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Abstract—The shift from enterprise computing to service-oriented and cloud computing is happening very rapidly. 

As the demand for higher value services increases there will be a greater need for service customization, automation for 
the provisioning and management of services, and the ability to offer services that satisfy non-functional requirements. 
This paper describes our research on a model-driven approach for packaging high value enterprise software for use as 
a service and on managing the service lifecycle of service instances in shared virtualized resource pools. Our approach 
tackles non-functional issues such as availability, security, scalability, flexibility, and performance. These are important 
for high value enterprise IT services. A study involving an SAP system demonstrates our progress. Our results show 
that a model-driven approach can be attractive to software providers that aim to support a large number of service 
instances 
 

Index Terms— Software as a Service, Enterprise Computing, Information Technology Management.  

I. INTRODUCTION 

 
It is anticipated that by 2015 more than 75% of information technology (IT) infrastructure will 

be purchased as a service from external and internal hosting providers [1]. There are many 
reasons for this trend. Those businesses that need IT infrastructure can acquire it as a service 
quickly, with less deployment risk, lower capital expenditures, and a reduced need for certain IT 
skills. Service providers can offer services with greater process maturity and improved efficiency 
while amortizing infrastructure and labor costs across the many businesses that they serve.  

There are many kinds of IT infrastructure offered as a service. Servers, storage, and networking 
can be offered by internal corporate IT providers or Internet service providers [2]. Email, word 
processing, and other simple business applications are now offered by many providers [3].  More 
complex business applications that implement business processes such as customer relationship 
management, order and invoice processing, and supply chain management are also offered as a 
service [4][5][6]. A service can be offered in several ways. It can be a portal that is accessed via 
Web browsers, a Web service endpoint, or a combination of the two.  

Our focus is on high value services that implement business processes for small business 
through to enterprise class customers. These customers may have thousands or more employees 
and thousands or millions of users or Web enabled devices that interact with their service. Our 
project’s design point is to enable the cost-effective hosting of one million high value service 
instances. This drives our goal to make service lifecycle management as customer driven and 
automated as possible. 

There are several actors that participate in SaaS. Infrastructure providers provide the 
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infrastructure, physical and virtual, for the operation of service instances. Software providers 
provide software that is packaged as a service. Software vendors create software. Customers 
contract with an infrastructure provider or software provider to consume a service. A service 
implements business processes for customers. A Service instance provides the service to a 
customer. A customer may have development, testing, and production instances of a service. The 
users of the service are employees, IT systems, Web enabled devices, or business partners of the 
customer. In some cases, the infrastructure provider, software provider, and software vendor are 
one entity. 

This paper describes our research on a model-driven approach for packaging high value 
enterprise software as services and on managing the service lifecycle of service instances within 
shared virtualized resource pools. We have used SAP use cases [6] for formulating our ideas and 
as examples presented throughout this paper. SAP is a rich source of high value enterprise 
services and presents many challenges that must be addressed by software providers. Our results 
show that a model-driven approach can be attractive to software providers that aim to support a 
large number of service instances. 

The remainder of the paper is organized as follows. Section II describes related work. Section 
III introduces our model- driven approach for service lifecycle management. Section IV explains 
research projects that contribute to the approach. It describes our use of models, the automation 
of service instance configuration and management, and support for non-functional requirements. 
Section V describes our current implementation with an SAP system as an example. Section VI 
offers summary and concluding remarks and an outline of our future work. 

II. RELATED WORK 
Model-driven techniques have been considered by many researchers and exploited in real world 

environments [4][6]. In general, the techniques capture information in models that can be used to 
automatically generate code, configuration information, or changes to configuration information. 
The goal of model-driven approaches is to increase automation and reduce the human effort and 
costs needed to support IT systems. Systems can have many aspect-specific viewpoints, e.g., 
functionality, security, performance, conformance, each with a model. The concept of viewpoints 
was introduced in the ODP Reference Model for Distributed Computing [7]. Although we use 
different viewpoints, the concept is similar and the principle of separation of concerns is the same. 
Our goal is to develop and integrate models that capture multiple viewpoints to support lifecycle 
management for service instances. 

There are several different paradigms for how service instances can be rendered into shared 
resource pools. These can be classified as multi-tenancy, isolated-tenancy, and hybrid-tenancy 
[8][9]. Multi-tenancy hosts many customers with one instance of a software service. Isolated-
tenancy creates a separate service instance for each customer. A hybrid may share some portion of 
a service instance such as a database across many customers while maintaining isolated 
application servers. Multi-tenancy systems can reduce maintenance and management challenges 
for providers, but it can be more difficult to ensure customer specific service levels. Isolated-
tenancy systems provide for greatest performance flexibility and greatest security, but present 
greater maintenance challenges. Hybrid-tenancy approaches have features of both approaches. We 
focus on the isolated and hybrid approaches for rendering service instances into shared virtualized 
resource pools. Guo et. al consider issues supporting the configuration and deployment of multi-
tenancy service instances [10]. 



 3 

Rendering service instances into shared virtualized resource pools presents configuration, 
deployment and management challenges. Zhang et al. [11] present a policy driven approach for 
specifying configuration alternatives for services. Ramshaw et al. [12] explore the use of 
constraint satisfaction tools to specify alternative system configurations. Our approach is related 
to these but links configuration models with other models for deployment, run-time and change 
management. Industrial approaches offer visual design tools to software and infrastructure 
providers that help to manually specify software stack and infrastructure topology models for 
services and service instances [13][14]. With our goal of supporting one million high value service 
instances, we assume that customers specify their non-functional requirements but it is the 
responsibility of our framework to render to an appropriate software and infrastructure 
configuration for the service instance.  

Cloud computing offers the integrated deployment of software, hosts, storage and networking 
to shared virtualized resource pools. It is being explored by several research teams [15] [18] [19]. 
Industrial approaches are available [2][13][16]. Our goal is to enable the deployment and run-time 
management of service instances to multiple cloud computing targets thereby providing more 
flexibility to customers. To facilitate our research we have developed our own shared virtualized 
resource pool based on Xen [20] and a corresponding Resource Pool Management Service. 

Autonomic computing aims to reduce the human effort needed for the on-going management of 
service instances [21]. This includes daily, weekly, and monthly tasks such as ensuring database 
tables are properly sized, rolling over appropriate log files, and performing conformance tests. 
Our approach integrates such run-time management into the service lifecycle for service instances. 
This aspect of management is essential to achieve our target for hosting a very large number of 
service instances. 

There has been recent work on automating the performance management of virtualized shared 
resource pools [22][23][24][25][26][27][28][25][29][30]. The techniques address issues such as 
capacity planning and providing performance, power, and economic based qualities of service. 
Our approach is to capture sufficient information in models to complement such methods and 
interact with them to support service lifecycle management. Our recent work on resource pool 
management is helping us to further understand issues that arise [27][29][30]. 

Finally, the model-based approach we present enables a high level of automation in service 
lifecycle management, but it is not an automation platform in itself.  Rather, a service which is 
created and managed will typically leverage one or more automation platforms.  We are using 
SmartFrog [17] to automate deployment of software and hardware in our prototype resource 
pool, but we could use other automation platforms instead or in addition.  

III. LIFECYCLE MANAGEMENT FOR SERVICE INSTANCES 

This section presents a service lifecycle management framework for service instances. Service 
lifecycle management governs the creation and management of service instances for customers. 
The framework exploits a model-driven approach with information about a service instance 
captured in a series of model states and separable supplemental models that describe software and 
infrastructure provider information. We refer to our model-driven approach as the Model 
Information Flow (MIF) [31] because of its focus on capturing and re-using model information to 
automate service lifecycle management.  
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The MIF links three viewpoints. 
1. The configuration of service functionality offered by a software provider. 
2. The configuration of software components that implement the service instance. 
3. The configuration of infrastructure, virtual and physical, that hosts service instances. 
The MIF enables a change in one viewpoint to be linked to changes in other viewpoints. For 

example it links a change in selected service functionality or non-functional requirements to 
necessary changes in application configuration and infrastructure topology. Conversely, model 
information can also be used to determine the consequences of changes to infrastructure on 
service instance behaviour.  

The principle model of our approach is the Service Lifecycle Model. The Service Lifecycle 
Model encapsulates service instance specific model information and evolves through the states 
shown in Figure 1. The lifecycle starts on the left hand side with a catalog of services that are 

supported by our approach and ends on the right with a deployed and running system. Cycles can 
occur at every step, but are not shown in the figure for reasons of simplicity. The states govern 
service configuration, infrastructure selection, resource acquisition, deployment and run-time 
operation of the service instance. The following subsections describe the service catalog and the 
states of the Service Lifecycle Model.  

A. Service Catalogue 

A service catalogue identifies the services that can be provided using our approach. Given our 
context of supporting high value enterprise services for a software vendor such as SAP, each 
entry in the catalog describes a service that is a collection of related business processes. Examples 
of business processes include sales and delivery, and supply chain management. The description 
includes textual descriptions and visual notations such as BPMN [32] to illustrate the business 
processes. In addition, the catalogue entry specifies a tool-set that supports the creation and 
management of a corresponding service instance.  

Once a service has been selected by the customer we use the entry in the catalogue to create a 
Service Lifecycle Model for the service instance. The Service Lifecycle Model can be in one of six 
states: general through deployed. The Service Lifecycle Model transitions between states as the 
tool-set operates on the service instance. The following subsections describe the model 

general unbound bound
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Shared 
Virtualized 
Resource 

Pool

Shared 
Virtualized 
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Service catalog

Service 
configuration
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Figure 1: States of the Service Lifecycle Model 
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information that is captured in each state and give examples of tools that are used to support the 
transition between states. 

B. General  

This is the initial state of the Service Lifecycle Model. Once the Service Lifecycle Model data 
structure is prepared it is able to transition to the custom state. 

C. Custom  

The custom state augments the Service Lifecycle Model with functional and non-functional 
requirements. These requirements are collected by one or more tools in the tool-set.  

A functionality configuration tool for the service lets a customer specify the subset of the 
service’s business processes that are to be used. For example, sales and delivery may be needed 
but not supply chain management. Furthermore, each business process may have several business 
process variants, i.e., logic that handles different business circumstances. The desired set of 
business process variants for each chosen process must also be specified. For example, if the 
customer’s business does not accept returned goods then a sales and delivery process variant that 
supports returned goods would be excluded from the service instance. 

Configuration parameters are presented to the customer by the tools that reflect what can be 
instantiated later. Currently we offer a binary option for availability which controls whether or not 
a fail-over pair is created for appropriate hosts in a service instance. A fail-over pair consumes 
additional resources and may therefore affect cost. Similarly security is offered as a binary option 
in the current implementation. It controls the subnet architecture of infrastructure and whether or 
not firewalls are used. A scalability option determines whether a solution is deployed to a 
centralized solution with a single host or decentralized solution with multiple hosts. 

The custom state also gathers customer performance requirements. These are specified in terms 
of throughput and response time goals for business process variants. The information is used by 
subsequent tools to support infrastructure design selection and performance sizing. 

Once a customer’s functional and non-functional requirements for the service are fully specified, 
the Service Lifecycle Model is able to transition to the unbound state. 

D. Unbound 

The unbound state augments the requirements for the system with information from the 
software vendor. Information from the software vendor includes a description of components 
needed to support the chosen business process variants. These may include application servers, 
search servers, and software code artifacts. Knowledge of which components are needed can 
affect the choice of infrastructure in the next state.  

Software vendor information also identifies external software components that are not part of 
the service being deployed but that are used by the service instance. For example, an order and 
invoice processing business process variant may require external output management services for 
invoice printing and credit check services for checking financial details. A tool recognizes which 
external services are needed, prompts the customer to choose from a list of known service 
providers, and obtains any additional configuration information from the customer. 

Once software vendor specific requirements are completed, the service instance has its 
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requirements fully specified. The System Lifecycle Model is able to transition to the grounded 
state. 

E. Grounded  

The grounded state develops a complete design for the service instance. This includes the 
detailed infrastructure design, the mapping of software components to infrastructure components 
and references to configuration data required by the components. The current implementation 
uses three tools to refine information from the unbound state to create the design information for 
the grounded state.  

The first tool is the Infrastructure Design Template Service. This tool uses configuration 
parameters and requirements information collected from the customer and software vendor in 
previous states to select an appropriate infrastructure design pattern from a collection of design 
alternatives for the service. The pattern addresses many aspects of the service instance including 
hardware and software deployment through to operations needed for run-time management. Once 
the alternative is selected, the Infrastructure Design Template Service initializes a System 
Template Model for the service instance and stores it in the Service Lifecycle Model. The 
template is made from a vocabulary of real-world concepts, such as computer system, subnet, and 
application server. 

A System Template Model specifies ranges and default values for performance parameters such 
as the number of application servers, the amount of memory for each application server, and the 
number of worker processes in the application servers. Options selected by the customer such as 
high-availability and security are also reflected in the template, e.g., fail-over pairs and subnet 
architectures.  

A second tool specifies the performance parameters described above. We have two 
implementations which perform this function, illustrating the flexibility of our approach for 
exploiting alternative tool-sets. The first implementation simply inspects the template for 
performance parameters and allows the customer to set them. The customer can set a parameter 
within the range specified, or a default can be selected. The second implementation is the 
Automated Performance Engineering (APE) Service. It exploits performance requirements and 
predictive performance models to automatically specify appropriate performance parameter 
values. 

The third tool is the Template Instantiation Service. It takes as input the System Template 
Model and corresponding performance parameters. It outputs a System Model that becomes part 
of the Service Lifecycle Model. The System Model is a completed design for the service instance 
that is expected to satisfy non-functional requirements. Once the System Model is created, the 
Service Lifecycle Model is able to transition to the bound state. 

F. Bound 

The bound state refines the grounded state with the binding to resources, e.g., hosts, storage, 
and networking from a shared virtualized resource pool. A Resource Acquisition Service interacts 
with a Resource Pool Management Service from an infrastructure provider to acquire resource 
reservations according to the service instance’s System Model.  

In the bound state the service instance can have side-effects on other service instances. It may 
have locks on resources that prevent them from being used by others and it may compete for 
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access to shared resources. Once all resources have been acquired, the Service Lifecycle Model is 
able to transition to the deployed state.  

G. Deployed 

The deployed state refines the bound state with information about the deployed and running 
components that comprise the service instance. This includes binding information to management 
and monitoring services in the running system. A Resource Deployment Service configures and 
starts the resources. A Software Deployment Service installs the software components specified in 
the System Model and starts the service instance so that it can be managed. The System Model 
includes sufficient information to ensure that components are deployed and started in the correct 
order. A Software Configuration Service loads service configuration data previously obtained 
from the customer, such as product entries to be added to a database. Finally, the service instance 
is made available to users. 

Figure 2 illustrates a Service Lifecycle Model and its sub-models. It shows the transformation 
from an Infrastructure Design Template Model through to a System Model. Configuration 
parameter values, provided by the customer and software vendor via functional and non-
functional requirements, guide how the System Template Model is rendered by the Infrastructure 
Design Template Service. APE can be used to decide optimal performance parameter values for 
the System Template Model. The Template Instantiation Service creates a System Model using 
the System Template Model and performance parameter values. The System Model is used to 
direct the subsequent acquisition of resources, deployment, and run-time operation for the service 
instance. Design pattern operations in the Infrastructure Design Template Model propagate 
through the System Template Model to the System Model. 
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H. Supplemental Models and Transformations 

We make extensive use of supplemental models to guide model transformations and transitions 
between Service Lifecycle Model states. Such models are specific to particular tools and 
approaches for addressing non-functional requirements and are not part of the Service Lifecycle 
Model. A Service Lifecycle Model only includes references to supplemental models. Section’s 
IV.B, IV.E, and IV.F explain how supplemental models support an Infrastructure Design 
Template Service, a Security Service, and an Automated Performance Engineering Service, 
respectively. 

Many of our tools require the use of heterogeneous models to implement model 
transformations. Section IV.A describes our work on a framework named ModelWeaver that 
supports the creation of such tools. 

I. Service lifecycle management 

Our approach supports lifecycle management for service instances. This includes service design, 
creation, run-time management, and change management. Figure 4 illustrates these four aspects of 
service lifecycle management and their relationship to Service Lifecycle Model states.  

A Service Lifecycle Model can be in only one state at a time. Tools transition a Service 
Lifecycle Model from the general state through to the deployed state. Back-tracking is permitted 
so that it is possible to explore the impact of changes to service configuration and non-functional 
requirements on the resulting design for the service instance.  

The System Model includes a description of the operations that can be performed on a service 
instance for run-time management. These correspond to operations on the service instance when 
its Service Lifecycle Model is in the bound or deployed state. Bound operations support the 
acquisition of resources, archiving a service instance for later use, and cloning of a service 
instance. Deployed operations support the configuration and operation of a service instance, 
including operations to vary the number of resources.  A deployed service instance can be stopped 

general unbound bound
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StopRelease   
resources

Operate

Archive, Clone*
Change requirements

*Note, cloned copy is a new service instance in the bound state

Legend

Next state
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Figure 3: Lifecycle Management for a Service Instance 
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and returned to the bound state. It may then be started again to resume in the deployed state. A 
service instance in the bound state may transition to the grounded state. If desired, the instance’s 
computing and or storage resources can be returned to the resource pool. 

Cloning is used to create multiple instances of a service for development, testing, or production 
service instances. It is an operation in the bound state that creates another service instance with a 
Service Lifecycle Model in the bound state. The clone can then be started and run in parallel with 
the original instance. The clone receives a full copy of a service instance’s System Lifecycle 
Model up to information for the grounded state. Different resource instances are acquired to 
provide an isolated system in the bound state.  

Model transformations and operations are all implemented using a common Change Request 
(CR) mechanism. The CR mechanism is described in Section IV.C. 

IV. RESEARCH THEMES 

This section describes research themes that contribute to our model-driven method for service 
lifecycle management.  

A. ModelWeaver 

ModelWeaver is a research platform that enables the use of information from heterogeneous 
models to create tools that support our approach. There are many modeling frameworks and 
standardization efforts for models of IT systems [34][35][36][37][38][39][40]. Each is best suited 
to modeling a particular aspect of systems. Each modeling tool has input and output formats 
described by a modeling language.  ModelWeaver lets us work with many kinds of models and 
tools.  

We require each model to have meta-data that provides information about the location of 
inputs, outputs and the model format. The minimal set of meta-data captured by ModelWeaver is 
the location of a model, e.g., a URL. Additional meta-data for a model includes the identity of 
tools that can provide specific operations on the model, e.g., to invoke a model editor. 

ModelWeaver employs a model transformation strategy that compilers use. Information is 
extracted and parsed from input models in their native input formats and brought into a 
normalized interim format upon which transformations are performed before target models are 
synthesized.  

Figure 4 shows RDF tokenizers [41] being used to transform model information from models A 
and B into their normalized formats. ModelWeaver uses RDF triples as normalized interim format. 
The triples are stored in an RDF Model Store [42]. An RDF synthesizer then uses appropriate 
subsets of the normalized information from A and B to create an output model C. The synthesizer 
is analogous to a complier’s code generator.  

 
 

 
Figure 4: Weaving and Transforming Models 
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The use and reuse of normalized formats reduces effort needed to create new transformations. 

This principle avoids the quadratic growth of point transformations, requiring O(n) normalizations 
instead of O(n2) pair-wise transformations for n formats. It also decouples transformation logic 
from input and output formats and minor changes to input and output formats. Other approaches 
[45] incur quadratic growth for pair-wise transformations. 

An advantage of using RDF for the normalized format is that its offers powerful functions for 
implementing transformation logic. The functions include simple selection primitives, query 
languages such as SPARQL [43], and rule and inference engines such as the Jena Rules Engine. 
No other modeling framework provides such a rich tool set. RDF’s human-readable text format 
N3 [44] also permits the definition, inspection and manipulation of models by humans. N3 is 
helpful for inspecting interim models when employing complex chains of tools to support a 
transformation. Other model transformation languages are also available [46].  

Section I describes ModelWeaver’s support for service customization and its orchestration of 
APE. 

B. Infrastructure Design Template Models and the Template Instantiation Service 

Designing and managing an IT system to support a service is a complex, error-prone activity 
that requires considerable human expertise, time, and expense. An important goal is to automate 
this process using best-in-class strategies distilled from human experts. An Infrastructure Design 
Template Model captures integrated best-practice design patterns for a service. It is prepared by 
humans and takes into account configuration options and non-functional requirements. 
Infrastructure Design Template Models are supplemental models.  

An Infrastructure Design Template Model is made from a vocabulary of real-world concepts, 
such as computer system, subnet, or software service. It includes the following. 

• The structure and configuration of the hardware infrastructure such as computer 
systems, disks, NICs, subnets, and firewalls.  

• The characteristics of the required hardware are specified, such as the type, processing 
power and memory of a computer system, the bandwidth of a NIC, or the size or 
latency of a disk. 

• The internal structure and configuration of the software services running on each 
computer system, in sufficient detail to automatically deploy, configure, and manage 
them; additionally, the deployment dependencies between the software services, such 
that they are installed, configured, started, taken on-line, taken off-line, stopped and 
removed in the correct order. 

• The configuration of the monitoring and alarms for the hardware and software 
landscape. 

• The set of operations, represented as Change Requests (CR), which can be applied to 
extend or modify the system. 

• Configuration parameters and performance parameters. 
An Infrastructure Design Template Model includes embedded logic that matches configuration 

pameters to a particular design. Configuration parameters give us the ability to encode related 
families of structural alternatives in a single Infrastructure Design Template Model thereby 
preventing an explosion in the number of instances of such models. Without this ability, a system 
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characterized by just 7 Boolean choices would, in the worst case, require 27 (128) distinct 
Infrastructure Design Template Models that must be maintained separately. Infrastructure Design 
Template Models provide a powerful way to model topological alternatives – modules are only 
instantiated if required and relationships between modules are appropriately configured. 

Infrastructure Design Template Models are expressed using the SmartFrog [17][18] textual 
notation as a data modeling language. The language provides typing, composition, inheritance, 
refinement, conditional instantiation, information hiding, and constraints, allowing us to create 
compact, modular, configurable descriptions of systems. 

aCompSystem IF (! ext_centralized)

THEN extends MonitoredComputerSystem {

NICs extends { nic extends AI_NIC { subnet IF (ext_secure) THEN dbSubnet ELSE asSubnet FI; }}

groundedExecutionServices IF (ext_dual)

THEN extends {  db extends DatabaseSoftware;   ci extends ApplicationServerSoftware; }

ELSE extends { ci extends ApplicationServerSoftware; }

FI

operations extends { updateMemory extends UpdateVirtualMachineMemoryCR; }

}

FI

CENTRALIZED - Conditional instantiation of Monitored Computer 
System – instance only needed if not centralised system

SECURE - Connect NIC to DB or Application Server subnet

DUAL – Need both DB and AS software otherwise just AS

Instances of this computer system template have capability to request change in memory at run-time

 
 

Figure 5 presents an Infrastructure Design Template Model fragment driven from three Boolean 
template parameters (ext_centralized, ext_secure, and ext_dual) that illustrates the conditional 
instantiation of a monitored computer system. The conditional instantiation of the computer 
system (aCompSystem) is controlled by the variable ext_centralized. Conditional reconfiguration 
of software running on it (groundedExecutionServices) is controlled by the variable (ext_dual), 
and the networking topology (NICs) is controlled by the variable ext_secure. Also note that the 
template fragment defines the set of allowed CRs as prototype operations. The allowed CRs may 
also depend on the configuration alternative. 

We now consider the Infrastructure Design Template Service and the Template Instantiation 
Service. They support the creation of a System Template Model and System Model, respectively.  

The Infrastructure Design Template Service loads the SmartFrog description of an 
Infrastructure Design Template Model. For each choice of configuration parameter values, the 
Infrastructure Design Template Service is able to render a corresponding System Template Model 
in the Eclipse Modeling Framework (EMF) modeling notation [40].  

 

Figure 5: Fragment of Infrastructure Design Template Model Showing Reference to Template Parameters, 
Conditional Instantiation, and Operations 
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AI_Disk : DBDisk AI_Disk : CIDisk

AI_GroundedExecutionComponent : Enqueue

AI_GroundedExecutionComponent : Update
-range : <unspecified> = 1..n

AI_ComputerSystem : BL20/Xen

AI_Disk : OSDisk

AI_GroundedExecutionService : Database AI_GroundedExecutionService : AppServer

AI_GroundedExecutionComponent : SD DB AI_GroundedExecutionComponent : DialogWorkProcess
-range : <unspecified> = 2..n

AI_ComputerSystem : BL20/Xen
-range : <unspecified> = 0..n
-rangePolicy : <unspecified> = TimeFunction

AI_ComputerSystem : BL20/Xen

AI_Disk : OSDisk

AI_GroundedExecutionService : AppServer

AI_GroundedExecutionComponent : DialogWorkProcess
-range : <unspecified> = 2..n

AI_Disk : OSDiskAI_Nic : nic1

AI_Network : subnet1

AI_Nic : nic1 AI_Nic : nic1

AIDeploymentSetting

AIDeploymentSetting AIDeploymentSetting

AIDeploymentSetting AIDeploymentSetting

AIDeploymentSetting

AIDeploymentSetting

AIDeploymentSetting

Variable range

Execution Components

Infrastructure

Execution Services

 
Figure 6: System Template Model for a Decentralized SAP System 

 
Figure 6 shows a Unified Modelling Language (UML) diagram for a System Template Model 

for a decentralized SAP system. The template describes three types of computer system – a 
Database (left), a distinguished Application Server called the Central Instance (right), and 
additional Application Servers called Dialog Instances (middle) – and how they are connected on 
a subnet. For each type of computer system, the model specifies the type of software services 
running on it, referred to as Execution Services, the internal structure of that service such as the 
type of worker threads, referred to as Execution Components, and the deployment settings for the 
software that reference deployment instructions and parameters. The template describes the 
minimum, maximum and default values for modeled entities that can be replicated. The ranges for 
the performance parameters of these entities are encircled. Either a human or a service such as 
APE must decide specific values for performance parameters. 

The Template Instantiation Service transforms a System Template Model with specific values 
for performance parameters into a System Model. The System Model has a separate object for 
each replicated instance of an entity whereas the System Template Model has only one instance 
with a range. This supports further management for each replicated instance. 

C. Change Request Framework 

This section describes our work on a Change Request (CR) framework that enables the 
planning, submission, and execution of CRs. CRs can cause updates to models and run-time and 
change management for service instances.  

Change requests are declarative, they state what needs to be accomplished, but leave out the 
details of how the modifications should be carried out. CR state includes the following. 

• A requestID that identifies the task to execute, e.g., create, clone, migrate, and stop. 
• A requestVersion identifies the implementation version.  
• The context describes the model entity against which the change request is submitted. 

The context can be the whole model, or particular entities within the model such as 
elements corresponding to software components or infrastructure nodes.  
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• parameters: primitive types or reference to any model entities.  
• pre-conditions and post-conditions: logical conditions that must be true prior/after the 

execution of a CR along with an implementation that evaluates the conditions. 
• subtasks: contains optional refinements of the change request into finer grain steps 

which are also CRs. Steps can execute in sequence or in parallel as defined by an 
ordering field. 

• dependencies: an optional set of references to external CRs that must complete before 
the change request can be processed. 

The lifecycle of a CR is described as follows. A submission tool creates a CR and links it to the 
model entity it will operate on. First, a static validation takes place. Since the model entity 
contains only the set of CRs it allows, the validity of the request can be verified prior to 
submission. Assuming that the CR is valid, its current state is persisted in the model and passed to 
a CR Orchestrator that initiates processing.  

The Orchestrator is a core backend service that coordinates tools and causes the execution of 
CRs. Tools register with the Orchestrator to specify the request and model entity types they can 
support. For example, a virtual machine management tool registers that it supports migrate CRs 
on model entities of type virtual machine. Given a request to execute, the Orchestrator looks at its 
request ID and the model entity against which the request is submitted and finds the appropriate 
service. Each tool has a unique identifier: a URL. Assuming a tool is found and once the matching 
is done, the Orchestrator persists the tool identifier in the CR in order to keep track of the 
implementer.  

The Orchestrator invokes the tool and a second round of dynamic checking takes place where 
the tool itself evaluates the CR’s pre-conditions. For example, a request to increase the memory 
of a virtual machine will be rejected if the specified amount exceeds the free capacity of the 
physical host. Assuming the CR’s pre-conditions are all validated, the tool proceeds to execute its 
finer grain processing steps.  Once the finer grain steps are completed the tool enters a finalization 
processing phase where post-conditions are evaluated and current state is persisted in the model. 
State information captures change history for a service instance and can be used to support charge 
back mechanisms. 

Finer grain steps for a CR are represented as a directed graph of CRs where the children of a 
node are subtasks, i.e., refinements, of the root CR. The graph encodes how the subtasks are 
ordered, and their dependencies. Whether the requests are handled in sequence or in parallel is 
defined by an ordering attribute.  As an example of how these are used, in the case of SAP, the 
installation of a database and an application server can take place in parallel. However, strict 
ordering must ensure that the database is started before the application server. 

The execution of a CR by a tool takes place asynchronously with respect to the orchestration 
environment. Each tool is responsible for updating and persisting progress for the run-time state 
of the request in the model and, in the case of failure, for being able to roll-back its changes or 
initiate an interaction with a human operator. 

The change request framework is compatible with fully automated and partially automated 
management. Even though we envision that most tasks will be dealt with in automated fashion, 
some tasks may require human intervention. Operation prototypes for CRs enable the dynamic 
creation of human readable forms for CRs that permit humans to complete CRs when necessary.  

At present we assume that CR planning is prescriptive. CRs are hand crafted by humans as part 
of the development of an Infrastructure Design Template Model. In particular, to implement each 
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CR they specify the sequence of tools that will be run and the parameters that are passed to each 
tool. In the future, we will exploit information about pre and post-conditions to enable descriptive 
CR subtask planning. Technologies such as model-checking [47] may be used to reason about a 
CR and automatically develop a plan for a CR that exploits other CRs as subtasks to implement it. 

Finally, approach shares many similarities with the CHAMPS system [55]. CHAMPS deals with 
the planning and execution of CRs submitted by human administrators. In the context of our 
work, CRs are most likely submitted by automated tools. 

D. State Transitions for Service Instances 

In our approach, state transitions for Service Lifecycle Models are model-driven and performed 
by CRs. A Service Lifecycle Model is able to transition from one state to the next when post 
conditions and pre conditions are satisfied, respectively. The identity of the CRs and the 
operational parameters used to carry out state transformations are themselves stored in the 
Service Lifecycle Model, and depend on the type of service and customer configuration choices. 

The Model Lifecycle Service (MLS) performs the lifecycle management for a Service Lifecycle 
Model. The MLS relies on a Model State Transition (MST) data structure that is stored in the 
Service Lifecycle Model. It encodes the states of the model, the allowable transitions between 
states, and the sequence of CRs required for each transition together with the parameters to be 
applied to the CR. 

The MLS implements CRs of the form ChangeModelStateTo: desiredState, to transition a 
Service Lifecycle Model to its desired state. When a CR is issued to the MLS, it causes the 
required intermediate state transitions and actions by transforming the information in the MST to 
a valid sequence of child CRs. The scheme is shown in Figure 7. In this example the MLS uses the 
MST to determine that to move the model from State 1 to State 3 requires the following sequence 
of CRs: A, B, C, D, and E. 

 

State
1

State
2

State
3

Model State Transitions

A B C D E

F GH I

CR invocation sequence 
for transition

Model Lifecycle Service
1. CR to change 
state to “State 3”

2. MLS uses MST to plan intermediate 
states and required CRs

Change Request Engine

3. MLS submits CRs to carry out plan

A’ B’ C’ D’ E’

Change
State

 
Figure 7: Use of MST by MLS to Determine CRs to Transition between Model States 

 
The model-driven nature of the service lifecycle is very powerful. The sequence of allowed state 

changes, and the required CRs and their parameters to transition between states, can be modified 
at run-time by the tools invoked by CRs. Thus the behaviour of the system can be changed in 
response to information collected while progressing through the lifecycle. For example, if APE is 
required then a CR can be issued to update the MST to include CRs that cause the appropriate 
services to execute. In this way service lifecycle management is customized for the type of service 
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and service configuration required by a customer.   

E. Security Service 

This section describes a Security Service that implements alternative security control policies 
for service instances. The approach integrates with the supplemental Infrastructure Design 
Template Models and affects the rendering of System Template Models and System Models.  
Customers choose from categorical security levels that are then realized by the Security Service 
for service instances. 

The Security Service relies on the notion of compartments. Each compartment is used to 
encapsulate and protect system elements, e.g., hardware and/or software within an Infrastructure 
Design Template Model. Each compartment has formally modeled security controls which specify 
the particular protections provided by the compartment to implement security policies. The 
modeling approach is an extension of the observer/controller (OC) security pattern of Schöler and 
Müller-Schloer [48].  

Our realization of the OC pattern models the entities and interactions that enforce a 
compartment's protection for its system elements. The models are referred to as OC models. 
Observers and controllers are trusted system elements referred to as security control elements 
(SCE) which provide one or more protection functions.  

The OC models are designed by a security expert who determines the classes of events which 
must be observed and controlled to provide protection for a particular compartment and how they 
provide security for a service as a whole.  As examples of security control policies, consider a 
simple example of a compartment that protects an application server with the following event 
classes for requests being observed and controlled. 

• receiveApplicationRequest: models application traffic flowing into the compartment. 
• receiveOperatorRequest: models operator traffic flowing from outside the compartment 

into the compartment, for example an OS login session used for system administration. 
• sendMonitoringRequest: models monitoring traffic flowing from inside the compartment 

to a monitoring system outside the compartment, such as an SNMP trap. 
The security expert may create models for several controllers to govern the 

receiveApplicationRequest event class.  These control models are used to select and configure 
security mechanisms such that the controls will be enforced by the compartment’s infrastructure at 
run-time.  Though manually created, the set of control models are reused across many Service 
Lifecycle Model instances and many Infrastructure Design Template Models.  

  

Figure 8: Supplemental Models 

general unbound bound

custom grounded deployed

general unbound bound

custom grounded deployed

Infrastructure design 
template model

Benchmark infrastructure
alternative model

Software platform 
model

Software platform 
benchmark model

Business process
control flow model

Security 
model



 16 

Consider the following example that shows user authentication and network filtering controls 
for requests.  At run-time, the following condition must evaluate to true in order to allow a 
receiveApplicationRequest and thereby permit a user access to the application server capabilities: 

 
 (     ( isMemberOfSet(user, stronglyAuthenticatedUsersSet) ) 
    AND ( protocol == "TCP" ) 
    AND ( (destinationPort == "80") OR (destinationPort == "443") ) 
    AND ( isMemberOfSet(destinationIP, applicationServerIPAddressSet) ) ) 
 
All conditions needed to determine the correct action to take in response to an event class for a 

security configuration alternative are in an OC model for a compartment. The OC models are part 
of a supplementary Security Model that is referenced by the Service Lifecycle Model. This 
facilitates defining, locating, and programmatically evaluating and verifying the complete set of 
security controls for compartments and service instances. Figure 8 illustrates the supplemental 
Security Model. 

The security expert needs to work with the designer of the Infrastructure Design Template 
Models to ensure any SCE and topology alternatives needed to implement security control 
policies are rendered in the System Template Model. The SCEs include devices such as firewalls. 
The management of network subnet topology is often used to decide whether certain traffic is 
protected by SCEs.  

 During the configuration activities that occur in the transformation from bound to deployed 
states, a Security Service tool is invoked to transform the complete set of modelled security 
controls from the OC compartment models in the Security Model into device-specific 
configurations for the service instance’s SCEs. The controls enforce the chosen security control 
policy. For example, if the System Model specified IPTables [49] as the controller mechanism to 
provide the needed network filtering function, and only two application servers at IP addresses 
15.2.3.4 and 15.2.3.5 were to be used, and eth1 were the outward looking interface name, then 
the firewall configuration tool is run to generate an IPTables configuration file that includes four 
lines like the following to allow packets classified in the receiveApplicationRequest event class 
into the compartment: 

 
iptables -A FIREWALL -i eth1 -d 15.2.3.4 -p tcp --dport 80 -j ACCEPT 
iptables -A FIREWALL -i eth1 -d 15.2.3.5 -p tcp --dport 80 -j ACCEPT 
iptables -A FIREWALL -i eth1 -d 15.2.3.4 -p tcp --dport 443 -j ACCEPT 
iptables -A FIREWALL -i eth1 -d 15.2.3.5 -p tcp --dport 443 -j ACCEPT 
 
The above configuration commands enforce the following sub-conditions at runtime: 
 
    ( protocol == "TCP" ) 
    AND ( (destinationPort == "80") OR (destinationPort == "443") ) 
    AND ( isMemberOfSet(destinationIP, applicationServerIPAddressSet) ) 
 
With the above approach, IPTables has been configured such that if the condition evaluates to 

true then packets will be permitted to reach the application server. In addition, the application 
server must also be configured to implement the following control condition to ensure that the 
user specified in the request is strongly authenticated:  
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(isMemberOfSet(user, stronglyAuthenticatedUsersSet)).  
The ability to couple controls across multiple SCE types, in this case firewalls and application 

servers, illustrates the advantage of the compartment concept. It also illustrates the effectiveness 
of the Infrastructure Design Template Models at supporting matched changes to multiple entities 
within a design to support non-functional requirements. 

F. Automated Performance Engineering Service 

The Automated Performance Engineering (APE) Service [50] has two purposes. First, it 
decides values for performance parameters that are needed to transform a System Template 
Model to a System Model. Second, it creates a performance validation test that can be executed 
against a deployed service instance to verify that it supports the customer’s expected workloads.  

APE requires the following supplemental models: Business Process Control Flow Model; 
Software Platform Model; Software Platform Benchmark Model; and, the Benchmark 
Infrastructure Alternative Model. These, in addition to the Infrastructure Design Template Model, 
are used to support APE and are illustrated in Figure 8. 

The Business Process Control Flow Model, Software Platform Model, and Software Platform 
Benchmark Model are provided by a software vendor. The Benchmark Infrastructure Alternative 
Model is a repository of performance information. 

The Business Process Control Flow Model describes the expected execution paths of customers 
as visits through business process steps. The Software Platform Model describes visits by these 
steps to the vendor’s business objects. Business objects are software components such as 
Customer, Order, and Supplier objects that have meaning within the vendor’s offering. The 
Software Platform Benchmark Model includes many software vendor benchmarks for a service. 
Each benchmark exercises a small number of objects in a manner typical for the platform.  The 
benchmarks provide coverage over the software vendor’s business objects.  

The Benchmark Infrastructure Alternative Model acts as a repository of reusable performance 
information for APE. Benchmarks from a software platform benchmark model are run against 
each System Template Model and stored. The results of each run include measured resource 
demands.  

APE creates customized performance and benchmark models that match the expected customer 
usage mix for business objects. The customer business object mix is determined by the throughput 
requirements for each business process variant as specified in the custom state and visit 
information from the Business Process Control Flow Model and Software Platform Model. 
Different business objects can cause significantly different resource usage and as a result such 
information must be taken into account in predictive models and benchmarks. The mix determines 
the average resource demand incurred by a service instance when supporting user requests.  

APE uses a workload matching technique [51] that reuses a subset of results from the 
Benchmark Infrastructure Alternative Model to create performance models [52][53] that decide 
optimal performance parameter values for a System Template Model and to create the 
performance validation test. Figure 9 illustrates the APE process. 
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 The Infrastructure Design Template Service can use APE repeatedly to choose the most 

appropriate design alternative for a service instance taking into account non-functional issues such 
as performance and cost. The validation test is then used to verify that a deployed service instance 
is able to support the customer’s expected workloads while satisfying response time goals. 

G. Service instance management 

Service provisioning is a first step in the lifecycle of a service. High value enterprise services 
often have periodic maintenance tasks that must be performed to ensure the correct operation of a 
service instance [33] [54]. For example, an application with a database may have a database table 
that can become full and cause functional errors for the customer. If the table becomes full then 
either data needs to be purged from the table or the size of the tables must increase. Each 
Infrastructure Design Template Model specifies operations that are executed periodically to 
automate such autonomic tasks. These operations are implemented using the CR mechanism.   

H. Resource pool management 

Infrastructure and software providers amortize management, infrastructure, facility, and power 
costs across the customers they serve. An efficient and flexible use of the available computing 
resources and power is crucial to control costs.  

To support our research, we developed a generic and expandable Resource Pool Management 
Service that integrates autonomous controllers to manage available resources. The Resource Pool 
Management Service supports control loops that govern resource access for customer service 
instances through their lifecycle. It monitors metrics for the service and infrastructure and enables 
controllers to automatically adjust service and infrastructure configurations when necessary. 
Metrics include security observations, service availability observations, and capacity and 
performance measurements. Controllers implement policies that are guided by the metrics. They 
can interact with service instances by causing operations made available by the System Models.  

We are also evaluating the effects of short term versus the long term optimization of resource 
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allocations in the resource pool and whether we can gain by combining these approaches. For this, 
we are exploring the integrated use of three different controllers that address capacity planning for 
the resource pool, virtual machine migration and the dynamic allocation of physical host 
resources. Simulation results have show that the combination of controllers achieves better results 
when managing 138 enterprise services than the controllers separately [29][30]. 

V. CURRENT IMPLEMENTATION 

This section describes our current implementation of the service lifecycle management 
framework for service instances. Our approach has been to develop the framework iteratively, 
validating our use of multi-viewpoint models and support for design subject to non-functional 
requirements. The example describes the configuration and design of an SAP system. 

Service creation begins with browsing the catalogue of supported services. Figure 10 shows 
ModelWeaver being used to browse a catalogue. ModelWeaver can be used to start an 
appropriate service visualization tool when an entry is selected.  

 

Catalogue

 
Figure 10: Browsing the Service Catalog with ModelWeaver 

Once a business process is chosen from the catalogue, a Service Lifecycle Model is created for 
the service instance. This Service Lifecycle Model is in the general state as shown in Figure 1.  

Next, a tool is presented to the customer to customize the service instance. A simple check box 
user interface is used to gather customer non-functional requirements regarding availability, 
security, and scalability. Performance requirements are captured by associating each selected 
business process variant with a throughput requirement, e.g., number of completions per hour and 
a response time goal for interactive response times. Once all the initial configuration requirements 
are captured from the customer, the Service Lifecycle Model transitions to the custom state.  

The Service Lifecycle Model is then populated with software vendor information about 
requirements for software components such as application servers. These components may restrict 
potential designs. Once complete, the Service Lifecycle Model transitions to the unbound state. 
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Figure 11: Browsing an Infrastructure Design Template           Figure 12: APE Performance Parameter Choices 

                                                                                    

Figure 11 shows an Infrastructure Design Template Model being browsed using the 
Infrastructure Design Template Service. The Infrastructure Design Template Service uses this 
model to render a System Template Model. The upper left hand region of the window shows the 
parameters that have been selected for this template, while the view on the right is the rendered 
System Template Model.  

APE is used to compute values for the performance parameters. Inputs for APE are obtained 
from the custom state of the Service Lifecycle Model and supplementary models. Figure 12 shows 
a spreadsheet produced by APE in which the performance parameters are all computed. The 
model transformations for APE and the transport of computed parameter values into the Service 
Lifecycle Model are implemented using ModelWeaver. The performance parameters are then used 
by the Template Instantiation Service to transform the System Template Model into the System 
Model. Afterwards the Service Lifecycle Model transitions to the grounded state. After acquiring 
resources from the Resource Pool Management Service, the Service Lifecycle Model transitions 
to the bound state. 

                        

Figure 14: Deployed State 
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Figure 13 uses a model browser to illustrate information in the bound state. It shows that 
instance range values have been set and that three CRs can be applied to the dialog instance 
computer system. These are labeled as Request for Change (RFC) and are for live migration, 
changing memory size, and removing unwanted application servers. The figure also shows the 
binding to a host acquired from the Resource Pool Management Service. 

Finally, Figure 14 shows the service instance with its Service Lifecycle Model in the deployed 
state. The Infrastructure box on the left margin shows integration with management services. CR 
operations are illustrated in boxes in the right margin. 

 Our current implementation transitions a Service Lifecycle Model from the general state 
through to the deployed state. It assumes customers are only aware of their non-functional 
requirements and automatically chooses an infrastructure design based on these requirements. The 
design is then transitioned into an on-line system for load testing or use by users. 

VI. SUMMARY AND CONCLUSIONS 

We have described a model-driven approach for packaging high value enterprise software for 
use as a service, for managing the service lifecycle of service instances, and for interacting with 
shared virtualized resource pools. The framework targets the hosting of very large numbers of 
service instances that may operate in resource pools supported by the cloud computing paradigm. 
It supports the customization of service instances by customers that do not have infrastructure 
design skills. Finally, it addresses non-functional issues such as availability, security, and 
performance that are important for high value customizable service instances. 

We have demonstrated the feasibility of gathering information needed for the models we have 
employed. The prototype tools we have developed have shown that a model-driven approach can 
be helpful for packaging software as a service and for automating important aspects of service 
provisioning and management. The approach we present is very flexible. The configuration of a 
service instance determines the tools used to support its service lifecycle management. 
Supplemental models capture service specific information. As a result, we believe the approach 
can be applied to many different kinds of services. Model information is re-used and shared by a 
variety of tools that support lifecycle management. Tools are used in combination to create 
powerful model transformations and state transitions. These are advantages of a model-driven 
approach for software providers that aim to support a large number of service instances.  

 Our current implementation of the framework has focused on support for SAP applications. 
We choose to work with SAP applications because of their high value, and because of the 
complex challenges they present.  

Our future work includes further development of multi-viewpoint models and templates, run-
time management and change request planning that better exploits the formal notions of pre and 
post conditions, and further work on performance prediction, autonomic management, and 
resource pool management. We will apply the framework to other kinds of applications to 
validate its effectiveness as a packaging technology for software as a service.  
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