

Automatic Compliance of Privacy Policies in Federated Digital Identity
Management
Anna Squicciarini, Marco Casassa Mont, Abhilasha Bhargav-Spantzel, Elisa Bertino
HP Laboratories Bristol
HPL-2008-8
Feburary 1, 2008*

Privacy,
Privacy policy,
Federated
Identity
Management

Privacy in the digital world is an important problem which is becoming
even more pressing as new collaborative applications are developed. The
lack of privacy preserving mechanisms is particularly problematic in
federated identity management contexts. In such a context, users can
seamlessly interact with a variety of federated web services, through the
use of single-sign-on mechanisms and the capability of sharing personal
data among these web services. Because of the latter feature, user’s
privacy is at a stake, if the sharing of such data among federated service
providers is not properly controlled to ensure that privacy is preserved and
user’s privacy preferences are complied with. Current federated identity
managed solutions adopt simplistic approaches to privacy management,
based on contractual/legal approaches and/or limited simple checks on
users’ privacy preferences. We argue that more comprehensive privacy
policies (consisting of access control and obligation constraints, along
with privacy preferences) should be stated by federated service providers
and proactively checked by these providers, before disclosing users’ data
to federated partners. To address such requirements, we introduce
mechanisms and algorithms for policy compliance checking between
federated service providers, based on an innovative policy subsumption
approach. We formally introduce and analyze our approach. We also
show how our approach is suitable for deployment and application in
existing federated identity management solutions, such as Liberty
Alliance, WS-* and Shibboleth.

 Internal Accession Date Only Approved for External Publication

Submitted to IEEE Policy 2008, 2-4 June 2008, Palisades, NY, USA

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Automatic Compliance of Privacy Policies in Federated Digital Identity
Management

Anna Squicciarini1, Marco Casassa Mont2, Abhilasha Bhargav-Spantzel3, Elisa Bertino3

1Information Sciences Technology, The Pennsylvania State University
2Hewlett-Packard Laboratory, Trusted System Lab
3Computer Science Department, Purdue University

Abstract

Privacy [13] in the digital world is an important problem
which is becoming even more pressing as new collaborative
applications are developed. The lack of privacy preserving
mechanisms is particularly problematic in federated identity
management contexts. In such a context, users can seamlessly
interact with a variety of federated web services, through the
use of single-sign-on mechanisms and the capability of shar-
ing personal data among these web services. Because of the
latter feature, user’s privacy is at a stake, if the sharing of
such data among federated service providers is not properly
controlled to ensure that privacy is preserved and user’s pri-
vacy preferences are complied with. Current federated iden-
tity managed solutions adopt simplistic approaches to privacy
management, based on contractual/legal approaches and/or
limited simple checks on users’ privacy preferences. We ar-
gue that more comprehensive privacy policies (consisting of
access control and obligation constraints, along with privacy
preferences) should be stated by federated service providers
and proactively checked by these providers, before disclos-
ing users’ data to federated partners. To address such re-
quirements, we introduce mechanisms and algorithms for pol-
icy compliance checking between federated service providers,
based on an innovative policy subsumption approach. We for-
mally introduce and analyze our approach. We also show
how our approach is suitable for deployment and application
in existing federated identity management solutions, such as
Liberty Alliance, WS-* and Shibboleth.

1 Introduction

Privacy in the digital world is an important problem that
needs to be properly addressed. The lack of privacy pre-
serving mechanisms is particularly problematic in federated
identity management contexts [12], in which different par-
ties manage, share and use personally identifiable informa-
tion (PII) of individuals. The availability of such data is cru-

cial to provide individuals with convenient and personalized
services. However, if sharing of such data among the federa-
tion parties is not properly controlled, privacy breaches could
easily occur.

Research to date has focused on developing privacy lan-
guages for open distributed systems, to enable the specifica-
tion of privacy preferences by individuals and of privacy prac-
tices by companies and organizations that collect PII. How-
ever, little work has been carried out to address privacy issues
in environments like federations, social networks, and virtual
communities. Here, parties are known to each other and be-
lieve, often based on a wrong understanding, that data will be
shared in a privacy conscious manner. Interactions are based
on trust and/or on contractual agreements. No automated tool
is typically in place to check if the preferences that a user has
expressed are actually consistent with the policies by other
parties in the federation that eventually receive this data.

In this paper we propose an approach for compliance
checking of agreed privacy policies and preferences in a fed-
erated identity management context. Such context is an im-
portant example for other scenarios, such as social networks,
which require PII sharing among parties. Our goal is to
achieve a privacy preserving methodology, by which PII can
be shared across parties by fully complying with the users’
personal preferences.

More precisely, our targeted scenario involves a federation
for digital identity management (FIM, from now on), com-
posed by organizations or enterprises, each identified by a
federated service provider (shortened as FSP).

FSPs choose to be part of a FIM and thus it is in their own
interest to comply with privacy policies in order to take ad-
vantage of the benefits offered by the membership. FSPs in
fact gain in credibility by keeping what is promised by their
privacy policies and by cooperating with the federation. They
also obtain accurate users’ information in a timely manner
which can, for instance, help them in refining business strate-
gies. Users also have several advantages in joining a privacy-
complying FIM. They can safely disclose personal informa-
tion and specify their own privacy preferences without having

to resubmit them multiple times and to check FSPs’ privacy
policies at each PII disclosure.

We specifically focus on the challenging case of a FIM
system that purely relies on the FSPs and and does not re-
quire a centralized identity provider. Such type of federation
is the de-facto approach used by many service providers to
share PII, based on user’s interactions and business needs.
However, our suggested approach can also apply to more
conventional FIM scenarios involving both FSPs and identity
providers.

Users are affiliated with one -or more- FSP of the feder-
ation to which they submit identity attributes and personal
information at the time of registration. Users also disclose
other identity attributes and credentials while interacting with
FSP’s to gain access to specific services or other resources.
As a consequence, identity information is distributed among
the various FSP’s the user has visited. Additionally, users
specify their preferences of how they want their data to be
handled-from whom, for how long, and so forth.

FSP’s besides interacting with users to provide them with
services, interact among each other in order to exchange
users’ identity attributes and credentials. Federation of iden-
tities enables FSPs to automatically authorize users to access
services (via single-sign-on, SSO [16]) and resources. By
obtaining users’ data from other members of the FIM, FSPs
avoid requiring multiple submissions of attributes and cre-
dentials from users that could lead to inconsistency and data
integrity violations-if different versions of the same data were
to be submitted-.

The key problem addressed by our work is how to ensure
that PII is exchanged between two or more parties only if
agreed privacy policies and preferences are satisfied. Pri-
vacy policies and user’s preferences thus need to be cross-
checked between parties that exchange PII. To this extent,
we introduce the concept of policy subsumption. Subsump-
tion is the core of automated exchange of federated identi-
ties, in that it allows each FSP to automate the process of
checking (privacy) policy compliance when transferring data
to other FSPs. Such compliance checking assures that data
is disclosed and managed consistently with the privacy poli-
cies, obligations and preferences initially agreed by the user.
In fact, we propose an approach that allows specific users
privacy preferences to be directly matched against service
providers’ policies, without requiring direct intervention by
the users. Subsumption also improves FSPs autonomy, in
that they are able to autonomously specify privacy prefer-
ences and practices, and verify their compliance with other
FSPs on-the-fly, as needed.

The specific contributions of this paper are summarized as
follows:

• An integrated notion of privacy policy that includes
parametric obligations [11] and users’ preferences.

• An approach to verify privacy policies and obligations

subsumption.
• Methods that allows users to control how and accord-

ing to which privacy policies PII is used and transferred
among FSPs.

The remainder of the paper is organized as follows. We
first present a summary of the main concepts related to on-
tologies and semantic representation of data. Next, we in-
troduce our extended syntax for the logical representation of
privacy policies and obligations. In Section 4 we discuss our
approach to privacy policy subsumption. We then present the
architectural components for integration of policy subsump-
tion in existing systems for digital identity management. We
discuss related work in Section 6. We conclude the paper in
Section 7.

2 Background on Ontologies and Semantic
Relationships among Data

To enforce privacy policies within a federation, parties typ-
ically share a common vocabulary. The approach we adopt in
our work for expressing such vocabulary is based on ontolo-
gies [4, 3, 18]. We assume that a domain independent ontol-
ogy exists that includes concepts for obligations, actions, pri-
vacy terminology, and so forth. In addition, we assume that
domain dependent ontologies are also shared among FSPs,
to define domain-dependent classes and properties. In what
follows, we thus refer to a single ontology that includes both
domain-dependent and domain-independent ontologies. We
assume that such reference ontology consists of a pair {D,
P}, where D is a set of data variable names, atomic or com-
pound, modelling users’ PII, whereas P is a set of relation-
ships connecting data items inD. Example of variable names
are ”social-security number, last name ” etc.. An atomic data
element is an element which does not have any sub-element
in the considered domain. In contrast, a compound data el-
ement is composed of two or more data elements, atomic or
compound. Examples of atomic data elements are social se-
curity number and last name. Compound data elements are,
for instance, medical report or X-ray report. As a convention,
given a set {d} subset of D, we add a caption to denote spe-
cific instances of {d}. For example, we denote with {d}val an
instance of data values for {d}.

To evaluate and compare data elements, we rely on the
well-known relation is part of . This relation is modeled as
the predicate is part of(d, d’), and reads as elements in d’ are
part of d. We represent this relation by the operator ≺ and
write ≺∗ d to denote d’s transitive closure.

We now clarify such notion with an example.

Example 1 Consider Figure 1 reporting a graph representa-
tion of Medical Report, X-Ray, Diagnosis etc. In the graph
representation -discussed in details in section 3.1- nodes are
data elements and edges denote is part of relations. The fact

2

Figure 1. Example of a simplified data graph.

that the X-Ray film is part of the X-Ray Medical Report is rep-
resented by an edge from the node representing the former to
the node representing the latter.

The following relations hold: Patient Demographic Info≺
Date of Birth and≺ ∗Patient Demographic Info={Ref. Num-
ber, Patient Name, Date of Birth, SSN}.

According to the above introduced notation, given {d} =
{d1, . . . , dk}, we denote as {d}exp the expansion of {d}, ob-
tained by the set union of the transitive closure of all data
items in {d}. Precisely, {d}exp =≺∗ d1

⋃
. . .

⋃ ≺∗ dk.

3 An Extended Specification Language for
Privacy Privacy Policies in Federated Envi-
ronments

In this section we provide our extended notions of privacy
policies and obligations. We also introduce the notion of data
graph, that is, a data structure representing relationships on
data items, along with associated privacy policies and obliga-
tions.

3.1 Privacy policy components

Privacy policies define rules for accessing and using PII re-
lated to individuals, disclosed by these individuals. In order
to reason about privacy policies - without having to deal with
various specific syntaxes, we use a logical representation of
privacy policies which is abstract and independent from any
existing lower level language. Our aim is to explicitly repre-
sent privacy concepts -such as data handling constraints and
obligations- along with more traditional access control con-
straints, at a logical level.

A privacy policy is composed of three main components,
discussed in this section: user’s privacy preferences, data

handling rules and obligations.
Privacy preferences, denoted as PPref, express individu-

als’ privacy preferences (preferences, for short) on how their
data must be handled. For our purposes, we abstract from the
actual encoding, and express preferences using terms from a
predefined set, denoted as PT, of privacy terms. Examples
of such terms are “preferred deletion date” and “notification
preference”. Each term is associated with a set of possible
values. Each preference is defined as a pair < pt, val >
where pt is an element of PT and val is a value from the do-
main of pt. Each PII item has associated with one or more
preferences. As discussed later on in the paper, such values
will be used to customize policies conditions and obligation
expressions. In case a user has no preferences, default prefer-
ences will apply based on common practices, organisations
guidelines and/or common sense (by keeping into account
common privacy practices).

Examples of privacy preferences are related to e-mail no-
tifications to users (e.g. when a FSP accesses and/or dis-
closes their PII), deletion dates of PII, lists of entities PII
data should/should not be disclosed to, etc. For example a
user, when disclosing his/her data (or afterwards, when self-
managing it, at a service provider’s web site) can define their
preferences in terms of notifications (e.g. by opting-in) and
deletion of his/her PII.

Data handling rules specify how users’ PII will be han-
dled by the FSP, for what reason and under which conditions.
Specifically, we represent a data handling rule (or DataHand,
for short) as a tuple of the following form:

DataHand = 〈purpose; recipient; access; cond〉 (1)

The purpose component specifies the allowed usage of the
data and it can convey a number of different purposes, while
the recipient constraints who is allowed to access the data;
the access component specifies which are the access modes.
Purpose, recipient and access components are specified as
list of values. We do not mandate a specific set of accept-
able values, as these depend on the specific language used to
which the final policies will be encoded to and of the domain
and business processes which the policies refer. The cond
component specifies a set of conditions for the application
of the policy. The conditions can refer to users’ data val-
ues, recipient’s attributes or contextual conditions and may
include parameters from the PPref expression. Specifically,
we support recipient conditions and user conditions. Recip-
ient conditions dictate conditions that a recipient may have
to satisfy. Such conditions may refer to technical capabilities
of the receiving entity (for instance, the data storage modes,
or the cryptographic protocols used for encode the data) or
they could specify conditions on the recipient properties (e.g.
“only American doctors can be recipients of the X-Ray taken
in the US-Health clinic”). Users’ conditions instead refer to
conditions against data. For example, one may specify that

3

the rule applies only if the user lives in a certain country or
has a given age.

For clarity, we assume conditions to be in a normalized
form, that is, that they are expressed in conjunctive form. We
also assume that all conditions in the set must be taken into
account when enforcing the data handling rule.

We omit from our analysis other typical components of a
privacy policy, such as the remedies and disputes (that are for
instance mandatory in P3P[14]), since they are not significant
in our framework. We in fact focus on upfront policy com-
pliance/checking, and not on how to handle operational and
violation matters.

Example 2 The data handling rule 〈{marketing, statistical-
analysis}; HP; Read; Time < 13/12/2007 〉 says that data can
be accessed by HP for marketing and for statistical analysis.
The condition is an example of user condition, and it says
that the data cannot be modified before the 13th of December
2007.

As we mentioned, an important feature of the introduced
representation is that data handling rules might include ad-
ditional user’s privacy preferences. For example, users’ data
may include user’s consent to be notified when new market-
ing material is available. In this case the condition component
of DataHand is parametric and is used to check if the action in
DataHand is allowed, based on a specific choice (preference)
made by the user. Both recipient and users conditions can be
parametric. An example of parametric condition is provided
in Example 4.

Obligations are the other main component of privacy poli-
cies. Their aim is to define expectations and duties on how to
handle PII, also based on privacy preferences of users. Here,
we discuss obligations from a logical point of view, under the
assumption that obligations be mappable to meaningful op-
erational obligations. Obligations’ components are modelled
by the following tuple:

Obl = 〈events, actions, corrective− actions〉 (2)

The events component defines a logical (AND) conjunc-
tion of events that need to happen in order to trigger the ac-
tions part1. For example, a simple event could be a time-
based condition (e.g .CurrentTime >= timex). The actions
component defines which tasks must be executed in order
to fulfil the obligation. This might include sending a noti-
fication to the data subject, deleting (part of) data, executing
applications. Actions as well as events must keep into ac-
count privacy preferences PPref, as illustrated in Example 4.
The corrective-actions component defines which tasks must
be executed when an obligation is violated. There might be
no corrective actions or these could be the same actions exe-
cuted for the obligation enforcement or the corrective action

1Disjunction could also be supported. For simplicity we here consider a
minimal form of obligations.

might just consist of sending a notification to the administra-
tor. Also corrective actions must keep into account privacy
preferences.

The semantics of such tuple is given by a reactive rule of
the form: WHEN events THEN actions: ON-VIOLATION:
corrective-actions. Notice that obligations are parametric
[11], in that they can be instantiated using users’ preferred
values (indicated in the privacy preferences).

Example 3 The following is a simple example of obliga-
tion, parametric with respect to the event. The target is PII
items referred by the policy which the obligation belongs.
It states that if the FSP accesses user’s data and the user
opted in for being notified, the user should be notified: 〈
{ACCESS(UserData); Notify-User(opted-in)}; Notify User;
notify Admin〉. The trigger-like representation of such rule is
as follows:
WHEN user (ACCESS(UserData) AND Notify-User(opted-in)) THEN No-

tify User ON-VIOLATION (Notify Admin).

3.2 Privacy policies

Having introduced the building blocks of privacy policies
we can now present our integrated representation of privacy
policies. As described in the following definition, privacy
policies can be instantiated or generic, depending on whether
they refer to a specific set of data values and users’ prefer-
ences or if they are defined in terms of a set of data variable
names.

Definition 3.1 [Privacy Policy tuple] A privacy policy PPol
is defined as a tuple of the form 〈 {d}spec, { DataHand; Obl;
PPref } 〉, where:

• {d}spec denotes the data specification of PII items, and
it can be either defined in terms of a set of data variable
names2 {d} or a set of data values, {d}val.

• DataHand specifies how to handle {d}spec; it is spec-
ified according to expression 1 (Section 3.1), possibly
including preference values from PPref.

• Obl represents the unique identifier of the obligation
which the FSP is subjected to with target data {d}spec.

• PPref denotes user’s privacy preferences; it is a not
mandatory element.

From now on, we will refer to single policy components
using the dot notation.

Instantiated privacy policies are the result of a successful
policy matching against users’ preferences. To denote privacy
policy matching we employ a matching function that takes as
input a policy, a user preference and returns false is there is
no match or returns the instantiated policy if there is a match.

2We assume the variable domains to be clear from the context.

4

We denote PPolM PPref the matching between a privacy
policy PPol and user’s preference PPref. Instantiated privacy
policies are denoted as PPolPPref .

By definition, the same policy3 can refer to a set of data
items/variable names. The policy applies as it is to each
item/variable in {d}spec. More precisely, in case the policy
is specified by compound data items, it applies also to the
items in their transitive closure, {d}exp, (see Section 2), un-
less more specific policies for the smaller data items exist.

An example of a privacy policy is as follows.

Example 4 Doctors are allowed to store X-Ray medical re-
ports for statistical analysis under the condition that patient’s
age is greater than 18 yielding an obligation to delete PII af-
ter the number of years specified by the patient.

〈{X −RayReport, PatientLastName}
{DH; Ob1; {DeleteT imePref}}〉

DH = 〈{statysticalanalysis, marketing}; Doctors; store;
{BirthDate > 1980〉
Ob1 = 〈(CurrentT ime >= (X −RayReport.PPREF.
DeleteT imePref)); Delete(PatientLastName);

ON − V IOLATION(Notify Admin)〉

PPREF is a set containing just an attribute
{DeleteTimePref} and is associated with the type of
data “X-Ray Report”. The actual value of this preference
depends on the specific instance of the data.

Possible alternative policies for a same data item could be
expressed and combined into a unique disjunction form for a
more efficient representation. However, we employ this sim-
ple yet effective representation (also referred to as canonic
privacy policy) to reason about policy harmonization and sub-
sumption with no ambiguity.

3.3 Data graph

We provide a graphical representation of the FSP’s privacy
policies and data, to be instantiated before actual data disclo-
sure or upon disclosing it. Such data structure, referred to as
data graph, is a key structure describing how the various data
items are related -according to the domain ontology used by
FSPs- and the the corresponding privacy policies and obliga-
tions the FSP is committed to.

Definition 3.2 [Data Graph]. Let Ont={D, P} be the on-
tology used by the FIM system. Let {d}, {d} ∈ D, be a
set of data variable names and {d}exp be its expansion. Let
PPol-Set be the set of privacy policies associated with {d}.
Let Cond-Set be the set of conditions appearing in the condi-
tion components of DataHand of PPols in PPol-Set. A graph
PGu for {d}exp, is a directed graph {N , E, Φ} where:

• N is the set of nodes; each node n ∈ N has one of the
following forms:

3We drop the term privacy to refer to policies when obvious.

– policy-node - n is a pair 〈b,DataHand〉, where
b ∈ {d}exp, DataHand is a data handling rule of
a policy PPol ∈ PPol-Set, such that PPol.{d}spec

includes b. DataHand can be empty, if n has only
one incoming edge;

– obligation-node - n conveys Obl, where Obl de-
notes an obligation identifier of a policy PPol ∈
PPol-Set.

• E is the set of edges; E = {e = (n, n′)|
(n = 〈b,DataHand〉 is a policy-node ∧ n′ =
〈b′, DataHand′〉 is a policy-node∧n.b ≺ n′.b′)
∨ (n = 〈b,DataHand〉 is a policy node ∧ n′ =
〈Obl〉is an obligation-node ∧ ∃ PPol ∈ PPol-
Set| PPol = 〈{d}spec, DataHand, Obl, PPref〉)}

• Φ : E → Cond-Set
⋃

Cond-Set∗ is the edge labelling
function. An edge label expresses conditions that apply
to the data in the node pointed by the edge.

Example 5 An example of data graph is shown in Figure
1. The circular nodes, such as the “Patient Demographic
Info” correspond to the policy nodes, whereas the rectan-
gular nodes such as “Delete after 3 months from the start-
ing date” correspond to the obligation nodes. The edges are
represented as directed arrows from one policy node to the
other. Finally the value of edge labeling function, such as
“Age>18” labeling the edge from “Medical Record” to “Pa-
tient Demographic Info” denotes the condition that applies to
the “Patient Demographic Info” node.

By definition data graphs represent the policies that apply
to the expanded data set of an initial set {d}. This condition is
required to ensure that also implicit data items are considered
and their corresponding policies evaluated. As we will see,
this design enables to check for policy subsumption without
incurring in any inconsistency.

Notice also that edges connect either nodes of the same
type or policy nodes with obligation nodes; nodes connected
in the latter case bind components of a same policy. Such
representation has the advantage of directly supporting links
from a same obligation to potentially multiple policy nodes
to which the obligation refers to. Edges are possibly labelled
with conditions, which are assigned by the edge labelling
function. Such function specifies the conditions that apply
to the data of the node entering the edge. See for example
Figure 1 and the condition Age>18.

If a policy element in a node is empty, it means that no
specific privacy policy for the data in the node has been spec-
ified. Then, the closest non-empty policy appearing in an an-
cestor node is applied. This case can happen for example for
a policy associated with contact information data, that thus
applies also to the telephone number and postal address. Op-
erationally, when compound data is to be shared, the privacy
policy that applies to the compound data is used only if it is

5

not superseded by a more specific policy that applies to the
data subcomponent.

Example 6 With reference to Figure 1, there is no specific
policy specified for the patient’s Date of Birth. In case such
data is released, privacy policy identified as p22 is applied.
By contrast, if SSN is released then p24 applies.

Obligation nodes are attached to the node conveying the
data referred in the obligation. For instance, in Example 4,
the obligation node is attached to the patient last name node
(see Figure 1), since the obligation refers to such data item.

4 Privacy Policy Subsumption

In order to provide a systematic approach for compliance
checking of privacy policies we rely on the introduced notion
of data graph, and on the notion of subsumption. The former
is useful to identify, given a data set, the relevant set of poli-
cies. The latter is useful for understanding the relationships
among policies.

Policies’ subsumption is verified by comparing each pol-
icy component. In particular, to compare conditions it is nec-
essary to identify the set of legal values satisfying a given
condition. We compute such values by using a simple func-
tion, referred to as LegalValues(X), which returns the set of
values for a condition X (also used in Lines 4,5 of Algorithm
2). The function may return an unbounded set of values or
variable names. Without loss of generality, in this discussion
we focus on finite sets.

We define policy subsumption in what follows.

Definition 4.1 [Policy subsumption] Let PPola and PPolb
be privacy policies, specified according to Definition 3.1.
PPolb subsumes PPola if the following conditions hold:
• The data handling rule of PPolb is implied by the rule in
PPola, that is:

• PPola.DataHand.Access⊂ PPolb.DataHand. Access;
• PPolb.DataHand.Purpose⊂ PPola.DataHand.Purpose

• For all conditions c appearing in PPola.DataHand.cond,
the output of LegalV alues(c) is included in the cor-
responding output of LegalV alues(c′), where c corre-
sponds to the respective condition in the PPolb.

• The obligation in PPolb matches the actions and conditions
imposed by PPola. Precisely:

• PPola.Obl.actions=PPolb.Obl.actions and PPola.Obl.

corrective-actions= PPolb.Obl.corrective-actions

• For all conditions c appearing in PPolb.Obl.Events, the
output of LegalV alues(c) is included in the corre-
sponding output of LegalV alues(c′), where c corre-
sponds to the respective condition in the PPolb.

Algorithm 1 Subsumption(PPol-Seta, PPol-Setb, {d}a,
PGa, PGb)
1: {Recall graph’s structurePGa={N , E, Φ }}
2: { Initialize set Subsumed}
3: Subsumed ← {d}
4: for all d ∈ {d}a such that ∃db and da = θ(db) do
5: {θ denotes the semantic equivalent function}
6: if n.d ∈ N ∧ n.PPol 6=⊥ then
7: {Find the right policy in a’s graph}
8: DataHanda = n.PPola.DataHand
9: else

10: Let e = (n′, n) ∈ E be the entering edge for n
11: DataHanda = n′.PPola.DataHand
12: end if
13: if n.d ∈ N ∧ n.PPol 6=⊥ then
14: {Find the associated policy b’s graph}
15: DataHandb = n.PPolb.DataHandb

16: else
17: Let e = (n′, n) ∈ E be the entering edge for n
18: DataHandb = n′.PPolb.DataHande
19: end if
20: for all DataHanda.Xa do
21: CASE Xa = purpose; Xa = Access
22: if DataHanda.Xa ⊂ DataHandb.Xb then
23: Subsumed← Subsumed -d
24: EXIT For Loop
25: end if
26: CASE Xa = cond
27: SubCond =CheckCondition(DataHanda.conda,

DataHandb.condb)
28: if SubCond=false then
29: Subsumed← Subsumed -d
30: EXIT For Loop
31: end if
32: ENDCASE
33: end for
34: Obla = PPola.Obl
35: Oblb = PPolb.Obl
36: for all Obla.Xa do
37: CASE: Xa = actions, Xa = corrective-actions
38: if Obla.Xa 6= Oblb.Xb then
39: Subsumed← Subsumed -d
40: EXIT for loop
41: end if
42: CASE: Xa = events
43: if ∃c ∈ Obla.eventsa then
44: SubCond 1 =CheckCondition(Obla.eventa, Obla.eventb)
45: if SubCond 1=false then
46: Subsumed← Subsumed -d
47: EXIT For Loop
48: end if
49: end if
50: end for
51: end for
52: {Check that the two SPs support the same type of preferences}
53: PPrefa = PPola.PPref
54: PPrefb = PPolb.PPref
55: if PPrefa 6⊆ PPrefb then
56: Subsumed ← Subsumed -d
57: end if
58: return Subsumed, SubCond

⋃
SubCond 1

• PPRef types supported by PPola and PPolb are compatible,
in terms both of privacy terms (pt) and of supported prefer-

6

Algorithm 2 Function CheckCondition(conda, condb)
1: SubCond← ∅
2: if ∃conda ∧ condb st. conda.d = θ(condb.d

′) then
3: if conda, condb of the form d op value then
4: Lv1=LegalValue(conda)
5: Lv2 =LegalValue(condb)
6: if Lv1 6⊂ Lv2 then
7: return SubCond ← false
8: end if
9: else

10: if conda, condb of the form d op [val1, . . ., valk] then
11: if [val1, . . . , valk]b 6⊆ [val1, . . . , valm]b then
12: return SubCond → false
13: end if
14: end if
15: end if
16: {var denotes a variable}
17: if conda, condb of the form d op var then
18: SubCond← conda

19: else
20: if conda, condb of the form d op [var1, . . ., vark] then
21: if [var1,. . . , vark]a 6⊆ [var1,. . . , vark]b then
22: return SubCond ← false
23: else
24: SubCond← conda {Conditionally subsumed}
25: end if
26: end if
27: end if
28: else
29: SubCond← FALSE
30: return SubCond
31: end if

ences.

Example 7 Consider the following privacy policy, applied
by hospital Global-Health. Nurses and doctors are allowed
to store on X-Ray medical reports for statistical analysis un-
der the condition that patient’s age is greater or equal to 21
yielding an obligation to delete identifiable information after
4 year. Users will be notified in case of violations.
〈{X −RayReport, PatientLastName}, {DH1; Obl; PPref}〉
DH1 = 〈statysticalanalysis; {Doctors, Nurses}; store;
BirthDate ≤ 1988〉
Obl = 〈(CurrentT ime−DisclosureT ime >= 4);

Delete(PatientLastName); ON − V IOLATION(Notify Admin)〉
The above policy is subsumed by policy of example 4. Sub-

sumption holds because the two policies are specified against
the same set of data variable names ({X-Ray Report, Pa-
tient LastName}), and the data is accessible to a set of en-
tities which is a superset of the set of entities specified in
the policy of example 4. The condition specified in Pol1
is included in Pol2 in that LegalValues(BirthDate<1990)=
[1900, 1990] while LegalValues(BirthDate≤1988)= [1900,
1988]. Concerning the obligations, the same conditions are
applied by both hospitals. Notice that subsumption final deci-
sion is subjected to the user privacy preferences, in that only
if the years specified by the user’s preferences are less than
PPref.DeleteTimePref the condition will be satisfied.

A subsuming privacy policy is thus a policy which guar-
antees that the actions/conditions mandated in the subsumed

policy are preserved when enforcing it.
Subsumption policy checking is carried out when two

FSPs share some PII, for example to enable a transaction or
a business interaction involving multiple parties. We refer to
the FSP storing users’ PII and knowing the associated PPref
of users as the Provider FSP. We refer to the FSP receiving
the users’ PII as Receiver FSP. The outcome of a subsump-
tion policy checking process will highlight (if it does not fail)
if the conditions and constraints in the two sets of policies (of
Provider FSP and Receiver FSP) are compatible - in particular
if the Receiver FSP’s policies satisfies all policies mandated
by Provider FSP’s ones, inclusive of user’s PPref.

Subsumption can be verified according to different strate-
gies, depending on the frequency of the checking and on
whether subsumption is performed on policies specified in
terms of data values -and instantiated privacy preferences- or
not. Thus, we support two different versions of algorithms
for subsumption checking:

1. Subsumption checking algorithm for policies on data
variable names of specified types between Provider FSP
and Receiver FSP;

2. Subsumption checking algorithm for “contextualized”
policies (i.e subject to preferences and other metadata),
given a specific instance of data, again between Provider
FSP and Receiver FSP.

The first subsumption checking algorithm (and related pro-
cesses) allows a Provider FSP to perform a general checking
about the compatibility of its own policies with policies of
other FSPs. Such check can be part of an ongoing, periodic
verification process among service providers that belong to
the same “circle of trust” [2] i.e. “a group of service providers
that know each other and are used to engage in business in-
teractions”. To avoid not required executions, subsumption
checking can be driven by explicit ‘policy-change” or “data-
type-change” events communicated to the FSP by other fed-
erated FSPs.

Notice that this kind of policy checking cannot keep into
account specific values of privacy preferences at the granu-
larity of a specific user. As such, some conditions cannot be
fully checked in terms of subsumption (for example, obliga-
tion conditions might involve privacy preferences and con-
straints on value ranges) because of their dependency on in-
stantiated privacy preference values. In this case, by assum-
ing a high level compatibility of these policies, the algorithm
specifies the conditions to be verified upon privacy prefer-
ences’ instantiation (set SubCond returned by Algorithm 1),
thus determining a conditional success.

The second subsumption checking algorithm (and related
processes) performs a fine grained checking at the time of
disclosing a specific piece of user’s data, by keeping into ac-
count specific values of attributes in conditions and obliga-
tions along with specific, instantiated user’s privacy prefer-
ences. It is always to be performed in case some conditions

7

need to be verified based upon users’ actual preferences and
values. Thus, it includes checking attribute values or com-
paring actual conditional ranges and may turn a conditional
Success into a Success or a Failure.

Example 8 Consider a case when there are two clinics US-
Health and Global-Health. Both Clinics allow US doctors to
view the results of enrolled patients which have the patients
permission to do so. Global-Health also allows international
doctors to view their patient records given an international
license certificate. US-Health is particular to the USA and
therefore does not allow international access. Algorithm 1
can be used by the clinics which can check for policy sub-
sumption for all cases relating to access by US doctors. How-
ever Algorithm 2 would need to be carried out based on the
request of a given doctor.

The Subsumption() algorithm in Algorithm 1 reports the
first version of subsumption checking described above.

Subsumption() first finds the appropriate policies to
match by navigating the two FSPs’ data graphs (line 2-17).
Then, for each privacy policy to be checked, and in turn for
each PPol component the algorithm evaluates whether the
corresponding items of the two policies are included in one
another. Equivalence of sets is instead mandated for the obli-
gation components, to ensure that the two parties commit on
the same type of obligations. This process requires verifying
the single obligations and data handling components (lines
19-55), and running a specific function CheckCondition(),
reported in Algorithm 2, whenever conditions are to be evalu-
ated. Privacy preferences are matched (lines 57-59) to verify
that at least the types of preferences supported by the two
FSPs are compatible and based on the same privacy terms.

We provide a more generic definition of subsumption with
respect to a specific data set {d}, in case {d} denotes data
variable names and thus privacy preferences are not instanti-
ated.

Definition 4.2 [Data Set’s Policies Subsumption] Let {d}
be a set of user’s data variable names. Furthermore, let
PGu = {N , E, Φ} be the data graph at the FSP Provider end
associated to {d} and PG′u = {N ′, E′, Φ′} FSP Receiver’s
data graph. FSP Receiver’s policies subsume FSP Providers’
policies for data {d} iff, the following conditions are met:

• ∀d ∈ {d}∃n′ ∈ N ′ ∧ n ∈ Ns.t. n.d = θ(n′.d) ∧
n.PPol subsumes n′.PPol according to Definition 4.1;

• E′ ⊂ E;
• The labeling function Φ : E ← Cond-Set

⋃
Cond-

Set∗ is equivalent to Φ′ in that each condition c appear-
ing in Cond-Set is mapped by φ′ into a condition c’
such that function CheckCondition(c, c′) (Algorithm
2) either returns true or condition c4.

4We recall that c implies that the condition is to be evaluated upon user’s
instantiation of privacy preference

4.1 Analysis of subsumption

We now informally discuss the subsumption algorithm by
analyzing its correctness, soundness and complexity.

Correctness In our context correctness refers to the ability
of the Subsumption() algorithm to determine subsumption
for the data items that satisfy the subsumption conditions.

Theorem 4.1 [Subsumption Correctness] Let {d} be a set
of data variable names. Let FSPr and FSPp be the FSPs
maintaining respectively PPol-Set-p and PPol-Set-r privacy
policy sets. Algorithm 1 returns in the Subsumed set all and
only the data items in {d} for which subsumption holds, and
it identifies the conditions under which subsumption holds for
data items for which subsumption is conditional.

The above result follows from the mechanism underly-
ing subsumption checking. If subsumption is possible then
it means that the privacy policies components are defined in
such a way that all the components of the subsuming policy
are included in the subsumed one, except for the special case
of the obligations (line 20-21 of Algorithm 1). In the case
of obligations, in fact, to avoid ambiguities and possible in-
consistencies, we require actions and corrective actions to be
identical. Although this approach may seem restrictive, from
a practical standpoint it can in fact be easily addressed, if the
Receiver FSP is willing to simply use the sender’s obligations
as they are.

Correctness for subsumption of conditions is guaranteed
by Algorithm 2, which illustrates how all conditions are eval-
uated and compared based on their domain.

Soundness Soundness of Algorithm 1 is guaranteed if the
process of subsumption is equivalent to the successful match-
ing of users’ privacy preferences with the FSP Receiver’s
policies, for any possible preference expressed by the user.
The proof is reported in Appendix B.

Theorem 4.2 [Soundness of Policy Subsumption] Let
FSPp be a FSP having user u’s data according to privacy
policies PPola. Furthermore, let FSPr be a second FSP ap-
plying privacy policies PPolb on data {d}. Let PPola M
PPref be verified. If Algorithm 1 returns subsumed then
PPolb M PPref.

By definition, soundness differs from correctness since it
shows that if the algorithm returns subsumed then it is based
on a correct input that satisfies subsumption.

Decidability An additional important problem to consider
within our context is that of decidability. In general, sub-
sumption may be intractable [9]. Because of the restricted
vocabulary adopted by our approach, subsumption is always

8

Figure 2. High-level System Architecture

decidable for the policies that can be expressed in our speci-
fication language.

The sets corresponding to the DataHand and Obl compo-
nents are in fact enumerable. That is, both Algorithm 1 and
2 enumerate the sets which ensure the termination of the al-
gorithms. For each component the subsumption relation is
evaluated. After evaluating each element of the defined sets,
the algorithms always terminates with a decision on whether
the subsumption relation holds. The only assumption for en-
suring that subsumption is in fact decidable is that policies
components are all well specified, using elements of the ref-
erence ontology.

Complexity Algorithm 1 is polynomial of second order n∗
m+2m (given the two nested loops in Algorithm 1), where n
is the maximum size of policy sets and m is the maximum size
of data sets. 2 is the number of times Algorithm 2 is invoked.
The algorithm is executed at most two times for each data for
which corresponding policies are checked.

5 System Architecture

Current federated identity management solutions (e.g.
based on Liberty Alliance, Shibboleth, OpenId, WS-*, etc.
specifications) include provisioning, authentication, access
control and authorization solutions. We designed our pol-
icy subsumption checking solution as a plug-in that can be
deployed in such architectures and leverage some of their ex-
isting functionalities. Figure 2 provides a high-level view of
the architecture of our solution. This architecture consists of
the following components:
• Policy and Data Types Feeds: it explicitly advertises - at a
FSP site - privacy policies (and related privacy preferences)
that apply to PII, along with an indication of the used ontol-
ogy. This information can be checked both by humans, in a

readable format, and by our solution, once retrieved in a pro-
grammatic way (for example via accessible XML feeds);
• Policy Subsumption Checking Component: it implements
policy subsumption checking between two FSPs, based on
the algorithms described in Section 4. Such component is in
charge of: (1) retrieving privacy policy information and data
type definitions from other FSPs (via the Policy and Data
Types Feeds); (2) checking for subsumption of the FSP pri-
vacy policies against the ones defined by the FSP partners,
accordingly to the algorithms and steps illustrated in this pa-
per.
• Policy and Preferences Mapper: it is in charge of manipu-
lating users’ PII and their privacy preferences and mapping
them onto operational access control policies and privacy
obligations. This module ensures that users’ preferences can
be managed and enforced over time [11];
• Obligation Management System: it is in charge of (oper-
ationally) managing and enforcing privacy obligations (e.g.
on data deletion, data transformation, notifications, etc.) on
locally stored PII. These obligations, inclusive of paramet-
ric obligations i.e. subject to privacy preferences defined by
users, are consistent with the obligation policies advertised
by the FSP, for a given data type [10];
• Access Control: it is a privacy-aware access control com-
ponent, in charge of intercepting attempt to access, modify
and store personal data and ensuring that this happens consis-
tently to predefined access control policies and users’ prefer-
ences. This component enforces fine-grained access to data
and is configured by the Policy & Preferences Mapper, which
operates like the mapper for obligations [10];
• Identity Federation Manager: it denotes a standard identity
federation component (e.g. as specified by Liberty Alliance,
WS-Federation, etc.), extended with a mechanism to intercept
the disclosure of a user’s PII from a FSP to another FSP and
subordinates the actual disclosure based on a positive policy
compliance check (in particular in case of conditional suc-
cess), that keeps also into account any related user’s privacy
preferences. The Federated Identity Manager is activated in
case a single-sign on session is required (due to users’ activi-
ties, e.g. trying to access remote services) or in case data has
to be transferred from one FSP to another FSP.
Notice that our approach differs from current solutions where
the disclosure of data is subordinated by simple access con-
trol checks, primarily based on local information (e.g. simple
access control preferences set by users) and/or contractual as-
sumptions on the other federated party.

6 Related Work

The problem of privacy policy compliance has been inves-
tigated by both researchers and practitioners.
W3C P3P[14] addresses such problem in the context of User-
Service Provider interactions; in this context, sets of users’

9

preferences are matched against service providers’ privacy
promises. Despite the fact that such type of compliance
checking is outside the scope of our work, it is nevertheless
important to highlight that policy checking in such context is
pretty much simple. Matching is primarily based on compar-
ing sets of labels and thus it does not keep into account the
complexity of actual privacy policies including conditional
data handling and privacy obligations.

In the context of multi-party interactions, involving two
or more service providers, an approach has been developed
in the context of the PRIME Project [15]. Such an approach
is based on checking upfront the requests of credentials by a
data requestor - in our context, this would be the FSP provider
- against the policies of the sender service provider. Such
matching is executed during a negotiation process between
two service providers (and similarly, between a user and a
service provider), in the context of an existing interaction,
driven by an access control decision framework. This ap-
proach requires that all involved parties use the PRIME Tool-
box/Middleware and engage in specific interactions.
In our work we aim at “detaching” the policy checking and
subsumption phase from the operational/enforcement phase.
Such phase is the phase where policies are actually deployed
into service providers’ systems and solutions that are in
charge of enforcing them. It includes, for example, access
control systems and obligation management systems.

A FSP can check, upfront, if the policies of a remote FSP
can be subsumed - without having to engage in interactions or
negotiations. Of course, the checking process can be carried
out in a fine grained way, to the point that specific privacy
preferences can be factored in, at the actual disclosure time
of data, should subsumption of policies be conditional to this
specific information.

Current commercial federated identity management solu-
tions, such as the ones compliant to Liberty Alliance stan-
dards [2] and WS-* standards [8] do not provide policy sub-
sumption/checking capabilities i.e. they do not provide au-
tomated ways to check for compliance of policy sets; they
primarily rely on contractual agreements between an Identity
Provider and Service Providers and on simple mechanisms
to check for user’s privacy preference, like P3P, at the time
of PII disclosure. Within the Liberty Alliance[6] framework,
for example, a multi-level policy based approach has been
proposed to facilitate attribute exchange in federations. The
aim of the approach is to give users, i.e. the data providers,
full control on the release and usage of their information
stored at the attribute providers while simplifying the match-
ing of service providers’ privacy policies with the users’ pri-
vacy preferences. However, the proposed approach restricts
the set of privacy policies and preferences to a small num-
ber of standardized privacy policies to which all federation
entities can refer. Moreover, it does not provide a mecha-
nism for the enforcement of these policies at the SP’s site.

Another interesting approach is by Ahn et al. [1], who pro-
pose a privacy preference expression language called PREP
for recording the user’s privacy preferences with Liberty en-
abled attribute providers. The proposed language, a restricted
version of APPEL, supports the multi-level policy approach
suggested in Liberty Alliance specifications. Our approach
can be leveraged to provide additional “policy compliance
checking” capabilities, complementary to these existing ap-
proaches. Similar observations apply to other federated iden-
tity management frameworks, such as OpenId[17], Higgins
[5] and Shibboleth[7]. Our work can be exploited as an “add-
on” capability to provide an additional level of trust, by en-
abling upfront checking of policies.
The problem we address in this paper has some similarities
with policy reconciliation protocols [19, 9]. Policy reconcili-
ation in general has the goal of determining policy rules that
two or more parties have in common in the context of het-
erogeneous access control structure. Although related, such
problem differs from ours since reconciliation focuses on har-
monizing access control policies and on taking consistent au-
thorization decisions. We instead focus on the specific prob-
lem of reconciling privacy rules, obligations and users prefer-
ences. Due to the different nature and purposes of such poli-
cies -one aims to establish common access control decisions
while the other deals with privacy practices of PII holders-
, policy reconciliation process is complementary to privacy
policy subsumption. Privacy has been considered in [19].
However, they propose an approach based on cryptographic
functions to protect the privacy of the policies themselves,
and not for the data which the policies are specified for.

7 Conclusion

In this paper we address the problem of privacy in a fed-
erated environment. Specifically, we introduced mechanisms
and algorithms for policy compliance checking between fed-
erated service providers, based on an innovative policy sub-
sumption approach. We formally introduce and analyze our
approach.We also introduce and describe a high-level archi-
tecture of our solutions that is suitable for deployment and
application in existing federated identity management solu-
tions, such as Liberty Alliance, WS-* and Shibboleth. The
prototype of the modules illustrated are currently under de-
velopment. We are investigating how to translate the logic
formalism presented in the paper in a machine readable for-
mat, by leveraging existing privacy languages. Future work
will include deploying our solution in the context of Shibbo-
leth and Liberty Alliance and providing a quantitative analy-
sis of its impact in terms of performance and efficiency.

10

References

[1] Gail-Joon Ahn and John Lam. Managing Privacy preferences for fed-
erated identity management. In Digital Identity Management, pages
28–36, 2005.

[2] Liberty Alliance Project. http://www.projectliberty.org.

[3] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Ontology Match-
ing: A Machine Learning Approach, 2003.

[4] T. R. Gruber. A translation approach to portable ontology specifica-
tions. Knowledge Acquisition, 5(2), 1993.

[5] Higgings. Open Source Initiative, http://www.eclipse.org/higgins,
2007.

[6] http://www.projectliberty.org. Liberty architecture framework for sup-
porting privacy preference expression languages (ppel’s), 2003.

[7] Internet2. Shibboleth. http://shibboleth.internet2.edu.

[8] Web Services Standard Listings. http://en.wikipedia.org/wiki/
list of web service specifications, 2007.

[9] Patrick McDaniel and Atul Prakash. Methods and Limitations of Secu-
rity Policy Reconciliation. In 2002 IEEE Symposium on Security and
Privacy, pages 73–87. IEEE, MAY 2002. Oakland, CA.

[10] Marco Casassa Mont and Filipe Beato. On parametric obligation poli-
cies: Enabling privacy-aware information lifecycle management in en-
terprises. In POLICY, 2007.

[11] Marco Casassa Mont and Robert Thyne. A Systemic Approach to Au-
tomate Privacy Policy Enforcement in Enterprises. In Privacy Enhanci-
hng Technologies Workshop, 2006.

[12] Eric Norlin and Andre Durand. Whitepaper on towards federated iden-
tity management. in ping identity corporation, 2002.

[13] Privacy Organization. http://www.privacy.org/.

[14] The Platform for Privacy Preferences 1.0 (P3P1.1) Specification.
http://www.w3.org/tr/p3p/.

[15] Privacy for Identity Management in Europe. EU Project Framework VI
PRIME. https://www.prime-project.eu, 2007.

[16] Vipin Samar. Single sign-on using cookies for web applications. In
WETICE, pages 158–163, 1999.

[17] SourceID: Open Source Federated Identity Management.
http://www.sourceid.org/resources/basics.html.

[18] M. Uschold and M. Gruninger. Ontologies: Principles, Methods, and
Applications. Knowledge Engineering Review 11(2), 1996.

[19] Jonathan Voris, Sotiris Ioannidis, Susanne Wetzel, and Ulrike Meyer.
Performance evaluation of privacy-preserving policy reconciliation
protocols. In POLICY, 2007.

A Proof of Theorem 4.1

The proof for theorem 4.1 follows from the definition of
subsumption. Given two policies PPola and PPolb, if Re-
ceivers PPol subsumes Provider PPol then all conditions of
components of Definition 3.1 are satisfied.

The same conditions are checked for each policy compo-
nent by Algorithm 1. Additionally, Algorithm 1 satisfies each
condition of Definition 3.1 by making use of the CheckCon-
dition() function to identify conditions compliance. The same
set of checks is repeatedly executed for each data item iden-
tified; thus the result holds.

B Proof of Theorem 4.2

We prove this claim by contradiction. Assume that
Algorithm 1 returns a data item d in the set Subsumed
that is in fact not subsumed. According to algo-
rithm 1, d is in the subsumed set if the conditions
DataHand.X, DataHandp.Xp ⊂ DataHandr.Xr and
Obl.X, Obl.Xr, Obl.Xp = Obl.Xb with X ranging among
the elements are satisfied (lines 46). Additionally the policy
tuple and PPref supported by by the two FSPs must be of
the same structure and conditions need to be unconditionally
inclusive one of another.

Since the above are the same conditions according to
which subsumption is specified, if Algorithm 1 succeeds than
the data input must be subjected to subsuming policies. This
is however in contradiction with our initial assumption. We
thus conclude that the thesis holds. 2

11

