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Abstract 
 

X.509 Proxy Certificates have been proposed for use in the Grid Security Infrastructure 
to allow dynamic delegation of rights and single sign-on for end users.  We have 
evaluated proxy certificates to secure a service-oriented architecture for digital content 
based on Web Services.  We describe how support for proxy certificates was 
implemented in Java through extensions to the Java Cryptography API and related 
security APIs.  The principal challenges involved providing control over which proxy 
certificate to use per SSL connection, validating proxy certificate chains and supporting 
runtime generation of proxy certificates.   
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1 Introduction 
X.509 Proxy Certificates have been proposed by the Grid Computing community for use 
in the Grid Security Infrastructure (GSI) allowing delegation of rights and single sign-on 
for end users [1].  A proxy certificate is a certificate that is derived from and signed by a 
normal X.509 Public Key End Entity Certificate (EEC) or by another proxy certificate.  
They are realized as regular X.509 Public Key Certificates [1] with an embedded proxy 
certificate information extension containing proxy certificate specific information.  The 
structure of the extension, an associated application profile for its use and validation 
requirements are defined by the PKIX working group.  At the time of performing this 
work1, the format of the information extension had just reached RFC status within the 
IETF [3].   
 
We assessed proxy certificates for use in the security infrastructure of a service-oriented 
architecture for digital content based on Web Services.  This required the development of 
a Java API to allow developers to easily add proxy certificate support to secure existing 
Web Services.  To achieve this, a proxy certificate aware SSL implementation was 

                                                 
1 The work was performed over the period 2004-05.     
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developed with additional support for using HTTPS in conjunction with proxy 
certificates.  The implementation was created as a set of extensions to the Java 
Cryptography API and related APIs; the version of JDK was 1.4, although the approach 
should be applicable to later versions.  The implementation involved tackling several 
challenges which are detailed in section 3 and which comprises the main part of this 
report.     
 
The report is organized as follows.  Section 2 provides an overview of proxy certificates 
and their applicability.  Section 3 contains the detailed description of how the proxy 
certificates were implemented using the Java Cryptography API and related security 
APIs.  A summary is presented in Section 4.  Additional information about the API is 
provided in the Appendix.   
 

2 Introduction to Proxy Certificates 
The use of proxy credentials is a relatively new technique introduced in [1].  Two uses of 
proxy certificates of interest to out service-oriented architecture are enabling single sign-
on and delegation over a network.   
  
Single sign-on requires a user to authenticate only once, within a domain, using their 
X.509 certificate in order to create a proxy certificate.  Thereafter, the proxy certificate 
can be used to authenticate with multiple services within the domain.  Delegation entails 
a user, granting some or all of its privileges to another entity to perform some action on 
its behalf that involves calling on other services that may enforce some form of access 
control.  For example, in our context a user may request a format transcoding service to 
transform content held in a separate content management system; the transcoding service 
should have access limited by the user’s privileges and conversely the user should not be 
able to gain access to content indirectly for which they do not have permissions.   
 
The following two sub sections provide an outline of how proxy certificates are used to 
support these usage patterns.   
 

2.1 Single Sign-On 
Typically, a user’s long term Private Key is protected in some manner that requires them 
to manually authenticate each time access to it is required e.g. the key is stored in an 
encrypted format on a smart card.  This introduces a large amount of overhead if the user 
is required to access this key to authenticate with other entities frequently, although it 
provides a high level of protection for the key.  It is possible to cache the key on the local 
system, removing the problem of repeat-access to the secured key, although this increases 
the possibility of the key becoming compromised.  An alternative approach allows the 
creation of a short lived proxy certificate, signed using the long term Private Key, which 
can be cached on the local system.  This is illustrated in Figure 1.   
 
Given the short lifespan of the proxy certificate, fewer security mechanisms need be 
employed for its protection than for the long term credentials – those of a computer file 
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system are often sufficient.  This proxy certificate and associated Private Key may then 
be used without requiring the user to repeatedly authenticate manually.  Note, only in this 
use of proxy certificates is the private key of the proxy certificate known to the user. 
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Figure 1: Proxy certificate creation for single sign-on 
 

2.2 Delegation over a network 
Delegation over a network is possible between two processes without exchanging private 
keys.  After mutual authentication has been performed using end entity certificates, an 
integrity protected channel is established over which to communicate.  This is typically 
performed using SSL, although the privacy offered by SSL is not strictly required.  The 
creation of a proxy certificate is illustrated in Figure 2.  In this example, Host A invokes a 
service on Host B, which acts on Host A’s behalf to call the service on Host C.  Host B 
generates a pair of public/private keys and forms a request for a proxy certificate which is 
sent to Host A over the integrity protected channel.  Host A derives a proxy certificate as 
described above for single sign-on, which is signed using its private key and returned to 
Host B.  Host B can then use this certificate in association with the newly created private 
key to create connections on Host A’s behalf without ever compromising Host A’s 
private key, or indeed the private key associated with the proxy certificate.  In this usage, 
the initiator, Host A, does not have access to the private key of the proxy certificate.   
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Figure 2: Delegation using a Proxy Certificate 
 
In the implementation described in this report, the originator delegates full rights to the 
bearer of the certificate.  Thus, services presented with the proxy certificate will treat the 
bearer as they would the issuer.  However, proxy certificates have unique names derived 
from the name of the certificate from which they are issued, and as such it is also possible 
for them to have their own rights independent of their issuers. 
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2.3 Structure of a Proxy Certificate  
Part of the security infrastructure supporting X.509 certificates is the Certificate 
Authority (CA).  The CA is a trusted third party that issues certificates binding a Public 
Key to a particular name.  This name is called a Distinguished Name (DN), whose format 
is defined by the X.500 Directory Services system.  The structure of, and information 
contained in, an X.509 Public Key certificate is shown in Figure 3. 
 
A proxy certificate is derived as an extension to a Public Key certificate, using the proxy 
certificate information extension defined in RFC3820 [3].  The presence of this extension 
in a certificate indicates that the certificate is a proxy certificate, and contains information 
on whether the issuer of the certificate has placed any restrictions on its use.  The 
structure of the extension is shown in Figure 4.   
 
The Path Length Constraint field specifies the maximum depth of the path of proxy 
certificates that may be signed by this proxy certificate if present.  If this field is set to 0 
the certificate must not be used to sign a proxy certificate, however if it is not specified 
the depth is unrestricted.     
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Figure 3: Structure of an X.509 Public Key Certificate 
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Figure 4: Proxy Certificate Information Extension 
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The Proxy Policy field specifies a policy on the use of this certificate for the purpose of 
authorization.  The Policy Language field specifies the format (an OID uniquely defining 
a policy language known to both parties) of the policy.  The RFC does not define any 
particular language for use in policy specification, leaving this task to application 
developers.  However, two important values for the language field are defined which 
must be understood.  These are id-ppl-inheritAll which indicates that simple unrestricted 
proxying is in use and id-ppl-independent which indicates that this certificate inherits no 
rights from the issuer and thus the only rights are those that are explicitly granted to it.  
All other values indicate another policy and associated language is in use, optionally 
making use of the policy field to express that policy.   
 
An associated application profile is included in the specification which sets out how 
X.509 Public Key Certificates are used as proxy certificates.  Restrictions include 
 

• The proxy certificate information extension must be present and must be marked 
as a critical extension so that applications that are unable to process the extension 
will not validate and accept the certificate. 

• The Issuer of a proxy certificate may be either an end entity certificate (i.e. a 
certificate signed by a CA), or another proxy certificate, whose Subject must not 
be empty. 

• The Issuer field in a proxy certificate must contain the Subject field from the 
certificate that issued the proxy certificate. 

• Issuer and Subject alternative names must not be present in a proxy certificate.  
• The Subject field of a proxy certificate must be the Issuer field (i.e. the subject of 

the certificate that issued the proxy certificate) with a single additional unique 
Common Name (CN) component.  In this way all Subject names in proxy 
certificates are derived from the name of the issuing end entity certificate (EEC). 

 
A number of other subtle restrictions are placed on the use of fields in the certificate 
which are specified in [3].   
 
Once validated, a path of certificates can bind a public key to a subject, and ensure that 
this subject has indeed been delegated to by those certificates which precede it in the 
chain.   
 

2.4 Existing implementations 
We required a Java implementation for proxy certificates which we could easily integrate 
into our service-oriented architecture.  At the time, a number of implementations already 
existed for processing proxy certificates as part of grid middleware and other 
applications, a few of which are described below. 
 

• The Globus Toolkit [5] upon which grid applications can be built provides 
services and libraries for resource monitoring, discovery, management and 
security.  The Grid Security Infrastructure (GSI) forms part of this toolkit, and 
provides libraries for working with proxy certificates.  These were implemented 
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in C, although the Java CoG Kit [6] provides access to the Globus grid services 
through the Java framework – including the GSI.  

 
• GridSite [7], a set of extensions to the Apache web server that allow the 

modifications to a website based on the authentication of a users web browser 
using X.509 Public Key Certificates or proxy certificates.  It is written in C, with 
custom OpenSSL [8] validation routines built into its system.  The 
implementation specifically supported Globus GSI proxy certificates (from which 
the IETF specification arose), attempting to accept both old style (where only 
CN=proxy or CN=limited proxy were valid additions to the issuers DN) and new 
style (allowing arbitrary naming as long as it’s scoped to the issuers name) 
certificate formats.  

 
• The European Datagrid Java Security project [9] implemented a Java 

TrustManager to allow Tomcat make use of Globus proxy certificates 
(CN=proxy/CN=limited proxy) for setting up SSL, however the CVS repository 
was no longer available and their implementation for authentication was based on 
the draft-ietf-pkix-proxy-05.txt document rather than the current specification. 

 
Few of these implementations followed the guidelines in detail set out in RFC 3820 – 
given its publication date of 2004.  Most were not Java based, and of those that were they 
either suffered from the aforementioned problem, or were not in a form suitable to 
integrate into our service-oriented architecture.   
 
 

3 Implementing Proxy Certificates using the Java 
Cryptography Architecture 

One of the key objectives of this work was to develop a JCA provider to allow a third 
party developer to readily integrate proxy certificates in a service-oriented architecture 
that used HTTP(S) as the primary communication protocol.  Additionally the proxy 
certificates were to be created during run time.  A primary concern with the API design 
was that it closely resemble and be compatible with the existing Sun SSL Sockets and 
URL APIs, reducing the need for developers to familiarize themselves with a new set of 
interfaces and concepts.   
 
To this end, a JCA Provider [10] was implemented (com.hp.hpl.csf.security) 
which offers the services required to set up raw SSL connections using proxy certificates. 
Additionally, a URL handler for the HTTPS scheme was implemented 
(com.hp.hpl.csf.security.https) to allow a client application to connect to a 
proxy certificate aware HTTP(S) Server.  Finally, server side handling of proxy 
certificates was implemented using the HTTP Server provided by MortBay in the 
package (com.hp.hpl.csf.security.mortbay) [12].  The appendix summarizes 
the classes and interfaces that have been implemented as well as other supporting 
material such as sample configuration files for Jetty.   
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Creating the JCA provider presented numerous challenges.  These are summarised below 
and are addressed in the sub-sections indicated.   
 

1. An interface is required which allows the creation of an SSLSocket using a 
named certificate sourced from a KeyManager.  This is not supported in the 
default SSLSocketFactory.  This challenge is addressed in section 3.2.   

 
2. Support is required for the creation, issuance and validation of proxy certificates.  

During runtime new proxy certificates will need to be created and issued.  The 
actual mechanism for this is not specified in [3].  Therefore, additional utility code 
to support proxy certificate issuance is helpful to assist the developer.  The 
TrustManager must also be able to support validation and authentication of a 
proxy certificate chain.  These challenges are addressed in section 3.3.   

 
3. In the default initialization of the SSLContext and related classes, changes to the 

KeyStore are not propagated to dependent classes.  Thus to support for 
dynamically issued proxy certificates stored in the KeyStore at runtime, 
dependent classes such as the TrustManager and KeyManager will need to be 
notified and refreshed to maintain consistency with the KeyStore.  This 
challenge is addressed in section 3.4.   

 
Before addressing each of the challenges listed above, an overview of the Java 
Cryptography Architecture and extensions is presented in section 3.1.    
 
 

3.1 The Java Cryptography Architecture and relevant APIs 
The Java Cryptography Architecture (JCA) is a framework for accessing and developing 
cryptography functionality for the Java platform [10].  It was introduced in the first 
release of the Java Security API, a core API in the Java programming language that 
allows developers to add both low and high level security functionality to their software.  
There are three related APIs that are relevant to implementing proxy certificates.  These 
are:  
 

1. The Java Cryptography Extension (JCE) extends the JCA to provide a framework 
for the development of ciphers and includes default implementations.   

 

2. The Java Secure Sockets Extensions (JSSE) API supplements the core 
cryptographic services by providing extended networking socket classes to 
developers that offer authentication, encryption and integrity protection at the 
transport level via SSL or TLS.   

 

3. The Certification Paths API provides classes and interfaces for handling ordered 
lists of certificates called certification paths (also known as certificate chains), 
which may be used to securely establish the mapping of a public key to a subject 
if they meet certain validation requirements.   
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Prior to Java 2, the JCE and JSSE APIs were optional packages which could not be 
packaged as standard in Java due to US export regulations, however both are now 
integrated and shipped with Java.  
 
All the APIs (JCA, JCE, JSSE and Certification Paths) are extensible and follow a design 
pattern originally specified for extending the core JCA, allowing implementation 
independence by the use of a Provider based architecture.  A package that implements 
one or more Cryptographic Services is termed a Cryptographic Service Provider 
(‘Provider’ for short).   
 
Developers request a particular type of object implementing a particular service (e.g. A 
key generator that generates RSA keys), or alternatively request an implementation from 
a specific provider if required (e.g. Sun’s implementation of a key store).  An engine 
class defines a cryptographic service in an abstract way and is always associated with a 
particular algorithm.  Its methods are all declared final.  The application interface defined 
by an engine class is implemented by a Service Provider Interface (SPI).  For each engine 
class there is a corresponding SPI class, which is sub classed to implement a particular 
cryptographic service.  An instance of an engine class encapsulates an instance of a 
corresponding SPI-derived class.  A group of cryptographic services are registered with 
the JCA via a java.security.Provider implementation, which specifies which 
services are implemented and which classes provide those services.  Providers can be 
registered with the JCA statically via configuration in the java.security file, or 
dynamically at run time. 
 
The typical steps involved in using JCA to create a secure socket are illustrated in Figure 
5.  The steps are as follows    
 

1. Create an instance of KeyStore and load a collection of trusted Public Key 
certificates and <Private Key, Public Key Certificate> pairs from a file.   

 
2. Create TrustManagerFactory and KeyManagerFactory objects which are 

initialized with the KeyStore from the previous step.  These factories will return 
an array of TrustManager and KeyManager objects respectively for each 
distinct type of public key certificate and <Private Key, Public Key Certificate> 
pair held in the KeyStore (e.g. X.509).   

 
3. Initialize an SSLContext using the arrays obtained in the previous step.  Using 

the SSLContext obtain SSLSocketFactory and SSLServerSocketFactory 
objects.   

 
4. Use the SocketFactory objects to create SSLSocket and SSLServerSocket 

objects respectively.   
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Figure 5: Classes used to create a secure socket 

 
 
Although not directly related to JCA, Java’s URL framework is also relevant to our aim 
of supporting a new HTTPS protocol handler that supports specification of named 
certificates and proxy certificate verification.  The URL framework has been designed to 
allow developers to easily implement custom protocol handlers to replace the JDK’s 
default handlers.  For our purposes, we need to provide an alternative handler for the 
HTTPS scheme.  A full description of the framework is beyond the scope of this 
document.  However, we note a number of naming conventions which must be adhered 
to:  
 

1. Classes to implement a custom protocol handler must be put into a package whose 
name ends in the scheme of the protocol which it implements.  E.g. the package 
com.hp.hpl.csf.security.https will contain classes for handling URLs 
with the HTTPS scheme.   

 
2. A subclass of URLStreamHandler named Handler must reside in the package 

implementing the single method 
 

protected URLConnection openConnection(URL url) 
 
The URL package is registered with the Java runtime by setting the 
java.protocol.handler.pkgs property to point at the package containing the 
protocol implementations (e.g. com.hp.hpl.csf.security).  Whenever a call to 
URL.openConnection() is made, the openConnection(url) method will be 
invoked for all URLs with scheme matching that specified in the package name; in this 
case https.    
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3.2 Creating a secure socket using a named certificate 
An SSL handshake is an exchange of messages which occurs at the start of every SSL 
session during which a client and server negotiate certificates that are acceptable to both 
for authentication.  This aspect of the negotiation is supported in the KeyManager 
interface by the chooseClientAlias and chooseServerAlias methods to which 
callbacks are made from within the JSSE when a certificate selection is required. 
 
In our context, the information provided from the server, to the client does not provide 
necessary context for local certificate selection.  For example, referring to Figure 2, Host 
B would typically receive requests from multiple clients and thus would cache multiple 
proxy certificates.  Also in our service-oriented architecture, proxy certificates are to be 
created at runtime with relatively short lifetimes and/or different rights granted.  
Therefore, the developer must be able to implement control over which proxy certificate 
is used to establish an SSL connection.   
 
Unfortunately, the existing SSLSocketFactory does not allow the creation of an 
SSLSocket using a named certificate.  Thus some mechanism to allow a named 
certificate on the client side to be selected for authentication per connection needs to be 
exposed, rather than allowing an arbitrary certificate selection occur.  This is illustrated in 
Figure 6. 
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ObjectA

…
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…
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socket
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…
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…
..

JSSE / 
SSLSocketFactory (SSLv3)

Figure 6: Interaction between an SSLSocketFactory and an X509KeyManager 
during SSL handshake (client side) 

 
This limitation was overcome by implementing a custom class (PCKeyManager) 
implementing the X509KeyManager interface and an associated 
KeyManagerFactorySpi (PCKeyManagerFactory) for PCKeyManager creation.  
Essentially the PCKeyManager uses the delegation pattern and encapsulates an instance 
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of X509KeyManager.  The PCKeyManager augments the X509KeyManager interface 
with an additional method setClientAlias for the purpose of named-certificate 
SSLSocket creation, which allows the setting of a private member called 
activeAlias.  If no alias is specified, all method calls are delegated to the encapsulated 
KeyManager.  If the activeAlias member is specified at the time a call is made to 
chooseClientAlias, the value of activeAlias is returned instead.   
 
At this stage, if the PCKeyManager were to be used to initialize an SSLContext using a 
named certificate, from which an SSLSocketFactory is then obtained, a lock would 
need to be held on the PCKeyManager instance (e.g. aPCKeyManager) for the duration 
of the SSL handshake as illustrated in the code fragment below (error handling removed 
for clarity) 
 

synchronized (aPCKeyManager) { 
  aPCKeyManager.setActiveAlias(alias); 
  socket = (SSLSocket) sf.createSocket(...); 
  socket.startHandshake();  
  aPCKeyManager.setActiveAlias(null); 
} 

 
By holding the lock on the PCKeyManager instance aPCKeyManager, the alias cannot 
be changed whilst the SSL handshake is being performed thus guaranteeing that the 
correct proxy certificate is used.   While this approach certainly gives the desired effect, it 
is very fragile and prone to developer error.  For this reason a new SSLSocketFactory 
class was implemented called PCSSLSocketFactory, which delegates to the default 
SSLSocketFactory whilst extending the interface with a number of additional 
methods.  Specifically new overloaded methods are provided which extend each existing 
createSocket method signature from SSLSocketFactory with the addition of a 
string parameter to specify the alias to be used for certificate selection.  Within these 
signature-extended methods, code fragments similar to the above are encapsulated, thus 
allowing the developer to specify the alias to create a socket without concerning 
themselves with thread safety.  All other interface methods are implemented by 
delegation to the encapsulated SSLSocketFactory.  Note it’s possible to further extend 
PCSSLSocketFactory, to implement the HandshakeCompletedListener interface 
to receive callbacks from a SSLSocket after the SSL handshake is completed.   
 
The two figures below illustrate the sequence of interactions between the classes 
PCKeyManager and PCSSLSocketFactory described above and a calling object 
denoted ObjectA when an alias is not specified (Figure 7) and when it is (Figure 8).   
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To avoid this, a new SSLContext is instantiated for each connection that uses a pr
certificate for authentication.  Within the PCSSLSocketFactory implem

oxy 
entation we 

ore the necessary state to perform this action, whilst encapsulating an instance of the 

cts 
LSocketFactory objects it is necessary to create a custom 

 by implementing an  ( ).  This context 

t allow the 
n 

he next step to support developers using proxy certificates, is to provide a means to 
d validate a 
 section.   

 simplify the creation of X.509 proxy certificates, the Bouncy Castle [14] 
eGenerator was extended with methods to set and get the values 

certificate information extension [3].  Refer to Figure 4.  

hConstraint 
• getPolicyLanguage 

ateProxyExtension forms an ASN.1 DER encoding of the 
e methods above and adds it to the set of 

ertificate extensions.  The generateX509Certificate methods are overridden, 
ng 

st
default SSLSocketFactory to delegate createSocket calls that do not specify an 
alias identity.   
 
In order to provide the same interface for the creation of PCSSLSocketFactory obje
as for regular SS
SSLContext SSLContextSpi PCSSLContext
creates PCSSLSocketFactory objects and returns them when getSocketFactory is 
invoked.  Unfortunately, due to export regulations the JDK 1.4.x release did no
return of custom SSLSocketFactory or SSLServerSocketFactory objects from a
SSLContext.  Thus developers wishing to use the functionality provided by 
PCSSLSocketFactory objects must directly instantiate them rather than create them 
through an SSLContext.   
 

3.3 Proxy Certificate Creation, Issuance and Validation 
T
create new proxy certificates, request their issuance (i.e. certificate request) an
certificate path containing proxy certificates.  These steps are described in this
  

3.3.1 Creation  

To
X509V3Certificat
of the fields defined in the proxy 
The extra methods are 
 

• getPathLengthConstraint 
• setPathLengt

• setPolicyLanguage 
• getPolicy 
• setPolicy 

 
A utility method upd
information which has been specified using th
c
calling updateProxyExtension before generating the certificate, and then wrappi
the generated certificate in a PCertificate before returning it to the calling user. 
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3.3.2 Issuance  

s an operation on a service, the service may require a proxy 
is is 

e 

e operations offered by a service must be 
 

ct to a service and a protocol which defines (i) 

 

e user to specify rights which can be delegated. 

essarily human) first connects to Service A, and 

 
.  

 

When the user invoke
certificate to be issued by the user in order to perform the requested operation.  Th
because services it calls on behalf of the user enforce access control policies based on th
end user’s identity, or assigned roles, and not the identity of the service making the call.  
The service infrastructure thus needs to define 
 

1. Metadata describing which, if any, of th
invoked over an SSL connection established with a proxy certificate issued by the
user.  In a more sophisticated model, the metadata may also describe the rights the 
service requires in order to fulfill a given operation.  Various Web Service 
specifications address this issue.   

 

2. A means for the user to first conne
how the user should request a service to generate a new key pair for a proxy 
certificate and secondly (ii) how the service will send a signing request to the user
using the generated public key.   

 

3. An optional policy language for th
 
In our service architecture, the intent was to be able to trace back a request to the identity 
of the originating user, the so called identity based authorization with impersonation [1].  
In effect, the user delegates all rights to a service they call.  Therefore, there is no need 
for the user to place restrictions on the rights granted to the service.  To further simplify, 
it is assumed here that a services must always be invoked by the user using a proxy 
certificate issued beforehand by first establishing a secure socket using end entity 
certificates.  The steps involved in issuance, creation and subsequent use of a proxy 
certificate are illustrated in Figure 9.   
 

eferring to R Figure 9, the user (not nec
establishes a secure connection between both parties using their end entity certificates 
(step 1).  The user is then assumed to request the issuance of a new public private key 
pair as the basis for a new proxy certificate using the secure connection.  The syntax of
the issuance request is undefined, but could be simply realized as a RESTful service call
The target service creates the public and private key pair (step 2) and sends the public key 
to the user in a signed certificate request over the secure channel (step 3).  The user then 
signs the certificate request with their private key associated with their end entity 
certificate thereby generating a new proxy certificate which is sent to Service-A (step 4). 
The user may then invoke operations on Service A which may then use the user’s proxy 
certificate to call service-B (step 5).  In so doing Service-B (steps 6, 7) is now able to 
attribute the request from the originating user.  Note that Service A will in practice deal 
with multiple requests in parallel from different users.  This is why control over which 
alias/certificate is used to establish a secure connection (e.g. to service B) is required   
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Figure 9: Process for requesting issuance and creation of a proxy certificate 
 
 

3.3.3 Validation 

The standard method for validating an X.509 certificate chain is to validate the path from 
an end-entity certificate back to a trusted Certificate Authority (CA).   The certificate 
path is an ordered list of certificates where each certificate is issued by the next in the 
chain.  However, the standard PKIX algorithm for such validation does not apply to 
chains that contain proxy certificates issued by EECs rather than by CA certificates.  
Fortunately, the Certification Paths API provides a set of interfaces which allow users to 
either use existing algorithms for validation, or implement their own validation 
algorithms. Therefore, an algorithm was implemented to validate certificate chains 
containing proxy certificates in PCPathValidator a concrete instance of 
CertPathValidatorSpi.   
 
This PCPathValidator class first validates the section of the chain from the first non-
proxy certificate to the end of the chain using the standard PKIX algorithm, and 
following this validates from the first non-proxy certificate back to the first proxy 
certificate iteratively.  The implementation follows the algorithm specified in RFC 3820, 
however it is left to programmers using the API to extract the appropriate policy 
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information from a validated Certificate Path.  Section 4.1.3 (d) from the RFC concerning 
processing of other certificate extensions is not currently implemented. 
 
In order to support X.509 proxy certificates in the validation chain, the 
PCPathValidator introduced above was used in a custom X509TrustManager called 
PCTrustManager to determine whether or not a given certificate chain is trusted.  At the 
server, the checkClientTrusted method is called to validate credentials provided by 
the client to the server using the PCPathValidator just described.  Clients determine 
whether they should trust a server by calling the checkServerTrusted method (our 
current implementation requires a certificate chain pass regular PKIX validation with 
anchorage at a trusted certificate).  Like the implementation of PCKeyManager, the 
PCTrustManager instance encapsulates the default X509TrustManager, to which 
getAcceptedIssuers invocations are delegated.  An associated 
TrustManagerFactorySpi was implemented called PCTrustManagerFactory for 
the creation of PCTrustManagers.   
 

3.4 Propagation of KeyStore updates at runtime 
The next significant challenge was to allow for proxy certificates to be created by the 
user during runtime and to then make them immediately available for use to establish 
new secure connections to services.  To allow for this, the KeyStore must be able to 
propagate changes during runtime.     
 
Unfortunately, there is a cascading initialization of all objects involved in the setup 
required for establishing SSL connections, originating at the KeyStore (see Figure 5).  
The implementation of the default classes that ship with Suns JSSE will not propagate 
updates from the KeyStore through to the SSLContext without reinitializing each 
object in the chain manually.  This occurs because each initialization step shown in 
Figure 5 occurs by value using a cloned object rather than by reference.  Thus, while a 
given certificate might have been inserted into the underlying KeyStore it will not be 
available for authentication of SSL connections until all objects through to the 
SSLContext have been re-initialized.  In our service architecture, we require updates to 
the KeyStore be immediately reflected in associated SSLContext instances.  In this 
way, new SSL sockets can be created using recently generated proxy certificates.   
 
Two capabilities must be added to support dynamic updates.  Firstly, detecting when the 
KeyStore is updated and secondly, propagating updates to previously initialized objects.   
 
To address the first problem, Sun’s KeyStore was encapsulated in a custom 
KeyStoreSpi implementation called PCKeyStore which delegates calls to the 
encapsulated KeyStore, but adds additional code to those methods which cause a 
change in state of the KeyStore to notify listeners of changes.  The relevant methods are 
load, setCertificateEntry and setKeyEntry.   
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In addressing the second problem, either a push model where an object actively informs 
other registered listeners objects of updates, or a pull model where the objects poll 
objects to determine if it has been updated.  Our implementation uses the push approach 
to propagate KeyStore changes i.e. the KeyStore notifies the related SPI objects of 
changes to its contents.  There are however a couple of issues that complicate this 
approach.     
 

1. The JCA engine class [10] which encapsulates the concrete Service Provider 
Interface (SPI) implementations of both TrustManagerFactory and 
KeyManagerFactory objects and critically KeyStore objects cannot be 
modified to support notifications.  Ideally, KeyStore updates could be sent 
directly to the encapsulated SPI implementation, but direct access through 
existing APIs is not possible.   

 

2. A means to reinitialize the PCTrustManager and PCKeyManager instances 
referenced by the SSLContext is required (refer to Figure 5).  This is to allow 
updates to the KeyStore to be reflected in the current PCTrustManager and 
PCKeyManager instances.   

 
To tackle the first issue, a singleton class PCKeyStoreUpdateBroadcaster was 
introduced with which objects implementing the PCKeyStoreUpdateListener 
interface can register to receive notifications of KeyStore changes.  Additionally, 
custom PCKeyManagerFactory and PCTrustManagerFactory implementations 
were created which implement the KeyStoreUpdateListener interface and register 
themselves with the KeyStoreUpdateBroadcaster.  In effect, this registers the SPI 
implementation rather than the external Engine.  When a successful update operation 
occurs on the PCKeyStore, it calls the informRegisteredUpdateListeners 
method on the KeyStoreUpdateBroadcaster to notify the PCKeyManagerFactory 
and PCTrustManagerFactory of the update.   
  
As soon as the PCKeyManagerFactory and PCTrustManagerFactory instances are 
notified of the KeyStore update they must reinitialize the associated PCTrustManager 
and PCKeyManager instances for the update to take effect.  This is the second issue 
identified above and is addressed by exploiting the extra level of indirection provided by 
the delegation pattern used extensively in this work.  Specifically, the 
PCKeyManagerFactory class encapsulates an underlying KeyManagerFactory.  A 
call to the getKeyManagers method on PCKeyManagerFactory is first delegated to 
the KeyManagerFactory.  Each returned KeyManager is encapsulated in an instance 
of a PCKeyManager which is then returned and used to initialize an SSLContext.  A 
similar delegation pattern is implemented in the PCTrustManagerFactory.  The 
PCKeyManagerFactory and PCTrustManagerFactory also cache their initialization 
parameters which include the KeyStore.  Whenever the KeyStore is updated, the 
encapsulated KeyManager and TrustManager instances of the PCKeyManager and 
PCTrustManager are updated by the PCKeyManagerFactory and 
PCTrustManagerFactory respectively using the setHandleRef methods on 
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PCKeyManager and PCTrustManager.  Since the SSLContext is initialized from the 
PCKeyManager and PCTrustManager instances, it is effectively updated i.e. new SSL 
connections can be made referring to certificates added to the KeyStore after the 
SSLContext was initialized.  Essentially the delegation pattern provides a stable 
PCKeyManager and PCTrustManager reference for the SSLContext, whilst allowing 
the encapsulated KeyManager and TrustManager instances to be updated as necessary.   
 
In summary, the propagation of PCKeyStore updates occurs as follows: 
 

1. A PCKeyStore is created, wrapping another KeyStore. 
 

2. PCKeyManagerFactory and PCTrustManagerFactory instances are created 
and initialized using the PCKeyStore from (1).  These Factory instances register 
themselves with the singleton PCKeyStoreUpdateBroadcaster.  Each 
instantiates the associated JDK Factory object and initializes it using the 
PCKeyStore.  X509KeyManager and X509TrustManager instances are then 
obtained from their associated factory classes and encapsulated in 
PCKeyManager and PCTrustManager instances by the 
PCKeyManagerFactory and PCTrustManagerFactory respectively.  

 

3. Calls to getTrustManagers / getKeyManagers on those custom Factories 
from (2) return the persistent PCKeyManager and PCTrustManager instances 
inside arrays.  These arrays are used to initialize an SSLContext.   

 

4. When an update operation occurs on the PCKeyStore (e.g. a newly issued proxy 
certificate is added), it calls the informRegisteredUpdateListeners 
method on the singleton PCKeyStoreUpdateBroadcaster.  This iterates over 
all registered PCKeyStoreUpdateListener objects, invoking their 
keyStoreUpdated method. 

 

5. In response to a keyStoreUpdated invocation the engineInit method is 
invoked on each Factory object using the parameters originally used to initialize 
the class instance.  This causes the PCKeyManagerFactory and  
PCTrustManagerFactory objects to re-initialize as described in (2).  However, 
as the persistent handle stored in those instances has already been initialized, we 
simply update its internal reference to point to the updated X509KeyManager and 
X509TrustManager objects obtained from the reinitialized Factory objects, thus 
reflecting the update without requiring any reference changes inside the 
SSLContext. 

 
It is necessary to synchronize access to instantiated PCTrustManager / PCKeyManager 
objects to ensure a change to the underlying manager object does not occur during some 
existing method invocation (e.g. one thread is setting up an SSL connection using the 
PCKeyManager while another is propagating a modification to the PCKeyStore on 
which it is based).  Similarly the underlying Factory objects within 
PCTrustManagerFactory and PCKeyManagerFactory objects were protected to 
ensure conflicting access does not occur across threads (e.g. One thread invokes 

 18



keyStoreUpdated while another executes engineInit, possibly propagating some 
previous PCKeyStore modification). 
 
 

3.5 HTTPS Protocol Support 
Typically the developer, both at the server and client, will not want to work at the raw 
socket level in most cases.  The final challenge was, therefore, to allow the developer to 
easily open HTTPS connections to servers using proxy certificates and handle client 
proxy certificates paths at the server.  This section describes how this was accomplished.   
 

3.5.1 Client HTTPS Support  

In general, to establish an HTTPS connection the following is all that is necessary 
 
URL url = new URL("https://some.address"); 
HttpsURLConnection urlCon = (HttpsURLConnection) url.openConnection(); 

 
However, to allow a named certificate to be used when setting up an HTTPS connection 
we would like to return a custom HttpsURLConnection from the call to 
url.openConnection(), which offers this ability, rather than Sun’s default 
implementation.  The relevant classes to achieve this are packaged in 
com.hp.hpl.csf.security.https.  The Handler is a concrete implementation of 
URLStreamHandler, whose openConnection(URL) method simply returns a new 
HttpsConnection.  HttpsConnection is a concrete implementation of 
HttpsURLConnection which also implements the AliasNamer interface to provide 
our extended functionality. The AliasNamer interface has a single method, 
setAlias(String).   
 
Much of the HttpsURLConnection implementation must be overridden.  For example 
 

• The abstract methods for accessing the local and server certificates as well as the 
cipher suite in use must be implemented.   

 

• The connect method from URLConnection must be implemented to setup the 
SSL transport using the extended interface defined in our Provider that allows the 
naming of a local certificate.   

 

• Implementing the connect method entails implementing the full HTTP/1.1 [15] 
compliant implementation, to parse headers and form requests.   

 

• The default set/getParameter methods also had to be overridden.   
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3.5.2 Server HTTPS support 

Jetty is a HTTP server and Java Servlet Container written entirely in Java which can 
easily be embedded in applications, or run as a stand alone application in its own right 
[12].  It is developed by the developers at Mort Bay consulting and made available under 
the Apache 2.0 license.   
 
In Jetty, the server model for processing client HTTP requests is as follows:  
 

[Listener(s)]  [HttpServer]  [HttpContext(s)]  [Handler(s)] 
 
Listeners act as a source of requests for the HTTP server.  SocketListener is the main 
implementation used which listens on standard TCP/IP ports for requests, although others 
also exist like that for SSL, non-blocking IO etc.  The SSL listener interface is defined in 
the abstract org.mortbay.http.JsseListener class, concrete implementations of 
which can be configured to accept incoming requests to a Jetty server. 
 
Our implementation overrides the SSLServerSocketFactory createFactory 
method inherited from JsseListener.  The createFactory method is used to 
instantiate an SSLServerSocketFactory from which an SSLServerSocket will be 
created for accepting requests over.  Within this method, a PCKeyStore is loaded, 
PCTrustManagers and PCKeyManagers obtained, a PCSSLContext created and 
finally a PCSSLServerSocketFactory obtained, all from our custom Provider 
implementations.  The necessary configuration to make use of this is listed in the 
appendix, allowing the server accept requests that use proxy certificates for client 
authentication. 
 
Servlets that are part of installed web applications can access the chain of proxy 
certificates that are associated with requests via the 
javax.servlet.request.X509Certificate request attribute.   
 
 

4 Summary 
This report outlines an approach to implementing proxy certificates described in [1] using 
the Java Cryptography API and related APIs.  This was conducted as part of an 
evaluation of proxy certificates for deployment in a service-oriented architecture.  Proxy 
certificates provide a convenient means to support single sign-on and delegated authority 
whilst utilizing existing infrastructure.  The security provider described in the report 
should be useful for developers looking to add support for proxy certificates within 
existing applications.   
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5 Appendix A 
This appendix provides a summary of the main Java classes and interfaces created to 
support the proxy certificates using the Java Cryptography API.   
 

5.1 Package com.hp.hpl.csf.security 
 

Interface Summary 

AliasNamer 

The AliasNamer interface provides a single method to allow 
application programmers to specify which certificate alias should 
be used from a PCKeyStore when establishing a secure 
connection over which an application level protocol will run. 

PCKeyStoreUpdateListener Listener interface to receive notifications about changes to the 
PCKeyStore. 

 
 

Class Summary 
PCertificate A PCertificate exposes accessor methods for the additional 

attributes present in an X.509 certificate containing a proxy 
certificate extension. 

PCGenerator A PCGenerator is used to create X509Certificate objects 
which may contain a proxy certificate extension. 

PCKeyManager A PCKeyManager encapsulates a KeyManager and allows a 
client alias to be specified to control which proxy certificate is 
used to establish an SSL connection.  

PCKeyManagerFactory PCKeyManagerFactory objects are used to instantiate 
PCKeyManagers, and dynamically ensure that their 
encapsulated X509KeyManager is kept up to date with changes 
to the KeyStore. 

PCKeyStore A PCKeyStore informs registered listeners of updates made to 
its contents. 

PCKeyStoreUpdateBroadcaster This singleton class broadcasts changes to the PCKeyStore to 
registered listeners. 

PCPathValidator A PCPathValidator is used to validate CertPaths of 
X509Certificates that might contain a chain of certificates using 
the proxy certificate extension. 

PCProvider A PCProvider implements a JCA Provider offering services 
for the creation, validation and management of X509Certificates 
which use the proxy certificate extension. 

PCSSLContext PCSSLContext implements an SSLContext which supports 
the creation of SSLSocketFactory objects that allow the 
explicit naming of a proxy certificate for use in the creation of 
an SSLSocket.   
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PCSSLSocketFactory A PCSSLSocketFactory exposes an interface that allows the 
creation of sockets using a named certificate for the SSL 
handshake.   

PCTrustManager A PCTrustManager is an X509TrustManager that supports 
X509Certificate paths that may contain the proxy certificate 
extension. 

PCTrustManagerFactory PCTrustManagerFactory objects are used to instantiate 
PCTrustManagers, and dynamically ensure that their 
encapsulated X509TrustManager is kept current with updates to 
the PCKeyStore. 

 
 

5.2 Package com.hp.hpl.csf.security.https 
For convenience additional classes were created to allow HTTPS connections using 
named proxy certificates to be easily created.   
 

Class Summary 
Handler A custom handler for URL objects for the HTTPS scheme, which 

exposes an interface allowing the certificates to be specified. 

HttpsConnection An implementation of the abstract HttpsURLConnection class, which 
exposes the AliasNamer interface.  This allows the developer to 
control which certificate held in the PCKeyStore is used to authenticate 
an SSL connection.   

 
 

5.3 Jetty Configuration 
Below is an example of a Jetty configuration to support a secure socket handler which 
can process proxy certificates.   
 
<?xml version="1.0"  encoding="ISO-8859-1"?> 
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure 1.1//EN" 
"http://jetty.mortbay.org/configure_1_2.dtd"> 
 
<Configure class="org.mortbay.jetty.Server"> 

<Call name="addListener"> 
<Arg> 

<New class="com.hp.hpl.csf.security.mortbay.PCJsseListener"> 
<Set name="Port">8443</Set> 
<Set name="Keystore">c:\\certificates\\store.jks</Set> 

    <Set name="Password">test</Set> 
    <Set name="KeyPassword">test</Set> 
    <Set name="NeedClientAuth">true</Set> 

</New> 
</Arg> 

</Call> 
<Call name="addWebApplication"> 

<Arg>/</Arg> 
<Arg>C:\\eclipse\\workspace\\X509ProxyCert\\examples</Arg> 

</Call> 
</Configure> 
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