

A Systematic Approach for Improving the Quality of IT Data

Martin Arlitt, Keith Farkas, Subu Iyer, Preethi Kumaresan, Sandro Rafaeli
HP Laboratories
HPL-2008-83

Keyword(s):
data assurance, data quality, automation

Abstract:
Efforts to reduce the cost of ownership for enterprise IT environments is spurring the
development and deployment of data-driven management tools. Yet, IT data is imperfect and
these imperfections can lead to inappropriate decisions that have significant technical and
business consequences. Current responses to imperfections in IT data are ad-hoc and incremental
owing to limited awareness of the problem and to data quality being an indirect business goal. In
this paper, we begin by raising awareness of the imperfect IT data problem through examples of
the imperfections that occur, and a discussion of their causes and implications on IT management
tasks. We then introduce a systematic approach for addressing such imperfections. Our approach
allows best practices to be readily shared, simplifies the construction of IT data assurance
solutions, and allows context-specific corrections to be applied during the time it takes fixes to
underlying imperfection causes. We demonstrate the value of our solution through two case
studies. For example, it is being used in an ongoing capacity planning effort, and reduced the
(human) planner's time requirements by ≈3x to ≈6 hours, while enabling him to evaluate the data
quality of ≈5x more applications and for 9 rather than 1 imperfection type.

External Posting Date: July 6, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: July 6, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

A Systematic Approach for Improving the Quality of IT Data

Martin Arlitt
HP Labs

martin.arlitt@hp.com

Keith Farkas
†

papers@tktk.org
Subu Iyer

HP Labs

subu.iyer@hp.com

Preethi Kumaresan
†

UCSC

shakthi@soe.ucsc.edu

Sandro Rafaeli
HP

sandro.rafaeli@hp.com

ABSTRACT
Efforts to reduce the cost of ownership for enterprise IT en-
vironments is spurring the development and deployment of
data-driven management tools. Yet, IT data is imperfect
and these imperfections can lead to inappropriate decisions
that have significant technical and business consequences.
Current responses to imperfections in IT data are ad-hoc
and incremental owing to limited awareness of the problem
and to data quality being an indirect business goal. In this
paper, we begin by raising awareness of the imperfect IT
data problem through examples of the imperfections that
occur, and a discussion of their causes and implications on
IT management tasks. We then introduce a systematic ap-
proach for addressing such imperfections. Our approach al-
lows best practices to be readily shared, simplifies the con-
struction of IT data assurance solutions, and allows context-
specific corrections to be applied during the time it takes
fixes to underlying imperfection causes. We demonstrate the
value of our solution through two case studies. For example,
it is being used in an ongoing capacity planning effort, and
reduced the (human) planner’s time requirements by ≈3x to
≈6 hours, while enabling him to evaluate the data quality of
≈5x more applications and for 9 rather than 1 imperfection
type.

1. INTRODUCTION
A continuing trend in enterprise computing is automating

the management of the information technology (IT) infras-
tructure. This focus is driven by the recognition that the
management of this infrastructure accounts for more than
half of enterprise IT budgets [7]. Many automation tools
are being introduced including tools for consolidating exist-
ing applications on to fewer servers to save recurring costs,
tools for dynamically reallocating the IT resources to appli-
cations to meet business objectives, and tools for continually
monitoring the infrastructure to automatically identify and
diagnose problems.

Many of these solutions base their automated decisions on
data, which reflects the use and behavior of the IT infras-
tructure. Unfortunately, this monitoring data often contains
imperfections. Since poor quality data can lead to bad de-

∗This work was done while working for HP.
†

cisions, imperfect data can undermine the robustness and
erode the reliability of any automated, data-driven manage-
ment solution. Further, bad decisions distract users from
their business goals, introducing overhead and additional ex-
pense. Finally, too many bad decisions will reduce the will-
ingness of system administrators or management to (fully)
automate many tasks, impacting the perceived value of the
management solution.

The dynamics of current enterprise IT infrastructure com-
plicate the task of identifying data imperfections, correcting
the sources of them, and ensuring they do not reoccur. The
growing scale, adaptivity, and complexity of the infrastruc-
ture and the growing volume of data makes it increasingly
difficult for humans to ensure that data is properly collected
and to verify its correctness in a timely manner. In addi-
tion, the growing complexity of IT infrastructures reduces
the ability of humans to reason about the cause-and-effect
relationships between components in the IT infrastructure,
which can lead to cascading failures following an initial bad
decision. Finally, searching for imperfections in data is a
mundane task; human skills should be focussed elsewhere.

To address this problem, we argue there is a need for a
software layer that sits between the collectors (i.e., produc-

ers) of data and its consumers. This data assurance layer
is responsible for evaluating the quality of the data, correct-
ing imperfections, and reporting quantitative data-quality
measures. This layer captures best practice data assurance
techniques, thus making these techniques readily available
to all consumers. As such, this layer will free management
tool developers from creating point solutions to individual
data imperfections, an ad-hoc approach that reduces over-
all robustness and limits the sharing of developed solutions.
The information gleaned by this layer about the imperfec-
tions in a data set can assist in identifying the root causes.

In this paper, we focus on chronologically ordered se-
quences of IT utilization data, that is, IT data. As we will
demonstrate, IT data is the basis for a number of important
IT management tasks. Through this focus, we raise aware-
ness about the emerging and significant problem in enter-
prise computing that is arising from poor quality monitoring
data. There is a common misperception that data is “per-
fect” or that the imperfections are harmless, and thus this
important topic has not received much attention in the sys-
tems research community. In addition, we provide domain
knowledge about the nature of some common imperfections

in IT data. Such knowledge is required as a foundation for
establishing generally acceptable practices for using IT data
in spite of its imperfections. Finally, we discuss our imple-
mentation of a data assurance layer for IT data. Although
we focus on IT data, our solution can be extended to ad-
dress other forms of monitoring data (e.g., event streams).
Data consumers, data providers, and developers of IT mon-
itoring tools and automation tools can benefit from these
contributions of our work.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces several use cases that demonstrate the im-
portance of IT data in enterprise environments and the need
for data assurance. Section 3 addresses commonly raised
questions about the need for data assurance. Section 4 dis-
cusses the types of imperfections that exist in IT data. Sec-
tion 5 describes our solution for systematically addressing
such imperfections while Section 6 explains the benefits of
our solution through a set of (empirical) case studies. Fi-
nally, Section 7 discusses related work, and Section 8 con-
cludes with a summary and our future directions.

2. USE CASES
To set the context for our discussion on IT data imperfec-

tions, in this section we describe several important examples
of how IT data is used by enterprise management tools. IT
data will play an even greater role in the future, as more
management tasks are automated, thus increasing the im-
portance of IT data quality.

2.1 Capacity Planning
The role of capacity planning is to ensure adequate IT re-

sources are available when they are required by the business
processes they support. At times, additional resources may
be required to satisfy increased demands. Capacity planners
seek to ensure that these additional resources are available
‘just in time’; if the resources are purchased too soon, costs
are incurred that could have been delayed, while if the re-
sources are not acquired in time, revenues might be lost due
to the impact on business processes.

Due to the increased emphasis on reducing the cost of en-
terprise IT, the importance of capacity planning is greater
than ever. To improve the accuracy of capacity plans, empir-
ical data from all servers and applications is systematically
collected and stored in a database, on an on-going and reg-
ular basis. Periodically (e.g., once per month), a capacity
planning tool reads the data from the database and performs
a suite of analyses. In such evaluations, data imperfections
(see e.g.,Section 4), can significantly perturb the analysis re-
sults, thus impacting the planning efforts. We examine this
case more in Section 6.1.

2.2 Server Consolidation
A related activity to capacity planning is server consoli-

dation. To reduce management and license costs, the work-
loads from underutilized systems are merged onto a smaller
number of systems. The challenge is to understand how to
best consolidate the workloads.

Server consolidation is often performed as a consulting
service. Due to the size of most server consolidation exer-
cises (typically hundreds or thousands of servers are consid-
ered at a time), the data collection and analysis processes
are automated as much as is possible. As in the capacity
planning use case, empirical IT data is collected from each

server and stored in a database. Unlike the capacity plan-
ning use case, the collection phase may only last for a fixed
duration of time (e.g., one month). Once the collection is
complete, the consultant utilizes a tool or spreadsheet to
read the data from the database and perform a set of anal-
yses. Based on the results, the consultant recommends how
to consolidate the workloads onto a smaller set of servers,
and indicates whether using a small number of new, more
powerful servers would be more cost effective (over the long
term). Basing the recommendations on an analysis of em-
pirical data not only enables better recommendations, but
also gives the customer a customized recommendation. This
case is discussed further in Section 6.2.

3. BACKGROUND
In this section, we examine several commonly asked ques-

tions about the quality of IT data and the role played by
data assurance.

What is an imperfection? An imperfection is a ‘blem-
ish’ in the data that loses or otherwise obfuscates details of a
monitored system’s behavior. Typically, numerous different
imperfections coexist in a data set, which further obscures
behavioral details.

Why do imperfections matter? In general, poor qual-
ity data lessens confidence in any results, observations, or
conclusions drawn from that data. The specific implications,
however, depend on the types of imperfections, and how the
data is being used.

What causes imperfections? Two primary causes of
imperfections are complexity and change. IT environments
are growing in complexity with this complexity infusing the
monitoring infrastructure. For example, monitoring a web
portal may require agents to collect data not only about indi-
vidual software components (e.g., database server through-
put) but also across components (e.g., end-to-end respon-
siveness). This complexity increases the likelihood that the
monitoring infrastructure may not be correctly set up, or
that, following a change (e.g., a patch is installed), a com-
ponent will no longer work as expected. Even if the moni-
toring tools are thoroughly tested when they are developed
and installed, as the monitored IT infrastructure adapts to
changes in the business needs, new errors may occur, leading
to additional data imperfections.

Can’t the causes just be fixed? Once an imperfection
is noted, the logical next step is to fix its cause. However, in
enterprise environments, it often takes a non-trivial amount
of time to do this. Factors contributing to this delay include
identifying the likely cause, installing patches, and rigor-
ously testing patches before deploying them on production
systems. During this time, management tools must con-
tinue to use the imperfect data. Furthermore, any change
to the system (to the monitoring software or the monitored
hardware or software) has the potential to introduce new
imperfections into the data. Hence, addressing data im-
perfections must be a permanent part of any process that
utilizes IT data.

Why hasn’t this been solved before? Awareness of
imperfections in data is not new. Yet, to the best of our
knowledge, only ad-hoc solutions have been developed to
date in the IT management domain. There are many pos-

sible reasons. First, historically, monitoring data has not
played such a central role in the management of IT systems,
and thus a systematic treatment of imperfections was not
needed. Second, in enterprise IT environments, the con-
sumers of the data (people and tools) are typically not in-
volved in the collection and delivery of the data. Similarly,
the administrators of the monitoring infrastructure are not
involved in the operation of the IT infrastructure nor the de-
velopment of the monitoring tools. This approach reduces
the sharing of information about imperfections in the data,
and requires co-ordination to address the causes. Third,
the financial impact of poor data quality is often difficult
to quantify. This reduces the priority to invest in proper
solutions. Finally, when data quality issues are recognized
as problematic, ad-hoc and incremental fixes are developed
rather than a general solution to the problem. In the long
term, this approach is not sustainable nor desirable.

4. IMPERFECTIONS IN IT DATA
In this section we examine the types of imperfections that

arise in IT data, examine how they can be automatically
identified, and list possible correction techniques. For each
type, we present examples and discuss their causes. Al-
though some of the examples may seem obvious and/or triv-
ial (to a human), even the simplest imperfection may violate
an assumption (implicit or explicit) made by the designers of
the management tool that consumes the data. The result of
such a violation may be incorrect interpretation of the data,
unexpected behavior, or failure of a controlled system.

IT data reports how a computer system’s components
(e.g., CPU, memory, disk, network) are used over a period of
time. Numerous different types of measurements (metrics)
exist. Some metrics are specific to individual components,
such as the utilization of each individual CPU, or of the
bandwidth used on a particular network interface. IT data
may also include metrics that reflect how specific processes
or applications use these components. Other metrics sum-
marize the behavior of an entire category of components,
such as the average utilization of all CPUs in the system, or
the aggregate I/O rate across all disks.

A useful formalism for IT data is that of a time series,
which is a chronologically ordered sequence of values of a
variable or set of variables (a vector) [4, 14]. For our work,
we consider only regular time series where observations are
made at equally spaced intervals [4]. This type of IT data is
common. A regular time series can be thought of as a rect-
angular data set, where each row represents an observation,
and each column represents a distinct variable.

Based on our experience, imperfections in IT data can
be grouped into five generic types of imperfections; in the
remainder of this section, we discuss each of these in the
order they would most likely be encountered by a consumer
of the data (e.g., human or tool).

4.1 Formatting Imperfections
In order to have a software tool perform data assurance

tasks, it must be able to properly read and interpret the
data in each observation. There are two distinct classes of
data in each observation: the time stamp and the values for
each metric. Numerous imperfections can be identified at
this stage, from the time stamp format being inconsistent
with the expected format or values having a different type
than expected (e.g., an integer is expected but a string was

0
20
40
60
80

100

Oct 19 Oct 26 Nov 2 Nov 9

C
P

U
 U

til
 (

%
)

Figure 1: Missing data due to altered time format

recorded). Corrections at this initial stage may be difficult
to automate, as only the most basic assumptions are tested.

When working with time series, the ability to properly
interpret the time stamp for each observation is crucial.
Unfortunately, many different formats are possible for ex-
pressing the same date and time. While most are easily
interpreted by humans, software tools require a formal de-
scription in order to correctly extract the embedded infor-
mation. For example, the HTTP/1.1 protocol specification
requires compliant systems to recognize three different time
stamp formats [9]. Currently, there are no widely-adopted
standards to dictate which common format(s) enterprise IT
monitoring tools should use. As a result, tools may not
interoperate because of this problem alone.

Even within a homogeneous environment, imperfections
can occur. For example, the configuration of monitoring
software may be changed to provide additional functional-
ity, or to resolve a problem. Sometimes there are unexpected
side effects. Figure 1 shows a graph of CPU utilization from
a single enterprise server. In this case, data is missing be-
tween November 1st and 5th. The cause of the missing data
was a change in the time stamp format on the collector from
11/01/2004 (mm/dd/yyyy) to 01/11/2004 (dd/mm/yyyy).
As a result, the delivery mechanism (i.e., the provider),
which was statically configured to expect the first format,
failed to gather the data for November 1st because it ap-
peared to the delivery mechanism that the data the collector
was offering was from January 11th.

Eventually an administrator recognized this problem, re-
configured the collector to record time stamps using the orig-
inal format, and thus re-enabled the data flow to the central
repository. With a data assurance layer, system administra-
tors would be aware much sooner that a data interruption
had occurred. In addition, the data assurance layer could
assist the administrator in troubleshooting the cause.

4.2 Alignment Imperfections
The next task is to align each observation with its corre-

sponding expected interval. For example, if a data set starts
at midnight (00:00:00) and has an interval length of ten
minutes, we would expect to see observations at 00:00:00,
00:10:00, 00:20:00, and so on. In practice, many obser-
vations captured by IT monitoring tools are slightly mis-
aligned; e.g., 00:00:01, 00:09:59, 00:20:02, etc. These small
fluctuations are due to issues like system load. In situations
like this where the time stamps are ‘close’ to the expected
interval boundary (i.e., within ±t time units), then an ac-
ceptable correction might be to rewrite the original time
stamps to the expected ones. More significant misalignment
can occur with IT monitoring tools that align the obser-
vations of a data set to the time at which the collection
started. With such tools, it is possible to have two data sets
with time stamps that do not map to the same underlying
time series; for example, one data set has observations at

-10

-11

-12

Apr 4
0:0018:0012:006:00

Apr 3
0:0018:0012:006:00

Apr 2
0:00

O
ffs

et
 b

et
w

ee
n

lo
ca

lti
m

e
an

d
U

T
C

 (
ho

ur
s)

Figure 2: Incorrect and fluctuating UTC values

00:00:00, 00:10:00, . . . while the other has observations at
00:02:00, 00:12:00, This variation is particularly prob-
lematic when data sets from different systems are used to-
gether. When time stamps are moderately misaligned, such
as in this example, alternative correction techniques, such
as linear interpolation, might be applied. If the misalign-
ment is significant, as a last resort, the observation could be
discarded and treated as missing.

Another challenge for aligning observations to their cor-
responding expected intervals is adjusting for daylight sav-
ings. Since computer systems run continuously, time stamps
should ideally be recorded in UTC (Coordinated Univer-
sal Time). Many monitoring tools, however, record time
stamps in local time, which for many locations is adjusted
for daylight savings twice annually. Time zone conversions
are also problematic as time zone strings (e.g., GMT, UTC,
PST8PDT) are not correctly interpreted by all operating
systems. Consequently, a monitoring tool running on top of
two different operating systems may behave differently.

Aligning observations to UTC can eliminate occurrences
of missing or extra observations, as well as facilitate com-
parisons between different systems.1 Unfortunately, any tool
that manipulates the data can introduce imperfections that
were not in the “raw” data collected by the agents. Fig-
ure 2 shows two alignment imperfections introduced by the
delivery mechanism.2

This mechanism archived data from a number of servers
in the Central time zone, then generated a UTC time stamp
for each observation. Prior to the switch to daylight sav-
ings, there should have been a six hour offset between local
time on the server and UTC. As Figure 2 shows, an offset
of 12 hours was incorrectly calculated. In addition, Figure 2
shows four changes in the offset around the time that day-
light savings started: 12 to 11 hours, 11 to 12 hours, 12 to
11 hours, and 11 to 10 hours. There should have been only
a single change (from six to five hours).

Even when the conversion algorithm is correctly imple-
mented, the results of the conversion can be imperfect. This
can happen, for example, when the algorithm depends on ex-
ternally provided information about the time zone, its offset
from UTC, and when daylight savings starts and ends (if
daylight savings is observed). As mentioned, one problem
is time zone strings that are not ‘portable’ across operat-
ing systems. A second example is provided by Figure 3.
Figure 3 shows the results of a conversion algorithm for the
Hawaiian time zone, run on two different operating systems.
On the first operating system (OS1), the time zone rules
provided incorrect information, and the algorithm adjusted
for daylight savings nine hours too soon. OS2 provided the

1Time stamps must also be synchronized across systems.
2The dotted line in Figure 2 indicates a third imperfection
in the data (missing obvservations), that were also injected
by the delivery mechanism.

-10

-9

Apr 5
0:0018:0012:006:00

Apr 4
0:0018:0012:006:00

Apr 3
0:00O

ffs
et

 F
ro

m
 U

T
C

 (
H

ou
rs

)

OS1 starts daylight savings, 9 hours too soon.

OS2 correctly starts daylight savings.

OS1
OS2

Figure 3: Incorrect daylight savings change (each
dot represents the offset at the start of an hour)

correct rules, so the offset was adjusted at the appropriate
time. From this example it is possible to see how imperfec-
tions can be re-introduced into an environment. Even if the
time zone rules on OS1 were corrected to fix this particu-
lar imperfection, a similar imperfection could be introduced
the next time the rules are updated (e.g., the United States
recently decided to extend the length of daylight savings).

In both of these cases, the inconsistencies can impact a
decision reached by a management tool that correlates in-
formation gathered on different systems or that gathered
on a single system when daylight savings came into effect.
These inconsistencies, however, can be easily detected by a
data assurance layer if the layer knows when daylight sav-
ings began, the time zone in which the data was recorded,
and the expected UTC offset.

4.3 Missing Observations
Once the observations in the data set have been aligned,

the next task is to identify the missing observations. This
process requires meta-data about the time series; namely the
start and end times, and the interval length. Using this, it is
straightforward to step through the data set and determine
which, if any, observations are missing.

While identifying missing observations in regular time se-
ries is straightforward, determining the proper corrective ac-
tion to take is not. The first step is to narrow down on the
causes of any missing data. To do this, additional meta-data
is needed. For example, if the system was not running, or if
the monitoring agent was disabled, no data will be available.
Similarly, if the time stamps are based on local time, and
the monitored system is in a locality that observes daylight
savings, then there will be ≈ 1 hour

interval length
missing obser-

vations every spring. A key aspect of our work is therefore
to understand what meta-data is required, how can it be
obtained or inferred, and how should it be represented so as
to be useful to a data assurance layer.

To apply the best correction technique, it is important to
understand the cause of missing data. For example, if the
monitoring agent was disabled (e.g., to update its configura-
tion), and the system was believed to be operating normally,
then the data could be assumed to be Missing At Random
(MAR) [14]. In this situation, a statistical technique such
as Expectation Maximization (EM) could be used to fill in
the data [14]. Depending on how many (consecutive) obser-
vations are missing, different statistical techniques might be
applicable [11]. For example, if only a few observations are
missing, a simple technique like linear regression or imputa-
tion [1] might be sufficient; for larger numbers of missing ob-
servations, more sophisticated techniques, like EM, could be
invoked. In other situations, the observations are Not Miss-
ing At Random (NMAR), in which case other filling tech-
niques, such as direct modeling, are more appropriate [5].
For example, if the system was offline, one could impute

 0

 20

 40

 60

 80

 100

151413121110987654321

S
er

ve
r

Day

 Light lines show servers running OS version 1; black lines are servers running OS version 2.

Figure 4: Missing data due to multiple causes

(i.e., fill in) zero values for metrics such as CPU utilization
or network bandwidth, and use the last known value (i.e.,
last observation carried forward [8]) for metrics such as file
system capacity. Section 5.1.2 discusses statistical modeling
in more detail.

There are many reasons why observations may be missing
from a data set. In some cases, the observations are never
recorded by the agent on the monitored system. For exam-
ple, the agent may rely on the operating system kernel to
generate event traces of activity on the monitored system.
To minimize overhead, these events may only be retained
(i.e., buffered) for a short period of time (e.g., seconds or
minutes) [17]. If the agent does not use the events during
this period, lost observations (or inaccurate values) could re-
sult. Similarly, the delivery mechanism may fail to retrieve
the data recorded by the agent (before the agent deletes it
due to space constraints), thus making the data unavailable
to the consumer.

It is important to realize that not only are there many
causes of missing data, but that multiple causes are likely
to be present when examining non-trivial data sets. This
situation is illustrated in Figure 4 where the shaded region
shows the availability of IT data for 100 servers over a two
week period. As can be seen, there are a number of instances
of missing data (indicated by white space in Figure 4), which
would be problematic if the data set were used for any of
the use cases discussed Section 2.

There are several causes for the missing data. First, in
the early hours of day 4, no data is available for any of the
servers. The most likely cause of this gap in the data is
a failure with the delivery mechanism. Second, servers 3-7
are missing observations from day 4 through day 14. It ap-
pears that delivery was not re-established for these servers.
The black regions of the graph (e.g., servers 57, 93-96, 99
and 100) indicate another reason why observations may ap-
pear to be missing. These servers used a different version
of the operating system than the majority of servers in this
data set; some of the metric names differ between the two
versions of the OS. If the data consumer was not aware of
this difference, they would have had no observations for this
group of servers. Clearly, any decision reached using this
data set must take into account its quality. The data assur-
ance layer we propose would provide this assessment and,
when feasible, correct for the missing data.

4.4 Extra Observations
Extra observations can be detected in much the same way

as missing ones. Once extra observations have been discov-
ered, it is important to distinguish between duplicate and
multiple observations. A duplicate observation has identi-
cal values in all columns (i.e., for the time stamp and all

metrics). Multiple observations for an interval have identi-
cal time stamps, but different values for one or more of the
recorded metrics.

Correcting for duplicate observations is simple; any of the
observations can be retained, while the others are discarded.
Correcting for multiple observations also requires meta-data.
For example, if the observations were not aligned to UTC,
systems in locations that observe daylight savings will see
≈ 1 hour

interval length
intervals with multiple observations. In this

situation the proper correction is to align the observations to
UTC, in which case all of the multiple observations will be
retained. If the cause is not known, the observations could
be treated as duplicates if the values between the observa-
tions do not differ significantly, or the observations could be
dropped, and treated as missing. Which of these options is
used depends on how the data is being used.

The most common cause of extra observations we have
observed is abnormal behavior in the monitoring system.
Perhaps the most significant concern with duplicate data is
the overhead it adds to the data store at the central reposi-
tory. For example, we have observed multiple instances of a
delivery mechanism generating extra observations, as many
as 6,000 duplicates for a single observation. These dupli-
cates may also bias the results of certain data uses, if each
duplicate observation is treated as a unique one. The occur-
rences of multiple observations we have observed were also
due to unexpected behavior with the delivery mechanism.

4.5 Incorrect Values
The final type of imperfections we discuss are incorrect

values for the observed metrics. Some recorded values are
obviously incorrect; for example, values that exceed the min-
imum or maximum allowable value for a metric. In other
cases, we may have reason to doubt the correctness of one
or more values. For example, relationships may exist be-
tween variables (the total CPU utilization metric is the sum
of CPU utilization metrics of all applications running in an
observation); if the relationship does not hold for the values
in a specific observation, we may not know which value is
incorrect, but we can safely assume that at least one of them
is inaccurate. Finally, there may be values that appear ab-
normal but there is little substantiative evidence. Statistical
models can play a role in these cases.

When evidence exists that indicates a specific value or
set of values is incorrect, the value(s) can be discarded and
corrected using an applicable technique (as discussed under
missing observations). With “uncertain” values, the context
in which the data is to be used must be considered. For ex-
ample, in a capacity planning exercise where it is preferable
to be more conservative, uncertain values may be retained
but their presence noted for later investigation.

There are many obvious imperfections in IT data, such
as CPU utilization exceeding 100% or network bandwidths
exceeding the capacity of the interface. Many of these im-
perfections are introduced by the agents, or the mecha-
nisms on which they depend, such as kernel-generated event
traces [17]. Figure 5 provides an example where the individ-
ual values were not obviously wrong, but there was a prob-
lem with the data. In this graph, we evaluate the relation-
ship between the system-wide CPU time used and the CPU
time reported for all of the applications running on the sys-
tem. We would expect the residual for each observation pe-
riod r = systemwideCPUtime−

Pn

i=1
applicationiCPUtime

-600
-500
-400
-300
-200
-100

 0
 100
 200
 300

 0 20 40 60 80 100 120R
es

id
ua

l (
C

P
U

 ti
m

e
in

 s
ec

on
ds

)

Day

Figure 5: Relationship between metrics not upheld

to be close to zero, if all values are correct, and values are
available for all applications.

Figure 5 shows a system for which there are two significant
imperfections in the data.3 First, the large positive residuals
(and the periodic trend they reveal) indicate that at least
one application is not being recorded (properly). Second,
the large negative residuals indicate that in numerous inter-
vals, the data reports that the applications used significantly
more CPU time than the system-wide metric says was used.
The first of these imperfections is caused by a configuration
error; the latter by an error in the data collected by the
agent on the system, or by an underlying mechanism. Both
of these imperfections could have significant implications,
depending on how the data is to be used.

For example, if a capacity planner failed to account for
applications running on a system (as indicated by the pos-
itive residuals), the plan could oversubscribe resources on
the system, and result in service level violations. With the
system from Figure 5, up to 78% of the cpu time was un-
accounted for (233 of 300 seconds in the interval), making
oversubscription a distinct possibility. A capacity plan that
incorrectly considered erroneous values (i.e., the negative
residuals) would likely undersubscribe resources on the sys-
tem, which could result in an additional system being pur-
chased prematurely. For example, Figure 5 shows that on
three occasions, the applications running on the system re-
portedly consumed more than twice the available cpu time
(indicated by a residual of −600 seconds).

4.6 Summary
The five categories described in this section are sufficiently

general to capture all of the imperfections we have encoun-
tered in practice for regular time series. We are aware, how-
ever, that other categories may be required as new imper-
fections are discovered and classified, or as other types of
data (e.g., event logs) are considered. In addition, it may
be beneficial to consider other taxonomies. Although it may
be possible to correct for the occurrence of (some) imperfec-
tions, we believe this should only be done as a temporary
solution, until the underlying cause can be fixed.

5. AN IT DATA ASSURANCE SOLUTION
In this section we present our data assurance solution for

IT data. Section 5.1 discusses our approach, and Section 5.2
describes our implementation. To make the problem more
tractable, our work to-date has focused on supporting data
consumers that perform offline analysis of time series-based
IT data. As we have already demonstrated and will reaffirm
in the remainder of the paper, many important functions for

3The interval length in this data set was 300 seconds.

managing enterprise IT environments fall into this category.
We plan to address other data requirements (e.g., real-time,
event-based, etc) as part of future work.

5.1 Approach
Our solution has been influenced by work we have done

with developers and users of management tools for enterprise
IT environments, helping them prepare data for use by these
tools, understand the scope and significance of imperfections
in the data, and uncover the source of the imperfections.
This experience has taught us that data consumers require
the following properties of a data assurance solution:

• simple so as to gain the trust of users and not intro-
duce other possible failure points;

• repeatable so that the same imperfections are identi-
fied in the same data set each time it is processed, and
similar sets of imperfections are identified in similar
data sets;

• scalable to accomodate large volumes of data;

• flexible to support the different needs of data con-
sumers, and to allow expert users to fully customize
its behavior, while being transparent to other users;

• extensible to support adding new functionality.

A data assurance solution must also provide value to the
organization that develops it and maintains it. Any func-
tionality developed for a given data consumer must be read-
ily reapplied to other data consumers without significant
re-engineering. Hence the solution components must be
reusable and configurable. Similarly, deploying the solution
for a given data consumer should involve little or no re-
engineering of the existing functionality. Thus, the solution
components must also be readily composable.

In the remainder of Section 5 we describe how our solution
provides the noted properties. We begin by examining our
approach for detecting imperfections, correcting for them,
and assessing data quality.

5.1.1 Detecting Imperfections
To detect imperfections, we use a rule-based approach.

We chose this approach because it is intuitive and hence
easy to communicate, and because it is exact – there is no
ambiguity in whether a particular condition will violate a
rule or not. The rules test for violations of the properties
of the monitored environment and monitoring systems. For
example, one rule checks if the value of a metric (e.g., CPU
utilization) is within the range (e.g., 0-100%) defined by the
corresponding data collector. A second checks if the value of
a metric (e.g., memory usage) is inconsistent with the mon-
itored environment from which the data was gathered (e.g.,
an application reportedly used 300 MB of memory but the
system only has 256 MB). In both rules, meta-data is re-
quired; Section 5.2 discusses how this meta-data is obtained
and how it is represented. Table 1 provides additional ex-
amples along with possible correction techniques (discussed
in the next section). When available, additional informa-
tion is also taken into account. For example, if a system
was known to be offline for a period of time, missing val-
ues in this period would be noted as being expected and
appropriate (e.g., null) values will be generated.

Imperfection Required Example
type Test meta data corrections

Formatting time stamp or metric value is valid? expected data types interpolate row
Formatting correct number of metric values? expected number of metrics reject row
Alignment time stamp aligned to expected time series? expected begin time and time step interpolation or rewriting
Alignment correct time zone conversions? source time zone, UTC offset, daylight sav-

ing time
reject data row

Missing
observations

irregular time stamps? missing values? expected time series properties, number of
metrics

imputation or interpolation

Incorrect
values

value outside expected range for metric? set of acceptable values for metric set values to null

Incorrect
values

P

n

i=1
Mapplicationi − Msystem ≈ 0? relationships between metrics M interpolate values

Table 1: Examples of imperfection detection rules and applicable corrections.

Our rules are those that a skilled analyst would apply
when manually inspecting the data; the value of our ap-
proach is that any data consumer (human or tool) can sys-
tematically apply these rules across large volumes of data
while customizing corrections and applying data enrichments
(discussed in the next two sections). Thus, the expertise of
a small set of analysts can be leveraged by a much larger
number of consumers, in a cost effective manner. Section 6
reinforces these benefits.

We identified our rules by examining a number of data
sets, frequently after a data consumer had complained about
suspicious data. As this approach is time consuming and re-
active rather than predictive, we are exploring extending our
solution to include statistical techniques for identifying po-
tential imperfections. One such technique is using statistical
models to detect probabilistic outliers. A key challenge is
identifying those techniques that are applicable to IT enter-
prise data, and which exhibit good repeatability and are not
very complex.

5.1.2 Correcting Imperfections
To correct imperfections we use a number of approaches,

many of which were requested by the developers of man-
agement tools with whom we have worked. We currently
offer three basic approaches: deleting a data row or a data
value, regenerating a row or a data value, or rewriting a time
stamp. Table 1 illustrates some example mappings between
these approaches and the imperfection-detection rules shown
in the table. To regenerate a row or a data value, we use
imputation (e.g., replace missing values of a metric with the
mode of the metric’s observed values, or set incorrect val-
ues to zero) and linear interpolation. While our rule-based
approach enables us to be exact in our detection of (known
types of) imperfections, corrective techniques are more sub-
jective. In general, it is not possible to turn imperfect data
into perfect data. We expect data consumers to use these
techniques in conjunction with our data quality measures
and individual data point meta-data (see Section 5.1.3) to
make an informed decision about how to use the data.

As an initial attempt to identify more accurate corrective
techniques, we investigated several statistical techniques for
modeling IT data. To illustrate how such models may be
used, we consider briefly the problem of filling in missing
values. A number of models are commonly used for analyz-
ing time series, including the Auto Regressive model, Mov-
ing Average model, and Auto Regressive Moving Average
model [6]. While these models are desirable owing to their
relative simplicity, they are not suitable for modeling non-
stationary time series [6]. Unfortunately, metrics in IT data

 0

 10

 20

 30

 40

24:0018:0012:006:000:00

C
P

U
 U

til
iz

at
io

n

empirical values
predicted values

Figure 6: Missing-value prediction (GARCH model).

such as CPU utilization typically exhibit non-stationary be-
havior. For such metrics, more sophisticated such as the
Generalized Auto Regressive Conditional Heteroskedastic-
ity (GARCH) model [3] are required.

Figure 6 provides an example of the predictive ability of
the GARCH model applied to missing CPU utilization data.
In this example, a 22 week-long trace of CPU utilization data
from an SAP system was used. The CPU utilization values
of the fourth Sunday were removed from the trace. The
GARCH model was trained on the remaining data and the
parameters of the model were identified. Once the model
was built, it was used to predict the CPU utilization values
for the fourth Sunday. Figure 6 plots the predicted values
along with the actual values. Visually, the predicted values
follow the actual values that were removed from the trace
reasonably well, and are obviously better than simple impu-
tation or linear interpolation, for a gap of this duration.

While the apparent agreement in this case suggests the
model is promising, a number of challenges exist for apply-
ing it in practice in a data assurance solution. First, the
model has seven parameters which must be estimated. In
our experiments, we found the choice of parameter values
noticeably impacted the model’s predictions. Hence, given
that the use of such a model in a data assurance solution
would require automatic estimation of the parameters, it re-
mains unclear whether the model would meet our repeata-
bility design objective. A second challenge is that such a
model demands strong periodic trends in the data, but such
trends are not always present. For these reasons, we have
not yet employed any (significant) goodness of fit tests. Fi-
nally, relatively complex models appear to be required to
model IT data, thus challenging our simplicity design ob-
jective. However, if a statistical technique is deemed useful
for a task in this domain, it can be implemented and utilized
as part of our data assurance solution.

In summary, we have examined a number of statistical
techniques for the purpose of corrective data-generation. As

expected, we found that improvements are possible over the
simple techniques that we currently use, but that they come
at a cost. While there are undoubtedly other statistical
techniques that could be better suited for this role, we argue
that the correction of data should never be used in place of
permanent resolution of the sources of imperfections.

5.1.3 Assessing Data Quality
Our goal in assessing data quality is to provide the con-

sumer with information they can use to make an informed
decision on whether or not to use parts or all of a data set.
When the consumer is a management tool, this means pro-
viding quantifiable measures of the data quality.

Our solution provides data consumers with two mecha-
nisms for assessing data quality. First, it provides measures
that quantify the occurrences of imperfections. To assess the
overall goodness of a data set, we currently use the metric
q = 1 − number of observations with imperfections

expected number of observations
, where values

close to 1 indicate “high” quality data, and values signifi-
cantly less than 1 indicate data of much poorer quality. This
metric provides data consumers with a basis for deciding
whether to use the data. Secondary measures are provided
to assist in this process. These quantify the occurrence of
specific imperfections globally as well for individual metrics,
such as the number of missing data values and the number
of inconsistent metric values.

The second mechanism provided by our data assurance
solution is notations that are attached to the data values in
a data set that violated a rule. These indicate the rule that
was violated and the corrective action taken, information
that a data consumer can use to assess on a value-by-value
basis whether a data point should be considered.

5.2 Implementation
There are multiple ways a data assurance solution could

be implemented, including incorporating the necessary logic
into each management tool or incorporating the domain
knowledge into a set of libraries that are leveraged by each
tool. However, these approaches require modifying existing
management tools and complicate incorporating new data
assurance features. Hence, our preferred solution is a dis-
tinct tool that can be readily used by existing and new man-
agement tools. The data assurance tool applies the approach
discussed in Section 5.1 to cleanse the “raw” data and an-
notate it with data quality measures and notations. This
cleansed data is then used as input to the consumer’s nor-
mal tool chain.

Figure 7 provides a conceptual view of our data assurance
tool. The tool sits logically between a data provider and a
data consumer. It comprises a set of optional translators
and a number of configurable modules. For each unique
type of data source, a translator is written to convert the
data into a standard format that uses a specially-designed
trace language to capture the meta-data. The translator also
provides meta-data about the metrics provided by the data
source, such as data types and defined ranges for values.

The tool supports two classes of modules: data assur-
ance modules and data enrichment modules. While our fo-
cus is on data assurance, data consumers often require a
set of common data preprocessing functions (e.g., deriving
one metric from another one), and such functions are natu-
ral counterparts to data assurance functions. Each module
reads the data and meta-data that is captured in the stan-

Cleansing
or

Enrichment
Module

Cleansing
or

Enrichment
Module

Translator
(optional)

Data
Provider

Data
Consumer

Translator ...

Orchestrator

Data Assurance Tool

Figure 7: Conceptual view of data assurance tool

Health monitoring

Capacity planning

Server consolidation

Data and
meta−data

summary
Statistical

Projection

Merge traces

tests

Missing/extra
observations

test

test
Out of range

test

Derive
metrics

data assurance

data enrichment

Time stamp

Correlation

Example Uses

Figure 8: Conceptual view of a workflow template

dard format, applies its specific cleansing or enriching func-
tions to it, and writes the data and corresponding meta-data
out, again, using the standard format. For those consumers
that are unable to read the standard format, a second trans-
lator is used to transform the cleansed data from the stan-
dard format to the format required by the consumer. In
this situation the meta-data about the cleansed data must
be shared with the consumer via an alternative method, such
as a separate file or database table.

Our current solution includes modules that implement the
rules described in Table 1, the corrections and quality mea-
sures described in Sections 5.1.2 and 5.1.3. It also includes
a module that merges related data sets, a function that is
often required for rules that consider relationships between
metrics. Two other enrichment modules derive new metrics
from existing metrics: one computes statistical summaries
while the second evaluates an algebraic expression whose
terms are constants or other metrics. Finally, another mod-
ule projects a data set forward in time, a function that can
be used in capacity planning and server consolidation.

The order in which the modules are called and their con-
figuration parameters are defined in a workflow description,
which is implemented by the orchestrator (see Figure 7).
We have created a small number of standard workflow tem-
plates, which are easily customized to generate a workflow
for each data consumer. Figure 8 presents a conceptual view
of a multi-purpose workflow template that can be used for a
number of uses including capacity planning (requires sum-
mary statistics), health monitoring (requires cleansed data),
and server consolidation (requires projected data).

As with the meta-data about a data set, the configuration
parameters of each module in a workflow are described using
our trace language. Hence, the trace language is used to
describe such information as the format of each observation
(e.g., time stamp format, number and type of metrics), the
parameters of the expected time series (e.g., start time, time

meta-data describing metrics present in the input trace,
namely metric name, data type, and context for metric
metric-defn, DATETIME, type=DAY-TIME
metric-defn, CPU-UTIL, type=float, system=foobar.com

statements commanding the cleansing module to
perform a range check on CPU-UTIL and set values
not in range to zero; also check generate missing values
output, DATETIME, input, isTimeBase,missing:interpolate
output, CPU-UTIL, check:0:100:set-to-zero,missing:set-to-zero

meta data describing the input trace
data-row-separator, character=’,’
fields, DATETIME, CPU-UTIL
trace, type=regular-time-series, start-time=.., end-time=.., ...

data rows fed into check module
2005-02-01 12:05:00, 15.61
2005-02-01 12:10:00, 100.66
2005-02-01 12:20:00, 10.66

corresponding output from cleansing module, which includes
meta-data for each metric value (see mFlag columns)
fields, DATETIME, mFlag, CPU-UTIL, mFlag
trace-type, type=regular-time-series, start-time=.., end-time=.., ...
2005-02-01 12:05:00,, 15.61 ,
over range CPU value (vL) flagged & set to zero (stz)
2005-02-01 12:10:00, 0, vL:stz
row was missing (vM), values generated via interpolation
(int) or set to zero (stz) and flagged
2005-02-01 12:15:00, vM:int, 0.0, vM:stz
2005-02-01 12:20:00,, 10.66,

Figure 9: Trace language examples

zone, interval length), the parameters of the input data set
(e.g., start time, end time, time zone), the expected ranges
for the metrics of interest, the relationships between metrics,
and the types of tests to be applied to each metric in a
data set. In addition, the trace language describes meta-
data about individual data points, such as whether the data
point is null, whether it failed an imperfection test, and if
so, what corrective action was taken. Figure 9 gives some
example of trace language statements.

Data quality measures are computed by the individual
modules as they execute a workflow and by the orchestra-
tor using the imperfection records each module produces as
it executes. These measures are provided to the consumer
along with the data.

5.3 Summary
Our data assurance tool captures experience-based prop-

erties required by data consumers and tool developers. It is
conceptually simple and provides repeatable results owing
to the use of a rule-based approach and intuitive corrective
techniques. It is scalable in that it can handle the large vol-
umes of IT data required by management tools in a much
shorter period of time than could any person.4 It is flexible
and extensible, as new modules can be quickly developed or
extended. Since IT data is required in an ongoing manner,
the small development and maintenance costs can quickly
be recovered. In the next section, we present several use
cases that put these benefits in a business context.

6. CASE STUDIES

4Although we currently use a single instance of the tool to
cleanse all N observations in a data set, the nature of many
IT data sets allows for parallelized cleansing, should further
scaling of the data assurance process be required.

Table 2: Impact of invalid values on capacity plan.
Date& Time CPU Utilization (%) CPUs required

Sep 2, 11:30am 100.18 16.03
Sep 2, 9:30am 100.09 16.01
Sep 24, 9:50am 100.05 16.01
Sep 21, 5:10am 99.86 15.98
Sep 30, 7:30am 99.40 15.90
Sep 11, 4:00pm 1.59 0.25

In this section we describe how the generality of our data
assurance solution is useful in conjunction with enterprise
management tools. We provide detailed examples around
capacity planning and server consolidation.

6.1 Capacity Planning
As noted in Section 2.1, capacity planning is an on-going

management task in enterprise computing environments. In
the recent past, we worked with a planner who is responsible
for overseeing resource usage of applications running in a
Shared Application Server Utility (SASU). In this utility,
capacity planning is done each month using data collected
every 5 minutes reflecting each system’s and application’s
CPU and memory utilization. From the data, maximum,
average, and 90th percentile values are computed for each
application and system. Reports are then generated that
detail such factors as the CPU and memory usage of each
application, the unallocated capacity of each system, and
the projected growth in resource needs of each application.
Using these reports, the capacity planner determines the
new resource entitlements for each application, on which
system to deploy new applications, and whether the utility
is running out of capacity.

Among the characteristics used in the capacity planning
decision was the maximum CPU utilization of each applica-
tion. When our collaboration began, the planner was aware
of a type of imperfection that had a significant and detri-
mental effect on the capacity planning results. On occa-
sion, these values were significantly greater than the typical
values. Obviously, if these large values reflected the actual
application behavior they needed to be included in the plan-
ning decisions. However, if these values were erroneous, they
should not be considered, as it would (at best) result in the
capacity planning algorithm dedicating too many resources
to the application, resulting in an under-utilized system, and
(at worst) would trigger the premature purchase of an ad-
ditional system.

Table 2 provides empirical data points to illustrate the
impact of erroneous values on the capacity plan for CPU
assignments. Table 2 shows the six largest CPU utilization
values (out of 8,640) for the month of September for one of
the managed applications. The top five values all suggested
the application required a full 16 CPU server. However, if
these five values were ignored, the application only required
one quarter of a CPU.

As a result of this type of behavior, the planner was spend-
ing ≈ 20 hours per month to manually examine the IT data
for each of the 4 production systems and 75 applications.
Neither the developers nor the providers had processes for
systematically detecting or removing this problem.

Figure 10 shows the CPU time used over a four month

 0
 50

 100
 150
 200
 250
 300
 350
 400

120100806040200C
P

U
 ti

m
e

in
 s

ec
on

ds
Day

examples
of suspicious

values

Figure 10: CPU time data for one application

period by one of the SASU applications.5 In this figure,
there are nine intervals where the CPU time value appears
to be erroneous. Unfortunately, this figure does not shed
any light on why these values occur. However, when we
apply the negative residual test (Figure 5 shows the results
of this test for all applications in this data set), we find that
all nine of the suspicious values overlap with an interval that
there was a large negative residual. In other words, the nine
suspicious values are all incorrect, the result of a collection
error. If these erroneous values are ignored, the maximum
CPU time required for this application drops from 308 to 34
seconds per interval,6 a reduction of almost 90%.

In addition to automating the discovery and correction of
this type of imperfection, our data assurance solution pro-
vides a much more scalable and cost effective method for
checking the IT data. Since our initial involvement, SASU
has expanded to support 395 production applications run-
ning on 30 large multi-processor systems. This results in
more than 7,000,000 metric values each month, a number
that cannot be manually processed in a timely and cost ef-
fective manner.

Our involvement with the SASU project demonstrated
several other benefits of our solution. First, using only a
remote JDBC connection to the provider’s data repository,
we were able to examine the SASU data, and identified eight
other types of imperfections. Second, we were able to im-
plement the specific corrections the planner requested for
each type of imperfection that had a significant impact on
his work. We implemented corrections for all but the “posi-
tive residual” imperfection, although we do alert the planner
to it. The corrected data is written to a separate table in
SASU’s database; the planner simply uses the data from this
new table in his planning. Third, we enabled an “expert” in
data imperfections to provide a customized solution to the
planner, without requiring the planner to understand how
to implement a module. At the same time, the expert was
able to quickly create this customized solution, as existing
modules could be reused.

Presently, the planner spends ≈ 6 hours per month on
data quality issues, mostly reviewing the list of imperfec-
tions identified by our solution. This represents a time sav-
ings of ≈ 3x, with the planner now responsible for ≈ 5x
more applications. Furthermore, through improved summa-
rization of the detected observations, the planner will be able
to support more applications in less time in the future. In
one three month period our solution identified and corrected
16,181 imperfection observations, 14,876 of which were miss-
ing, 872 were extra, and 411 with inconsistent metric values
(297 of these were identified with the negative residual test).
Perhaps the best indication of our value though, is that our

5CPU utilization = CPU time
interval length

.
6Only 300 seconds is available per interval for all applica-
tions on the system.

data assurance solution is now an integral part of the SASU
capacity planning process.

We have also used our data assurance solution in several
other capacity planning exercises. In these cases, IT data
comes from different providers. With our modular approach,
all that is required to couple these sources to our solution
is the creation of a translator. Since capacity planning ex-
ercises are typically ongoing, the short-term cost of imple-
menting the translator (or modifying an existing translation
module) is far outweighed by the long-term value obtained
by a generalized data assurance solution for enterprise man-
agement tools.

6.2 Server Consolidation
As discussed in Section 2.2, server consolidation exercises

are often performed by consulting firms. These firms are
faced with several challenges when participating in these ex-
ercises. First, they need their recommendations to be as ac-
curate as possible. If the recommendation is too aggressive,
the consolidation may be unsuccessful, resulting in problems
such as dissatisfied customers and damage to the firm’s rep-
utation. If the recommendation is (overly) conservative, the
firm may lose the project to a competitor. Second, con-
sulting firms rely on different consultants to perform the
studies and create the recommendations. To ensure consist
recommendations, best practices must be adhered to. Data
quality can obviously impact both of these; as a result, a
data assurance solution helps.

Although we have not used our data assurance solution
in an actual server consolidation exercise, we do have two
(empirical) data sets that were collected for such purposes.
In this section we use these data sets to demonstrate how
a data assurance solution could enable a consulting firm to
address the challenges described above.

For this case study, we consider a hypothetical consult-
ing firm that provides server consolidation recommendations
to enterprise customers. Since the firm is aware that poor
quality data will lead to poor(er) recommendations, the firm
institutes the following data quality policies:

• duration: at least one week of IT data (overlapping in
time with other servers) must be available for a server
to be included in the study.

• frequency: observations must be recorded once per
hour for each server.

• coverage: at least 90% of the expected observations
must be available to include a server in the study.

In other words, for a server to be included in the exercise,
observations must be available once per hour per server for
the same one week period, with no more than 10% of the
expected observations missing.7

Figure 4 shows the first set of servers to be considered for
consolidation. In this case, the first two policies hold for
all 100 servers. However, 10 servers fail to satisfy the third
constraint; servers 1-7 are missing ≈ 75% of the expected
observations, while servers 48, 70 and 80 are missing slightly
more than 10%. In this case, the consultant could exclude

7This set of policies is simple by design. An actual set would
require policies about a range of other constraints. Similarly,
the values used in this example are for illustrative purposes
only.

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200
 220

87654321

S
er

ve
r

Day

White space indicates no data was collected.

Figure 11: Data coverage in a consolidation data set

these 10 servers, and provide a recommendation on how to
consolidate the remaining 90 servers using two weeks of data.
Alternatively, the consultant could use only the first week
of data (which still satisfies all three policies), in which case
only servers 1-7 would be excluded.

Figure 11 shows a data set that clearly should not be used
for providing a consolidation recommendation. Although
the data set “passes” the duration requirement (loosely speak-
ing), it fails both the frequency and the coverage require-
ments. In fact, all 220 servers would be excluded by the
firm’s quality requirements.

Our data assurance solution would benefit a consulting
firm in several ways. First, the modules could be written
(or customized) once by a single expert user, then used by
all of the consultants. This would ensure that the firm’s data
quality policies are consistently applied in all server consol-
idation exercises. Second, the firm could establish policies
for recording information about the types of imperfections
encountered in the data collected in each customer engage-
ment. This would enable a single expert within the firm to
revise the modules as new imperfections are encountered, in
order for all recommendations to continue to meet the data
quality requirements. Since the data is typically stored in
a database, our solution could easily be integrated into the
firm’s existing process (just as we described in Section 6.1
for SASU).

A third benefit is that selected modules could be invoked
periodically during data collection at each customer site.
For example, a consultant could set up a daily cron job to
automatically verify that the data collection is proceeding in
a manner that will yield data that meets the firm’s quality
requirements. If we consider the second data set, the consul-
tant could have been informed via email after the first day
that there were data quality problems, as data from only a
single server was being collected, and not at the expected
frequency. The consultant could take immediate action to
keep the project timeline from slipping. The firm’s data
quality expert could also develop modules to provide more
specific feedback on potential causes for data quality issues
so to further reduce the time needed to address them. For
example, on day 5 in Figure 4, the consultant could have
been informed that collection had not been reestablished for
servers 1-7, and thus the consultant could focus on them.

7. RELATED WORK
While many disciplines are aware of imperfections in data

and have developed techniques for addressing the problem,
in the IT management domain, we are aware of only ad-hoc
solutions. Although many of these techniques are relevant
to the IT management domain, challenges exist in applying
them, such as identifying those techniques that are suitable

yet do not add unnecessary complexity. Our work is focused
on these challenges. As data assurance requires a cross-
disciplinary approach, it is infeasible to describe all relevant
related work, or even list all domains that have attempted to
address data quality issues. We mention, however, existing
work that can be applied to the IT domain.

Applied mathematics and statistics offer many techniques
that may be leveraged but, as noted in Section 5.1.2, chal-
lenges remain in applying these techniques. For identifying
possible imperfections, we could, for example, utilize tech-
niques for identifying outliers or influential observations [15].

When data is missing, there are numerous filling tech-
niques, several of which we mentioned in Section 4. In order
to apply the appropriate filling techniques, we may need
to use additional techniques to determine if the data are
missing at random, missing completely at random, or not
missing at random [14, 13, 10]. Any or all of these tech-
niques could be implemented as modules in our solution.
Additional work is needed to determine which techniques
are most useful (and when), in dealing with imperfections
in IT data. Understanding the impact of imperfections on
the robustness of statistical techniques is an important as-
pect of this process [18].

In data mining, poor data quality can hinder the mining
process [2]. Anand et al. developed a data cleansing ker-
nel for data mining [2]. While the functionality provided
by their kernel could assist with cleansing IT data, we be-
lieve our solution is more flexible, as it does not require
consumers to run on a specific platform. Our work also pro-
vides domain knowledge for data quality issues in enterprise
IT environments, which is outside the scope of Anand et

al.’s work. Furthermore, our solution can provide a central-
ized view of the imperfections in IT data, which facilitates
greater sharing of domain knowledge.

Researchers in many domains, including social and health
sciences [1, 8] are aware of imperfections in the data they
use. Addressing data quality issues has been done in many
domains (e.g., [19]). Finding and correcting imperfections
in data with direct business uses has received significant
attention. For example, Experian offers a service to per-
form tasks such as address validation and de-duplication of
records.8 We have not, however, seen much formalism ap-
plied to IT system utilization data, which is why we have
been investigating this area.

Quantifying the quality of a data set is important, partic-
ularly as we move towards more automated uses of IT data.
Pipino et al. describe a number of types of quality metrics
that could be used [16]. Our approach uses one of these,
namely, a ratio, which we evaluate along multiple dimen-
sions (e.g., completeness of the data). Since quality is an
important aspect in many other domains, we expect there
are many other quality assessment techniques that we could
leverage. We plan to investigate these in future work.

Finally, data assurance requires knowledge about imper-
fections. We’ve adopted a rule-based approach as the rules
are simple, intuitive, and yield repeatable results, character-
istics we wanted in our solution. Their main disadvantages
include that they must be maintained, and they are inad-
equate for representing some types of knowledge and they
require knowing ahead of time this knowledge. Research
on capturing experience-based “deep-smarts” [12] is useful

8http://www.experianintact.com/

for addressing the former, while statistical methods could
address the latter.

8. SUMMARY
Automated management tools are playing an increasingly

important role in the management of enterprise IT com-
puting environments. Many of these tools and systems are
data driven, yet, as we have shown, IT data contains many
imperfections. These imperfections can lead to inappropri-
ate automated decisions that have significant technical and
business consequences. Despite these effects, the poor qual-
ity of IT data has received only limited attention, likely
because IT automation is placing new demands on IT data
and few automated solutions exist today. Where data im-
perfections has been encountered, ad-hoc quick-fix solutions
have been employed. However these limit the sharing of do-
main knowledge, impact the robustness of automation, and
impose unnecessary development/maintenance costs.

To address these problems, we examined the types of im-
perfections that exist in IT data, and their causes. In this
paper, we reported on this examination and discussed the
resulting implications. We developed a data assurance soft-
ware layer that provides mechanisms to systematically de-
tect and correct the imperfections. These mechanisms can
be programmatically invoked and customized to the specific
needs of data consumers (e.g., people and automated man-
agement tools). Further, our solution can be easily extended
to provide additional functionality. We have described our
solution and two case studies that demonstrate the benefits
of our approach. In one case, using our approach, a capacity
planner of Shared Application Server utility now spends ≈

3x less time on data quality issues while managing ≈ 5x more
applications and searching for 9 rather than 1 imperfection
type. In the other, a hypothetical company specializing in
server consolidation who improve the accuracy of their rec-
ommendations and the likelihood of winning contracts by
using our approach.

Our work makes three significant contributions. We raise
awareness of this emerging and significant problem in enter-
prise computing that will become more obvious as automa-
tion is increasingly adopted. Second, we provide domain
knowledge about the nature of some common imperfections
in IT data, and thus provide a foundation for establishing
generally acceptable practices for using imperfect IT data.
Finally, we present our initial implementation of a data as-
surance layer. These contributions benefit data consumers,
data providers, and developers of IT monitoring tools and
automation tools.

We believe data assurance for IT data represents a new
and important area of work, and presents many open issues
and research opportunities. Some of the unanswered ques-
tions include: what mechanisms can be used to quantify
uncertainty? what techniques are required to automatically
cleanse other types of data? what meta-data is required
to enable this cleansing? how can we build systems and
management applications differently so as to lessen the oc-
curence of imperfections? We invite other researchers to
help us address these many open issues.

9. REFERENCES
[1] P. Allison. Missing Data. Sage Publications, Thousand

Oaks, CA, 2001.

[2] S. Anand, B. Scotney, M. Tan, S. McClean, D. Bell,
J. Hughes, and I. Magill. Designing a kernel for data
mining. IEEE Expert, 12(2):65–74, March-April 1997.

[3] T. Bollerslev. Generalized autoregressive conditional
heteroskedasticity. Journal of Econometrics, 31:307 –
327, 1986.

[4] G. Box and G. Jenkins. Time Series Analysis:

Forecasting and Control. Holden-Day, San Francisco,
CA, 1970.

[5] H. Brown. Protecting against nonrandomly missing
data in longitudinal studies. Biometrics,
46(1):143–155, March 1990.

[6] C. Chatfield. The Analysis of Time Series: An

Introduction. Chapman and Hall, sixth edition, 2004.

[7] T. Chou. The End of Software: Transforming Your

Business for the On Demand Future. Sam’s
Publishing, Indianapolis, IN, 2004.

[8] P. Diggle, P. Heagerty, K.-Y. Liang, and S. Zeger.
Analysis of Longitudinal Data. Oxford University
Press, Oxford, UK, 2002.

[9] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
transfer protocol – HTTP/1.1, 1999.

[10] D. Heitjan and S. Basu. Distinguishing missing at
random and missing completely at random. The

American Statistician, 50(3):207–213, August 1996.

[11] G. Latini and G. Passerini. Handling Missing Data.
WIT Press, 2004.

[12] D. Leonard and W. Swap. Deep Smarts: How to

Cultivate and Transfer Enduring Business Wisdom.
Harvard Business School Publishing, Boston, MA,
2005.

[13] R. Little. A test of missing completely at random for
multivariate data with missing values. Journal of the

American Statistical Association, 83(404):1198–1202,
December 1988.

[14] R. Little and D. Rubin. Statistical Analysis with

Missing Data. John Wiley and Sons, Ltd, New York,
NY, 1987.

[15] D. Pena. Influential observations in time series.
Journal of Business and Economic Statistics,
8(2):235–241, April 1990.

[16] L. Pipino, Y. Lee, and R. Wang. Data quality
assessment. Communications of the ACM,
45(4):211–218, April 2002.

[17] R. Sauers, C. Ruemmler, and P. Weygant. hp-ux 11i

tuning and performance. Prentice Hall, Upper Saddle
River, NJ, 2004.

[18] R. Tweedie, K. Mengersen, and J. Eccleston. Garbage
in, garbage out: Can statisticians quantify the effects
of poor data? Chance, 7(2):20–27, Spring 1994.

[19] P. Westerman. Data Warehousing: Using the

Wal-Mart Model. Morgan Kaufmann, San Francisco,
CA, 2001.

