time period t, and X(t)α
is the expected number of clicks at t. Thus, the om-
niscient bidder should choose time periods S ⊂ T to
maximize v(S) = � t∈S v(t) satisfying the constraint
w(S) = � t∈S w(t) ≤ B. This is a standard instance
of the classic 0/1 knapsack problem, which is defined
as following: Given a knapsack of capacity B and T
items of profit and weight (v(t), w(t)) for 1 ≤ t ≤ T ,
select a subset of items to maximize the total profit
with total weight of selected items bounded by B. For
the case of maximizing revenue, it is similar except that
v(t) = V X(t)α for each t. However, for the bidding
optimization problem, items arrive in an online fash-
ion. At each time period t, bidder 0 has to decide ei-
ther overbidding b(t) or not. Bidder 0 does not know
the future, and furthermore, it could neither recall time
instances gone nor revoke its past decisions. Thus key-
word bidding corresponds to designing an algorithm for
the online knapsack problem.

The case of multiple slots is captured by the online
version of a variant of the classical knapsack problem,
the multiple-choice knapsack problem. We elaborate
more on this in Section 5.

The knapsack problem is a classic problem in oper-
ations research and theoretical computer science. For

4Here we assume that bidder 0 can see other bidders’
bids at any time. It had been true until February 2007
through Yahoo!/Overture View Bids tool. At present,
for all search advertising platforms, you can only get
estimated costs for each position. However, you can
always find out the cost for each position by probing
the system with different bidding prices and check the
corresponding positions you got. The amount of money
the system charged you also reveals the cost for your
current position.



online knapsack problems, Marchetti-Spaccamela and
Vercellis [23] showed that in its most general case, there
can be no online algorithm achieving any non-trivial
competitive ratio, where the competitive ratio is the ra-
tio of the value of the given online algorithm to that of
the best offline algorithm. 5 Fortunately, in our setting,
we can make two reasonable assumptions on the knap-
sack items, which allow us to develop interesting online
algorithms. We state the assumptions below and justify
them in Section 4:

1. Each item has weight much smaller than the ca-
pacity of the knapsack, that is, w(t) � B for each
item t.

2. The value-to-weight ratio of each item is both lower

and upper bounded, i.e., L ≤ v(t)
w(t)

≤ U, ∀t.

1.3 Our Results
In Section 3, we design both determinstic and ran-

domized algorithms for the online knapsack problem
with two assumptions given above. Both our algorithms
have competitive ratio ln(U/L) + 1, while the deter-
ministic algorithm is robust again any adaptive adver-
sary. We also show a matching lower bound in sec-
tion 3.1. Therefore our algorithm is provably optimal
in the worst-case sense.

In Section 4, we show that bidding optimization for
single-slot auctions corresponds to the online knapsack
problem. We translate the online knapsack algorithm
into bidding strategies for the single-slot auction, for
both profit and revenue maximization. As stated in
the introduction, these strategies are oblivious, and thus
work even if other bidders bids were not known. It also
implies that the strategy is an approximate dominant
strategy in the sense that it is an approximate best re-
sponse to any bid profile of other bidders.

In Section 5, we give a (ln(U/L) + 2)-competitive on-
line algorithm for the multiple-choice knapsack prob-
lem (MCKP), a classic generalization of the knapsack
problem. We show that the general bidding optimiza-
tion problem (with multiple slots per keyword) corre-
sponds to the Online-MCKP. We translate the algo-
rithm for Online-MCKP to bidding strategies for the
multiple-slot case, and obtain both profit-maximizing
and revenue-maximizing bidding strategies. The profit
maximizing strategy is not oblivious and requires knowl-
edge of other players’ bids and also the CTRs of all slots.
The revenue-maximizing strategy remains oblivious.

The reason why the multiple-slot profit-maximizing
strategy turns non-oblivious is subtle: It might be more
profitable for an advertiser to appear in a less desirable
(lower) slot and pay less than appearing in a higher
slot which gives more clicks. This non-monotonicity has
actually been used [15, 4] to show that the generalized
second-price scheme is not truthful.

5Consider a knapsack of capacity 1 and two sequences
{(1,1);(0,1)} and {(1,1);(∞,1)}. Any deterministic
strategy will perform arbitrarily badly against at least
one of these sequences.

We implement these bidding strategies and evaluate
them using both synthetic bidding data and real bid-
ding data scraped from the Overture website. We mod-
ify our strategy by adding a sniping heuristic, and it
performs much better empirically while maintaining the
same theoretical bounds. Our experimental work (re-
stricted by limited evaluation data), reported in Sec-
tion 6, suggests that parameter tuning also helps to im-
prove the performance of our bidding algorithms. With
both sniping and parameter tuning enabled, our bidding
algorithms (for both profit and revenue maximization)
achieve an output value which is consistently more than
90% of the optimum by the omniscient bidder.

2. RELATED WORK
Given the numerous research literature in sponsored

search auctions, knapsack problems, and online algo-
rithms, we try to discuss these mostly related to our
work.

Bidding Optimization in Keyword Auctions. Over
the past few years, keyword auctions have attracted a
lot of attention both from the auctioneer’s perspective
([15, 29, 4, 21]) and the advertiser’s perspective ([14,
5, 28, 30]). For auctioneer revenue maximization with
budget-constrained bidders, there are various work with
various complexities to model keywords, slots, and clicks
([9, 2, 24, 10, 3]). Among them, the techniques used by
Mehta etc al. [24] are perhaps most similar to the ones
we use. They use a trade-off function Ψ (compare it to
our threshold function), and grant queries to the bidder
having the maximum Ψ value.

For bidding optimization for the advertiser, Kitts and
LeBlanc [18] describe various bidding heuristics. Borgs
et al. [7] propose a bidding strategy which over time
equalizes the ROI over all keywords. Rusmevichien-
tong and Williamson [27] discuss about how to learn the
CTRs for various keywords over time and select key-
words accordingly. Most recently, Feldman et al. [16]
studied variants of the bidding optimization problem
where the objective is to maximize the number of clicks,
with possibly complicated interactions among many key-
words, and Carey et al. [13] analyzed properties of greedy
bidding strategies. None of the previous work has mod-
eled the bidding problem as online knapsack problems,
while we design simple threshold based algorithms for
online knapsack problems and translate them back to
solve the bidding problem.

Online Knapsack Problems. Marchetti-Spaccamela
and Vercellis [23] were the first to study the problem and
showed that in the general case, there exists no online
algorithm achieving any non-trivial competitive ratio.
Many special cases of the problem have been studied,
including the stochastic online knapsack problem [22,
26, 20], the removable online knapsack problem [17] and
the online partially fractional knapsack problems [25],
none of them seem to imply our assumptions. A spe-
cial case of the online knapsack problem where all items
have unit cost is the online multiple secretary problem.
Kleinberg [19] gave an online algorithm with competi-



tive ration 1−O(1/
√

k) for the online k-secretary prob-
lem where k is the number of secretaries to select.

Online Call Routing and General Packing Prob-
lems. Awerbuch et al. [6] studied the online call
routing which generalizes the online classical knapsack
problem. More recently, in a series of works Buchbinder
and Naor [11, 12] designed online algorithms for frac-
tional versions of general packing problems and derived
the results of Awerbuch et al. in their framework. One
can possibly derive O(ln(U/L))-competitive online al-
gorithm for the classical knapsack problem from their
algorithms.

Our (optimal) competitive ratio of ln(U/L) + 1 can
be thought of pinning down the exact constant in their
results for the knapsack problem via simpler algorithms.
Furthermore, their settings seem not generalize to the
multiple-choice knapsack problem, which is actually the
most important case for the keyword auction model.
In addition, our algorithms are much more direct and
cleaner, and thus give rise to simple and oblivious bid-
ding strategies.

3. THE ONLINE KNAPSACK PROBLEM
The input sequence consists of a knapsack of capacity

B and a stream of T items having values and weights

(v(t), w(t)). We call the value-to-weight ratio ( v(t)
w(t)

) of

any item its efficiency. The goal is to choose these items
in an online fashion, that is make a decision as the items
come and not revoke them, so as to maximize the total
value. We say that an online algorithm A has com-
petitive ratio γ (or equivalently is γ-competitive) if for
any input sequence σ, we have OPT(σ) ≤ γ · A(σ),
where A(σ) is the (expected, if A is randomized) value
obtained by A given σ, and OPT(σ) is the maximum
value which can be obtained by any offline algorithm
with the knowledge of σ. We describe two (ln(U/L)+1)-
competitive algorithms for the problem.

Randomized Algorithm: Let D be the continuous
distribution from 0 to U , with the following density
function f(x) = c

x
, for L ≤ x ≤ U , and f(x) = c/L for

0 ≤ x ≤ L, where c = 1
1+ln(U/L)

Note that � U

0
f(x)dx =

1, and this is a valid density function.

Algorithm Online-KP-Randomized

Pick a threshold T from the distribution D.
At time t, pick element t iff

v(t)

w(t)
≥ T and budget remaining ≥ w(t).

Theorem 3.1. Online-KP-Randomized has com-
petitive ratio ln(U/L) + 1.

Proof. We may assume that the optimum fills the
knapsack. Given σ, for x ∈ [0, U ], let ρ(x) denote the
fraction of knapsack filled by the optimum algorithm
with items whose efficiency ratio is more than x. Note

that ρ is a continuous decreasing function with ρ(0) =
ρ(L) = 1. Assume ρ(U) = 0. Since the fraction of
knapsack containing elements of efficiency ratio exactly
x is ρ(x) − ρ(x + dx) = −dρ(x), we see

OPT(σ) = − � U

0

xdρ(x) · B = � U

0

ρ(x)dx · B (1)

where the second equality follows from simple calculus.
Now note that if the random threshold chosen is T ≥

L, then the algorithm would have a profit of at least
Tρ(T ) ·B. Also if 0 ≤ T ≤ L, then the algorithm would
have a profit of at least LB.

Thus the expected profit of the algorithm

E[A(σ)] ≥ � L

0

LBf(x)dx + � U

L

xρ(x)Bf(x)dx

= LB � L

0

c

L
dx + B � U

L

xρ(x)
c

x
dx

= cB � L

0

ρ(x)dx + cB � U

L

ρ(x)dx

= c · OPT

where the last but one equality uses ρ(x) = 1 for x ∈
[0, L]. The proof follows by observing c = 1

ln(U/L)+1
.

Remark: Note that the algorithm works well only in
expectation and against oblivious adversaries. If the
threshold choice is known, then an adversary can pro-
duce an arbitrarily bad input sequence.

Deterministic Algorithm: Now we state the deter-
ministic algorithm for the online knapsack problem which
works against all adversaries achieving the optimal bound
of ln(U/L)+1. In the remainder of the paper, e denotes
the base of the natural logarithm.

Algorithm Online-KP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) be the fraction of capacity filled,
pick element t iff

v(t)

w(t)
≥ Ψ(z(t)).

Observe that for z ∈ [0, c] where c ≡ 1
1+ln(U/L)

, Ψ(z) ≤
L, thus the algorithm will pick all items available until
c fraction of the knapsack is filled. In fact, we will as-
sume henceforth Ψ(z) = L for z ∈ [0, c]. When z = 1,
Ψ(z) = U , and since Ψ is strictly increasing, the algo-
rithm will never over-fill the knapsack.
Remark: The choice of the function Ψ might seem mys-
terious to readers. Actually, the function was obtained
in a systematic fashion via a limiting series of more dis-
crete functions. This method of obtaining the contin-
uous version of a discrete algorithm was also done in
[24].

Theorem 3.2. For any input sequence σ, if A(σ) is
the profit obtained by Online-KP-Threshold has a



competitive ratio of and OPT(σ) is the maximum profit
that can be attained, then

OPT(σ) ≤ A(σ)(ln(U/L) + 1).

In other words, the above algorithm has a competitive
ratio of ln(U/L) + 1.

Proof. Fix an input sequence σ. Let the algorithm
terminate filling Z fraction of the knapsack and ob-
taining a value of A(σ). Let S and S∗ respectively be
the set of items picked by the Algorithm Online-KP-

Threshold and the optimum. Denote the weight and
the value of the common items by W = w(S ∩ S∗) and
P = v(S ∩ S∗). For each item t not picked by the algo-
rithm, its efficiency is < Ψ(z(t)) ≤ Ψ(Z) since Ψ(z) is a
monotone increasing function of z. Thus,

OPT(σ) ≤ P + Ψ(Z)(B− W)

Since A(σ) = P +v(S\S∗), the above inequality implies
that

OPT(σ)

A(σ)
≤ P + Ψ(Z)(B − W )

P + v(S \ S∗)
. (2)

Since each item j picked in S must have efficiency at
least Ψ(zj) where zj is the fraction of the knapsack filled
at that instant, we have

P ≥ �
j∈S∩S∗

Ψ(zj)wj =: P1, (3)

v(S \ S∗) ≥ �
j∈S\S∗

Ψ(zj)wj =: P2. (4)

Since OPT(σ) ≥ A(σ), inequality (2) implies

OPT(σ)

A(σ)
≤ P + Ψ(Z)(B − W )

P + v(S \ S∗)
≤ P1 + Ψ(Z)(B − W )

P1 + v(S \ S∗)
(5)

Noting that P1 ≤ Ψ(Z)w(S ∩ S∗) = Ψ(Z)W and
plugging in the values of P1 and P2 we get

OPT(σ)

A(σ)
≤ Ψ(Z)

� j∈S Ψ(zj)∆zj
(6)

where ∆zj = zj+1 − zj = wj/B for all j.
Now based on the assumption that the weights are

much smaller than B, we can approximate the summa-
tion via an integration (refer to the remark following
the proof). Thus,

�
j∈S

Ψ(zj)∆zj ≈ � Z

0

Ψ(z)dz

= � c

0

Ldz + � Z

c

Ψ(z)dz

= cL +
L

e

(Ue/L)Z − (Ue/L)c

ln(Ue/L)

=
L

e

(Ue/L)Z

ln(Ue/L)
=

Ψ(Z)

ln(U/L) + 1

and along with inequality (6) this completes the proof.

Remark: We can make the approximation made above
precise. Since Ψ(z) is an increasing function of z, we

obtain � j∈S Ψ(zj)∆zj ≥ (1−ε0) � Z

0
Ψ(z)dz where ε0 =

(maxj wj)/B is small constant. Thus, to be precise,
the competitive ratio is actually ln(Ue/L) · 1

1−ε0
. For

simplicity, we ignore the factor 1 − ε0 for subsequent
analysis.

3.1 A Matching Lower Bound

Theorem 3.3. The competitive ratio of any (possibly
randomized) online algorithm for the online knapsack
problem is at least ln(U/L) + 1.

Proof. Yao’s minimax principle says for any input
distribution D and any γ-competitive randomized algo-
rithm A,

1

γ
≤ min

σ

E[A(σ)]

OPT(σ)
≤ max

deterministic A

Eσ←D � A(σ)

OPT(σ) �
To prove the theorem we specify a distribution D such
that

max
deterministic A

Eσ←D � A(σ)

OPT(σ)� ≤ 1

ln(U/L) + 1
. (7)

Fix a parameter η > 0. Let k be an integer such that

(1 + η)k = U/L, i.e., k = ln(U/L)
ln(1+η)

The support of the input distribution consists of the
instances I0, I1, · · · , Ik, where I0 is a stream of B iden-
tical items each with weight 1 and value L. I1 is I0 fol-
lowed by a stream of B identical items each with weight
1 and value (1 + η)L, and in general Ij+1 is Ij followed
by B items with weight 1 and value (1 + η)j+1L. The
distribution D is specified by giving probability pj to
instance Ij (we specify pj ’s later).

Given knowledge of this distribution, any determin-
istic algorithm A can be fully specified by the vector
(f0, f1, · · · , fk), where fi is the fraction of the knapsack
it fills with items having efficiency ratio (1+η)iL. Thus
we have

Eσ←D � A(σ)

OPT(σ) � =
k�

i=0

pi � i
j=0(1 + η)jfj

(1 + η)i

=

k�
j=0

fj

k�
i=j

pi(1 + η)j−i

Next we specify the pj ’s:

pk :=
1 + η

(k + 1)η + 1
, pj :=

η

(k + 1)η + 1
, ∀ 0 ≤ j < k.

Notice that � j pj = 1, so the distribution is defined
appropriately. In addition, you can verify that

k�
i=j

pi(1 + η)j−i =
1 + η

(k + 1)η + 1
, ∀ j.

Thus we get

Eσ←D � A(σ)

OPT(σ)� =
1 + η

(k + 1)η + 1

k�
j=0

fj ≤ 1 + η

kη + 1



where the last inequality uses the fact that � k
i=0 fi ≤

1 as the algorithm can not over-fill the knapsack. By
setting η → 0 and using the fact that kη → ln(U/L),
then Eq.( 7) is proved. This completes the proof.

4. SINGLE-SLOT AUCTIONS
In this section, we translate the algorithms in Sec-

tion 3 for Online-KP to bidding strategies for single-slot
keyword auctions. The bidding optimization objective
can be either profit maximization or revenue maximiza-
tion. Before presenting the algorithms, we first explain
why the assumptions made in Section 1.2 are justified.

For profit maximization, recall that the unique item
at time period t has a weight w(t) and a profit v(t)
where

w(t) ≡ b(t)X(t)α, v(t) ≡ (V − b(t))X(t)α.

For revenue maximization, v(t) = V X(t)α. The first
assumption of w(t) � B follows since the budget of the
agent is usually much larger than the money spent in
small time periods as the bids are small. For the second
assumption, we consider U first. In the case of profit

maximization, since v(t)
w(t)

= V
b(t)

− 1, it suffices to set

U ≡ V
bmin

− 1. In the case of revenue maximization, we

have v(t)/w(t) = V/b(t), and it suffices to set U ≡ V
bmin

.

To get a lower bound L for profit-maximization, no-
tice that if b(t) is close to V , little is lost without bidding
at those time intervals. Specifically, if we bid only when
b(t) ≤ V

1+ε
for some fixed ε > 0, the maximum amount

of profit lost from not bidding in these time periods is
bounded by εB. If ε is small, then the profit loss can
be negligible. In other words, we can set L = ε and
ignore all items with efficiency smaller than ε. For rev-
enue maximization, it is reasonable to assume that the
optimum strategy would never bid when b(t) is higher
than V . This holds when there are enough items with
value-to-cost ratio at least 1 to consume the whole bud-
get. Therefore, we only need to consider items with
efficiency at least 1, i.e., set L = 1.

4.1 Bidding Strategies for Single-Slot Auc-
tions

We now construct bidding strategies for two objec-
tive: one to maximize profit and the other to maximize
revenue. The difference in the two are in the parameter
settings. For profit maximization, recall that outbid-

ding b(t) at time t gives an efficiency of v(t)
w(t)

= V
b(t)

− 1

while for revenue maximization its V
b(t)

. Thus, the para-

meters U and L for revenue maximization strategies are:
Ur := V

bmin

and Lr := 1 respectively. For profit maxi-

mization Up = Ur − 1, though Lp could be 0. To take
care of this, we introduce another parameter ε, such
that we bid only when the efficiency is bigger than ε.
This makes Lp = ε but leads to an additive loss in the
performance.

The strategies are derived from the online algorithms:
Bidder 0 outbids only if the efficiency is bigger than
the threshold. Since the threshold does not depend on

anything other than the fraction of knapsack filled, the
strategies also depend only on the fraction on budget
spent. The strategies are formally stated as follows:

Bidding Strategy: Profit-Maximizing Single-

Slot

Let Ψ(z) ≡ (Upe/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), then
bid b0(t) = V

1+Ψ(z(t))
.

Bidding Strategy: Revenue-Maximizing

Single-Slot

Let Ψ(z) ≡ (Ure)
z(1/e).

At time t, if fraction of budget spent is z(t), then
bid b0(t) = V

1+Ψ(z(t))

Note that both the strategies only need the fraction of
budget spent and are thus oblivious to the other pa-
rameters of the auction. We use Profit and Revenue
to denote the profit and revenue earned by the above
strategies respectively, and OPTp and OPTr to denote
the profit and revenue of an omniscient bidder. Then
we have the following two theorems:

Theorem 4.1. For any ε > 0,

OPTp ≤ εB + ln �e(V − bmin)

εbmin � · Profit.

The proof of Theorem 4.1 follows from Theorem 3.2
and the fact that all items with efficiency ≤ ε has total
value at most εB. Theorem 4.1 also suggests that dif-
ferent ε values give different guarantees for Profit, thus
we can choose ε appropriately to maximize the guaran-
teed value of Profit. In practice, it turns out we can
treat L, the lower bound of all items’ efficiency, as a
tunable parameter (essentially ignoring all items with
efficiency less than L), and significantly improve the
performance of the bidding algorithm. We will dicuss
this in section 6.2.

Theorem 4.2. Assuming that OPT does not overbid
at time t where b(t) > V , then

OPT ≤ ln � eV

bmin � · Revenue

The proof of Theorem 4.2 follows from Theorem 3.2
setting L = 1. The assumption is valid if the budget B is
not exceedingly large. In practice, even if the advertiser
wants to maximize revenue, rarely is he willing to buy
unprofitable keyword positions.

5. ONLINE-MCKP AND MULTIPLE-SLOT
AUCTIONS

In this section we first generalize the online algorithm
for the knapsack problem to the multiple-choice knap-
sack problem (MCKP), then translate the algorithm
for Online-MCKP to bidding strategies for multiple-slot
auctions.



5.1 The Online MCKP
The Online-MCKP is a generalization of the Online-

KP. At each time period, at most one item is to be cho-
sen from a item set Nt. The goal again is to maximize
the total value of items chosen.

The algorithm for Online-MCKP is very similar to
that for Online-KP, which is stated below.

Algorithm Online-MCKP-Threshold

Let Ψ(z) ≡ (Ue/L)z(L/e).
At time t, let z(t) denote the fraction of capacity
filled,

Et ≡ �s ∈ Bt |
vs(t)

ws(t)
≥ Ψ(z(t))� ,

pick element s ∈ Et with maximum vs(t)

The above algorithm has a competitive ratio of ln(U/L)+
2, stated as the following theorem:

Theorem 5.1. Online-MCKP-Threshold has a com-
petitive ratio of (ln(U/L) + 2).

Proof. For any input sequence of sets σ, let A(σ) be
the profit obtained by the above algorithm and OPT(σ)
be the maximum profit obtainable. We claim that for
any σ,

OPT(σ) −A(σ) ≤ (ln(U/L) + 1)A(σ).

Note that the claim immediately implies the theorem.
As in the proof of Theorem 3.2, let S and S∗ be the
set of items picked by the algorithm and the optimum,
respectively. Let P = v(S ∩ S∗) denote the profit of
the common items, W = w(S ∩ S∗) denote the weight.
As before, we want to bound the profit of the items
picked by OPT but not by ALG. In the multiple-choice
case, unlike in the proof of Theorem 3.2, the efficiency
of an item selected by OPT from Nt is not necessarily
bounded by Ψ(z(t)) since ALG may have also selected
a different item from Nt. Thus we partition the items
picked by OPT and not by ALG into two: items which
do not satisfy the efficiency condition, and the items
which do. Thus the first kind of items have efficiency
less than Ψ(z(t)), while for the second kind of items, the
total profit of these items is less than A(σ) since ALG
picks the most profitable item from the same set which
satisfy the efficiency condition. We can exclude the sec-
ond types of items from further consideration since they
in total result in at most a profit of A(σ). Now we can
assume that all items have efficiency < Ψ(z(t)) at time
t, thus it returns to a similar situation as in the proof
of Theorem 3.2. A similar proof shows that the above
claim holds.

5.2 Bidding Strategy for Multiple-Slot Auc-
tions

For multiple-slot auctions we consider both profit-
maximizing and revenue-maximizing cases. At each time
period, bidder 0 has to decide which slot’s bidder should

he outbid. The algorithm suggests bidding so as to get
maximum profit (revenue) while having a minimum ef-
ficiency. Unfortunately, bidding to get maximum profit
requires knowledge of other bidders bids. On the other
hand, assuming that click through rates increase as we
move up the slots, bidding higher would only give a
higher revenue.

The parameters are as in the single-slot auction case.

Bidding Strategy Profit-Maximizing

Multiple-Slot

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, let z(t) be fraction of budget spent,

Et ≡ �s | bs(t) ≤ V

1 + Ψ(z(t))
� ,

bid bs(t) where

s = arg maxs∈Et
(V − bs(t))α(s).

Note that the bidding strategy is still oblivious of
X(t), however now requires knowing the bids bs(t) and
also α(s). Similar to the performance guarantee of the
single-slot profit-maximizing bidding strategy in Theo-
rem 4.1, the above bidding strategy has a performance
guarantee, stated as the following theorem:

Theorem 5.2. For any ε > 0,

OPTp ≤ εB + �ln � V

εbmin � + 2� · Profit.

As stated above, for revenue maximization, we can
actually find the slot s in time t to maximize the rev-
enue. This is because, the revenue obtained on bid-
ding bs(t) is V X(t)α(s). Given that α(s) is a decreasing
function, maximizing V X(t)α(s) is equivalent to mini-
mize s, i.e., to find the rank s as low as possible. Since
the efficiency condition imposes that the slot we win
have bs(t) ≤ V

Ψ(z(t))
, our bid should be exactly that.

Thus we have a bidding strategy for revenue-maximizing
multiple-slot auctions which is exactly the same as that
for single-slot auctions in Section 4.1, which has the de-
sirable property of obliviousness.

Theorem 5.3. The bidding strategy for single-slot auc-
tions also gives the following guarantee for multiple-slot
auctions:

OPTr ≤ (ln(V/bmin) + 2) · Revenue .

6. EXPERIMENTAL EXPLORATION
In this section, we evaluate our bidding algorithms

for both synthetic data as well as some limited real-
world data, and discuss two useful heuristics: sniping
and parameter tuning.

6.1 Simulation and the Sniping Heuristic



Consider single slot auction with just one other bid-
der. Figure 1 below shows the simulation of the bid-
ding strategy against the other bidder who bids uni-
form random in [4, 6]. While the original strategy at-
tains around 45% of that obtained by the omniscient
bidder, the modified strategy raises its price at the end
and attains around 67% of the optimum. The modified
strategy emulates original strategy up to time period
800 and then raises its price. It seems that the original
strategy is too conservative: it spends only 64% of the
budget and never increases its bids for 80% of the time.
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Figure 1: Performance comparison of various
bidding strategies in presence of one other bid-
der who bids a price uniform random in [4, 6].

The reason of course is that the strategy is unaware of
the time remaining in the auction. It stops overbidding
too early, missing out possible advantageous outbids
later on. Thus a potential performance improvement
is sniping towards the end of the auction. If the bidder
has knowledge (reliable estimates) about the click traf-
fic (X(t)) and the click through rates, then the bidding
strategies can be modified as follows.

At time t, suppose the fraction of budget remaining
is y(t) = 1 − z(t). Moreover assume we know future
click traffic X(τ )α for t < τ ≤ T . Thus the maximum

number of clicks in the remaining time is � T

t
X(τ )α ·

dτ , and bidding at most y(t)·B�
T

t
X(τ)α·dτ

from time t to T

would avoid exhausting the budget. This suggests the
following modified strategy which in the toy example of
Figure 1 almost doubles the profit.

Bidding Strategy: Profit-Maximizing Single-

Slot with Sniping

Fix ε > 0. Let Ψ(z) ≡ (Ue/ε)z(ε/e).
At time t, if fraction of budget spent is z(t), bid

max

�
V

1 + Ψ(z(t))
,

(1 − z(t)) · B� T

t
X(τ )α · dτ � .

The following theorem shows that the sniping does
not affect the worst-case behavior of the strategies.

Theorem 6.1. The modified bidding strategy using
sniping always obtains at least as much profit as the
original bidding strategy.

Proof. We proof the theorem by showing that when-
ever the original strategy wins a bid, the modified strat-
egy also wins. Let p1(t) denote the first term of the mod-
ified bid function, and p2(t) denote the second term of
the modified bid function. Since Ψ(z(t)) is monotone
increasing in term of time t, p1(t) = V/(1 + Ψ(z(t)))
is monotone decreasing in t. Consider the first time t0
when p2(t0) > p1(t0). If such t0 does not exist, the mod-
ified bidding strategy is identical to the original bidding
strategy and the theorem is trivially proved. Thus we
assume that t0 ≤ T exists. Next we claim that p2(t) is
monotone increasing for all t ≥ t0. If this is true, then
since p2(t) monotone increasing and p1(t) monotone de-
creasing, thus p2(t) ≥ p1(t) for all t ≥ t0.

For simplicity, let α = 1. Denote the second term

p2(t) ≡ (1 − z(t))B� T

t
X(τ )d(τ )

=
F (t)

G(t)

where F (t) ≡ (1 − z(t))B, G(t) ≡ � T

t
X(τ )d(τ ).

Next we prove that p2(t + 1) > p2(t). Notice that
F (t + 1) is budget remaining at time t + 1, thus it is
equal to budget remaining at time t, F (t), minus money
spent at time t. Since money spent at time t is at most
X(t)max{p1(t), p2(t)} = X(t)p2(t), thus

F (t + 1) ≥ F (t) − X(t)p2(t) = F (t) �1 − X(t)

G(t) � .

Since

G(t + 1) = G(t) − X(t) = G(t) �1 − X(t)

G(t) � ,

thus

p2(t + 1) =
G(t + 1)

F (t + 1)
≥ G(t)

F (t)
= p2(t).

Since p1(t) is monotone decreasing in t, and p2(t) is
monotone increasing when t ≥ t0, thus the modified
bidding strategy coincides with the original strategy up
to time t0 and then switches to the sniping strategy.
Since the sniping strategy is defined to never exceed the
budget, the modified bidding strategy never exceeds its
budget.

The above sniping heuristic can be generalized to the
multiple-slot case as well.

Bidding Strategy: Multiple-Slot with Snip-

ing

At time t, let z(t) denote fraction of budget spent,
ρ = Ψ(z(t))

For each slot s, if ρ > vs(t)
ws(t)

& bs(t) ≤ (1−z(t))B

α(s)
�

T

t
X(τ)dτ

:

ρ = vs(t)
ws(t)



Et = {s | vs(t)
ws(t)

) ≥ ρ}
bid bs(t) where s = arg maxs∈Et

vs(t)

6.2 Evaluation using Real Bidding Data
Next we report some experimental results on evaluat-

ing bidding algorithms for multiple-slot auctions using
real bidding data. Due to the lack of publicly available
bidding dataset, we manually collected bidding prices
associated with each position from the Overture web-
page [1]. We launched an IE browser visiting Overture
view bids website, refreshing the webpage periodically
and downloading bidding data from it. Due to the web-
site’s anti-frequent-crawling policy, we had to periodi-
cally answer Turning tests to keep the crawling process
alive. We managed to download data for about two
weeks, for one of the most dynamic and expensive key-
word “auto insurance.” Each time period is about 1
minute which roughly corresponds to the rate at which
bids change. There are totally T = 1842 distinct time
periods in our collected data.

For the experiments, we use B = 1000 and three dif-
ferent values V = 8.0, 10.0, 12.0. We evaluated both
the profit-maximizing and revenue-maximizing strate-
gies with and without sniping. 6 For all these exper-
iments, we use U = V/bmin − 1 for profit maximiza-
tion and U = V/bmin for revenue maximization, and
bmin = 0.9. The lower bound L is optimized for each in-
stance without sniping, and it remains the same for the
sniping version. It turns out that tuning the parameter
L makes a significant difference. If we choose L = 0.1
for profit maximization, we will get less than 50% per-
formance without sniping and about 70% with sniping.
However, with L tuned and fixed for the non-sniping
case, we get much better results.

Since results are very similar for different parame-
ter values, we summarize them in Table 1. For all the
examples we run, sniping improves the bidding perfor-
mance significantly while exhausting the budget . Ta-
ble 1 seems to tell us, for almost all values, with para-
meter tuning of L, the performance ratio (ALG/OPT)
is around 70%-75% without sniping, and 90%-95% with
sniping.

7. CONCLUDING REMARKS
The algorithms in the paper can be extended to the

general case where there are multiple keywords and each
keyword has multiple positions. The competitive ratio
would now have V replaced by Vmax, where Vmax is the
maximum valuation for all keywords.

We use worst-case competitive analysis, comparing
our bidding strategy with the omniscient bidder who

6We also need to know X(t) and α(s) for comparison
purposes. For simplicity, we set X(t) = 1 and α(s) =
1 − sd for a small constant d for all the experiments.
Other reasonable values of X(t) and α(s) lead to similar
results and omitted.

Profit-Maximization Bidding Algorithm
ALG budget ALG

V OPT ALG/OPT left ALG/OPT
(sniping)

8 3779 2751 225.5 3541
73% 94%

10 4974 4059 116.1 4607
82% 93%

12 6169 4463 240.8 5842
72% 95%

Revenue-Maximization Bidding Algorithm
8 4779 3627 195 4505

76% 94%
10 5974 4235 236 5565

71% 93%
12 7169 5081 240 6701

71% 93%

Table 1: Performance on “Auto Insurance” for
both profit and revenue maximizations.

know everything in advance. In practice, other bidders
do not behave in the worst-case but bid according to
their own strategies. It would be interesting if one could
attain bidding algorithms with better performance with
the capabilities to learn other agents’ bidding strate-
gies or bidding price distributions. Incorporating pre-
vious work on stochastic knapsack problems together
with average-case analysis (e.g. Lueker [22]) might be
an essential ingredient. In a companion paper [31], we
try to address these problems.

There is a small gap of 1 in the lower and upper
bounds for the competitive ratio of the Online-MCKP.
As an open problem, it will be nice to close the gap.
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