

A Java API for X.509 Proxy Certificates

John Gilbert, Russell Perry
HP Laboratories
HPL-2008-77

Keyword(s):
X.509 Proxy Certificate, Delegation, Public Key Infrastructure, Grid Security Infrastructure,
SSL, HTTPS, Java Cryptography Architecture, Java Secure Sockets Extension.

Abstract:
X.509 Proxy Certificates have been proposed for use in the Grid Security Infrastructure to allow
dynamic delegation of rights and single sign-on for end users. We have evaluated proxy
certificates to secure a service-oriented architecture for digital content based on Web Services.
We describe how support for proxy certificates was implemented in Java through extensions to
the Java Cryptography API and related security APIs. The principal challenges involved
providing control over which proxy certificate to use per SSL connection, validating proxy
certificate chains and supporting runtime generation of proxy certificates.

External Posting Date: July 6, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: July 6, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

A Java API for X.509 Proxy Certificates

John Gilbert (john.gilbert@hp.com)1
Russell Perry (russell.perry@hp.com)

Hewlett Packard Laboratories

Bristol, UK

Abstract

X.509 Proxy Certificates have been proposed for use in the Grid Security Infrastructure
to allow dynamic delegation of rights and single sign-on for end users. We have
evaluated proxy certificates to secure a service-oriented architecture for digital content
based on Web Services. We describe how support for proxy certificates was
implemented in Java through extensions to the Java Cryptography API and related
security APIs. The principal challenges involved providing control over which proxy
certificate to use per SSL connection, validating proxy certificate chains and supporting
runtime generation of proxy certificates.

Keywords

X.509 Proxy Certificate, Delegation, Public Key Infrastructure, Grid Security
Infrastructure, SSL, HTTPS, Java Cryptography Architecture, Java Secure Sockets
Extension.

1 Introduction
X.509 Proxy Certificates have been proposed by the Grid Computing community for use
in the Grid Security Infrastructure (GSI) allowing delegation of rights and single sign-on
for end users [1]. A proxy certificate is a certificate that is derived from and signed by a
normal X.509 Public Key End Entity Certificate (EEC) or by another proxy certificate.
They are realized as regular X.509 Public Key Certificates [1] with an embedded proxy
certificate information extension containing proxy certificate specific information. The
structure of the extension, an associated application profile for its use and validation
requirements are defined by the PKIX working group. At the time of performing this
work1, the format of the information extension had just reached RFC status within the
IETF [3].

We assessed proxy certificates for use in the security infrastructure of a service-oriented
architecture for digital content based on Web Services. This required the development of
a Java API to allow developers to easily add proxy certificate support to secure existing
Web Services. To achieve this, a proxy certificate aware SSL implementation was

1 The work was performed over the period 2004-05.

 1

mailto:john.gilbert@hp.com
mailto:russell.perry@hp.com

developed with additional support for using HTTPS in conjunction with proxy
certificates. The implementation was created as a set of extensions to the Java
Cryptography API and related APIs; the version of JDK was 1.4, although the approach
should be applicable to later versions. The implementation involved tackling several
challenges which are detailed in section 3 and which comprises the main part of this
report.

The report is organized as follows. Section 2 provides an overview of proxy certificates
and their applicability. Section 3 contains the detailed description of how the proxy
certificates were implemented using the Java Cryptography API and related security
APIs. A summary is presented in Section 4. Additional information about the API is
provided in the Appendix.

2 Introduction to Proxy Certificates
The use of proxy credentials is a relatively new technique introduced in [1]. Two uses of
proxy certificates of interest to out service-oriented architecture are enabling single sign-
on and delegation over a network.

Single sign-on requires a user to authenticate only once, within a domain, using their
X.509 certificate in order to create a proxy certificate. Thereafter, the proxy certificate
can be used to authenticate with multiple services within the domain. Delegation entails
a user, granting some or all of its privileges to another entity to perform some action on
its behalf that involves calling on other services that may enforce some form of access
control. For example, in our context a user may request a format transcoding service to
transform content held in a separate content management system; the transcoding service
should have access limited by the user’s privileges and conversely the user should not be
able to gain access to content indirectly for which they do not have permissions.

The following two sub sections provide an outline of how proxy certificates are used to
support these usage patterns.

2.1 Single Sign-On
Typically, a user’s long term Private Key is protected in some manner that requires them
to manually authenticate each time access to it is required e.g. the key is stored in an
encrypted format on a smart card. This introduces a large amount of overhead if the user
is required to access this key to authenticate with other entities frequently, although it
provides a high level of protection for the key. It is possible to cache the key on the local
system, removing the problem of repeat-access to the secured key, although this increases
the possibility of the key becoming compromised. An alternative approach allows the
creation of a short lived proxy certificate, signed using the long term Private Key, which
can be cached on the local system. This is illustrated in Figure 1.

Given the short lifespan of the proxy certificate, fewer security mechanisms need be
employed for its protection than for the long term credentials – those of a computer file

 2

system are often sufficient. This proxy certificate and associated Private Key may then
be used without requiring the user to repeatedly authenticate manually. Note, only in this
use of proxy certificates is the private key of the proxy certificate known to the user.

Long Term Private Key

Proxy Certificate
Key Pair

Long Term Public Key Certificate

Public Key

Private Key

Derive Proxy Certificate Sign Proxy CertificateCertificate
File

System

Secure Key StoreLong Term Private Key

Proxy Certificate
Key Pair

Long Term Public Key Certificate

Public Key

Private Key

Derive Proxy Certificate Sign Proxy CertificateCertificate
File

System

Secure Key Store

Figure 1: Proxy certificate creation for single sign-on

2.2 Delegation over a network
Delegation over a network is possible between two processes without exchanging private
keys. After mutual authentication has been performed using end entity certificates, an
integrity protected channel is established over which to communicate. This is typically
performed using SSL, although the privacy offered by SSL is not strictly required. The
creation of a proxy certificate is illustrated in Figure 2. In this example, Host A invokes a
service on Host B, which acts on Host A’s behalf to call the service on Host C. Host B
generates a pair of public/private keys and forms a request for a proxy certificate which is
sent to Host A over the integrity protected channel. Host A derives a proxy certificate as
described above for single sign-on, which is signed using its private key and returned to
Host B. Host B can then use this certificate in association with the newly created private
key to create connections on Host A’s behalf without ever compromising Host A’s
private key, or indeed the private key associated with the proxy certificate. In this usage,
the initiator, Host A, does not have access to the private key of the proxy certificate.

1. Setup SSL connection

3. Send request for Proxy Cert
containing generated Public Key

6. Use generated Private Key + Proxy
Cert to establish SSL connection

5. Return generated Proxy Cert

2. Generate a Public / Private
Key Pair

4. Generate and
sign a Proxy Cert

A B C

1. Setup SSL connection

3. Send request for Proxy Cert
containing generated Public Key

6. Use generated Private Key + Proxy
Cert to establish SSL connection

5. Return generated Proxy Cert

2. Generate a Public / Private
Key Pair

4. Generate and
sign a Proxy Cert

A B C

Figure 2: Delegation using a Proxy Certificate

In the implementation described in this report, the originator delegates full rights to the
bearer of the certificate. Thus, services presented with the proxy certificate will treat the
bearer as they would the issuer. However, proxy certificates have unique names derived
from the name of the certificate from which they are issued, and as such it is also possible
for them to have their own rights independent of their issuers.

 3

2.3 Structure of a Proxy Certificate
Part of the security infrastructure supporting X.509 certificates is the Certificate
Authority (CA). The CA is a trusted third party that issues certificates binding a Public
Key to a particular name. This name is called a Distinguished Name (DN), whose format
is defined by the X.500 Directory Services system. The structure of, and information
contained in, an X.509 Public Key certificate is shown in Figure 3.

A proxy certificate is derived as an extension to a Public Key certificate, using the proxy
certificate information extension defined in RFC3820 [3]. The presence of this extension
in a certificate indicates that the certificate is a proxy certificate, and contains information
on whether the issuer of the certificate has placed any restrictions on its use. The
structure of the extension is shown in Figure 4.

The Path Length Constraint field specifies the maximum depth of the path of proxy
certificates that may be signed by this proxy certificate if present. If this field is set to 0
the certificate must not be used to sign a proxy certificate, however if it is not specified
the depth is unrestricted.

Certificate

Version
Serial #

Algorithm ID
Issuer DN

Validity

Not before
Not after

.
Subject DN

Subject public key information

Public key algorithm

Public key
.

Issuer unique id
Subject unique id

EXTENSIONS […]
.

Signature Algorithm
Signature

Figure 3: Structure of an X.509 Public Key Certificate

Path length constraint (Optional)

Proxy Policy

Policy language
Policy (Optional)

.

Figure 4: Proxy Certificate Information Extension

 4

The Proxy Policy field specifies a policy on the use of this certificate for the purpose of
authorization. The Policy Language field specifies the format (an OID uniquely defining
a policy language known to both parties) of the policy. The RFC does not define any
particular language for use in policy specification, leaving this task to application
developers. However, two important values for the language field are defined which
must be understood. These are id-ppl-inheritAll which indicates that simple unrestricted
proxying is in use and id-ppl-independent which indicates that this certificate inherits no
rights from the issuer and thus the only rights are those that are explicitly granted to it.
All other values indicate another policy and associated language is in use, optionally
making use of the policy field to express that policy.

An associated application profile is included in the specification which sets out how
X.509 Public Key Certificates are used as proxy certificates. Restrictions include

• The proxy certificate information extension must be present and must be marked
as a critical extension so that applications that are unable to process the extension
will not validate and accept the certificate.

• The Issuer of a proxy certificate may be either an end entity certificate (i.e. a
certificate signed by a CA), or another proxy certificate, whose Subject must not
be empty.

• The Issuer field in a proxy certificate must contain the Subject field from the
certificate that issued the proxy certificate.

• Issuer and Subject alternative names must not be present in a proxy certificate.
• The Subject field of a proxy certificate must be the Issuer field (i.e. the subject of

the certificate that issued the proxy certificate) with a single additional unique
Common Name (CN) component. In this way all Subject names in proxy
certificates are derived from the name of the issuing end entity certificate (EEC).

A number of other subtle restrictions are placed on the use of fields in the certificate
which are specified in [3].

Once validated, a path of certificates can bind a public key to a subject, and ensure that
this subject has indeed been delegated to by those certificates which precede it in the
chain.

2.4 Existing implementations
We required a Java implementation for proxy certificates which we could easily integrate
into our service-oriented architecture. At the time, a number of implementations already
existed for processing proxy certificates as part of grid middleware and other
applications, a few of which are described below.

• The Globus Toolkit [5] upon which grid applications can be built provides
services and libraries for resource monitoring, discovery, management and
security. The Grid Security Infrastructure (GSI) forms part of this toolkit, and
provides libraries for working with proxy certificates. These were implemented

 5

in C, although the Java CoG Kit [6] provides access to the Globus grid services
through the Java framework – including the GSI.

• GridSite [7], a set of extensions to the Apache web server that allow the

modifications to a website based on the authentication of a users web browser
using X.509 Public Key Certificates or proxy certificates. It is written in C, with
custom OpenSSL [8] validation routines built into its system. The
implementation specifically supported Globus GSI proxy certificates (from which
the IETF specification arose), attempting to accept both old style (where only
CN=proxy or CN=limited proxy were valid additions to the issuers DN) and new
style (allowing arbitrary naming as long as it’s scoped to the issuers name)
certificate formats.

• The European Datagrid Java Security project [9] implemented a Java

TrustManager to allow Tomcat make use of Globus proxy certificates
(CN=proxy/CN=limited proxy) for setting up SSL, however the CVS repository
was no longer available and their implementation for authentication was based on
the draft-ietf-pkix-proxy-05.txt document rather than the current specification.

Few of these implementations followed the guidelines in detail set out in RFC 3820 –
given its publication date of 2004. Most were not Java based, and of those that were they
either suffered from the aforementioned problem, or were not in a form suitable to
integrate into our service-oriented architecture.

3 Implementing Proxy Certificates using the Java
Cryptography Architecture

One of the key objectives of this work was to develop a JCA provider to allow a third
party developer to readily integrate proxy certificates in a service-oriented architecture
that used HTTP(S) as the primary communication protocol. Additionally the proxy
certificates were to be created during run time. A primary concern with the API design
was that it closely resemble and be compatible with the existing Sun SSL Sockets and
URL APIs, reducing the need for developers to familiarize themselves with a new set of
interfaces and concepts.

To this end, a JCA Provider [10] was implemented (com.hp.hpl.csf.security)
which offers the services required to set up raw SSL connections using proxy certificates.
Additionally, a URL handler for the HTTPS scheme was implemented
(com.hp.hpl.csf.security.https) to allow a client application to connect to a
proxy certificate aware HTTP(S) Server. Finally, server side handling of proxy
certificates was implemented using the HTTP Server provided by MortBay in the
package (com.hp.hpl.csf.security.mortbay) [12]. The appendix summarizes
the classes and interfaces that have been implemented as well as other supporting
material such as sample configuration files for Jetty.

 6

Creating the JCA provider presented numerous challenges. These are summarised below
and are addressed in the sub-sections indicated.

1. An interface is required which allows the creation of an SSLSocket using a
named certificate sourced from a KeyManager. This is not supported in the
default SSLSocketFactory. This challenge is addressed in section 3.2.

2. Support is required for the creation, issuance and validation of proxy certificates.

During runtime new proxy certificates will need to be created and issued. The
actual mechanism for this is not specified in [3]. Therefore, additional utility code
to support proxy certificate issuance is helpful to assist the developer. The
TrustManager must also be able to support validation and authentication of a
proxy certificate chain. These challenges are addressed in section 3.3.

3. In the default initialization of the SSLContext and related classes, changes to the

KeyStore are not propagated to dependent classes. Thus to support for
dynamically issued proxy certificates stored in the KeyStore at runtime,
dependent classes such as the TrustManager and KeyManager will need to be
notified and refreshed to maintain consistency with the KeyStore. This
challenge is addressed in section 3.4.

Before addressing each of the challenges listed above, an overview of the Java
Cryptography Architecture and extensions is presented in section 3.1.

3.1 The Java Cryptography Architecture and relevant APIs
The Java Cryptography Architecture (JCA) is a framework for accessing and developing
cryptography functionality for the Java platform [10]. It was introduced in the first
release of the Java Security API, a core API in the Java programming language that
allows developers to add both low and high level security functionality to their software.
There are three related APIs that are relevant to implementing proxy certificates. These
are:

1. The Java Cryptography Extension (JCE) extends the JCA to provide a framework
for the development of ciphers and includes default implementations.

2. The Java Secure Sockets Extensions (JSSE) API supplements the core
cryptographic services by providing extended networking socket classes to
developers that offer authentication, encryption and integrity protection at the
transport level via SSL or TLS.

3. The Certification Paths API provides classes and interfaces for handling ordered
lists of certificates called certification paths (also known as certificate chains),
which may be used to securely establish the mapping of a public key to a subject
if they meet certain validation requirements.

 7

Prior to Java 2, the JCE and JSSE APIs were optional packages which could not be
packaged as standard in Java due to US export regulations, however both are now
integrated and shipped with Java.

All the APIs (JCA, JCE, JSSE and Certification Paths) are extensible and follow a design
pattern originally specified for extending the core JCA, allowing implementation
independence by the use of a Provider based architecture. A package that implements
one or more Cryptographic Services is termed a Cryptographic Service Provider
(‘Provider’ for short).

Developers request a particular type of object implementing a particular service (e.g. A
key generator that generates RSA keys), or alternatively request an implementation from
a specific provider if required (e.g. Sun’s implementation of a key store). An engine
class defines a cryptographic service in an abstract way and is always associated with a
particular algorithm. Its methods are all declared final. The application interface defined
by an engine class is implemented by a Service Provider Interface (SPI). For each engine
class there is a corresponding SPI class, which is sub classed to implement a particular
cryptographic service. An instance of an engine class encapsulates an instance of a
corresponding SPI-derived class. A group of cryptographic services are registered with
the JCA via a java.security.Provider implementation, which specifies which
services are implemented and which classes provide those services. Providers can be
registered with the JCA statically via configuration in the java.security file, or
dynamically at run time.

The typical steps involved in using JCA to create a secure socket are illustrated in Figure
5. The steps are as follows

1. Create an instance of KeyStore and load a collection of trusted Public Key
certificates and <Private Key, Public Key Certificate> pairs from a file.

2. Create TrustManagerFactory and KeyManagerFactory objects which are

initialized with the KeyStore from the previous step. These factories will return
an array of TrustManager and KeyManager objects respectively for each
distinct type of public key certificate and <Private Key, Public Key Certificate>
pair held in the KeyStore (e.g. X.509).

3. Initialize an SSLContext using the arrays obtained in the previous step. Using

the SSLContext obtain SSLSocketFactory and SSLServerSocketFactory
objects.

4. Use the SocketFactory objects to create SSLSocket and SSLServerSocket

objects respectively.

 8

TrustManagerFactoryKeyManagerFactory

TrustManager[]KeyManager[]

SSLContext

SSLSocketFactorySSLServerSocketFactory

SSLSocketSSLServerSocket

KeyStore

Used to initialize

getKeyManagers()

Used to initialize

Used to instantiate

getTrustManagers()

Figure 5: Classes used to create a secure socket

Although not directly related to JCA, Java’s URL framework is also relevant to our aim
of supporting a new HTTPS protocol handler that supports specification of named
certificates and proxy certificate verification. The URL framework has been designed to
allow developers to easily implement custom protocol handlers to replace the JDK’s
default handlers. For our purposes, we need to provide an alternative handler for the
HTTPS scheme. A full description of the framework is beyond the scope of this
document. However, we note a number of naming conventions which must be adhered
to:

1. Classes to implement a custom protocol handler must be put into a package whose
name ends in the scheme of the protocol which it implements. E.g. the package
com.hp.hpl.csf.security.https will contain classes for handling URLs
with the HTTPS scheme.

2. A subclass of URLStreamHandler named Handler must reside in the package

implementing the single method

protected URLConnection openConnection(URL url)

The URL package is registered with the Java runtime by setting the
java.protocol.handler.pkgs property to point at the package containing the
protocol implementations (e.g. com.hp.hpl.csf.security). Whenever a call to
URL.openConnection() is made, the openConnection(url) method will be
invoked for all URLs with scheme matching that specified in the package name; in this
case https.

 9

3.2 Creating a secure socket using a named certificate
An SSL handshake is an exchange of messages which occurs at the start of every SSL
session during which a client and server negotiate certificates that are acceptable to both
for authentication. This aspect of the negotiation is supported in the KeyManager
interface by the chooseClientAlias and chooseServerAlias methods to which
callbacks are made from within the JSSE when a certificate selection is required.

In our context, the information provided from the server, to the client does not provide
necessary context for local certificate selection. For example, referring to Figure 2, Host
B would typically receive requests from multiple clients and thus would cache multiple
proxy certificates. Also in our service-oriented architecture, proxy certificates are to be
created at runtime with relatively short lifetimes and/or different rights granted.
Therefore, the developer must be able to implement control over which proxy certificate
is used to establish an SSL connection.

Unfortunately, the existing SSLSocketFactory does not allow the creation of an
SSLSocket using a named certificate. Thus some mechanism to allow a named
certificate on the client side to be selected for authentication per connection needs to be
exposed, rather than allowing an arbitrary certificate selection occur. This is illustrated in
Figure 6.

X509KeyManager (SunX509)

chooseClientAlias

aliasname

getCertificateChain(aliasname)

X509Certificate[]

ObjectA

…
..

…
..

createSocket(…)

socket

ObjectA

…
..

…
..

JSSE /
SSLSocketFactory (SSLv3)

Figure 6: Interaction between an SSLSocketFactory and an X509KeyManager
during SSL handshake (client side)

This limitation was overcome by implementing a custom class (PCKeyManager)
implementing the X509KeyManager interface and an associated
KeyManagerFactorySpi (PCKeyManagerFactory) for PCKeyManager creation.
Essentially the PCKeyManager uses the delegation pattern and encapsulates an instance

 10

of X509KeyManager. The PCKeyManager augments the X509KeyManager interface
with an additional method setClientAlias for the purpose of named-certificate
SSLSocket creation, which allows the setting of a private member called
activeAlias. If no alias is specified, all method calls are delegated to the encapsulated
KeyManager. If the activeAlias member is specified at the time a call is made to
chooseClientAlias, the value of activeAlias is returned instead.

At this stage, if the PCKeyManager were to be used to initialize an SSLContext using a
named certificate, from which an SSLSocketFactory is then obtained, a lock would
need to be held on the PCKeyManager instance (e.g. aPCKeyManager) for the duration
of the SSL handshake as illustrated in the code fragment below (error handling removed
for clarity)

synchronized (aPCKeyManager) {
 aPCKeyManager.setActiveAlias(alias);
 socket = (SSLSocket) sf.createSocket(...);
 socket.startHandshake();
 aPCKeyManager.setActiveAlias(null);
}

By holding the lock on the PCKeyManager instance aPCKeyManager, the alias cannot
be changed whilst the SSL handshake is being performed thus guaranteeing that the
correct proxy certificate is used. While this approach certainly gives the desired effect, it
is very fragile and prone to developer error. For this reason a new SSLSocketFactory
class was implemented called PCSSLSocketFactory, which delegates to the default
SSLSocketFactory whilst extending the interface with a number of additional
methods. Specifically new overloaded methods are provided which extend each existing
createSocket method signature from SSLSocketFactory with the addition of a
string parameter to specify the alias to be used for certificate selection. Within these
signature-extended methods, code fragments similar to the above are encapsulated, thus
allowing the developer to specify the alias to create a socket without concerning
themselves with thread safety. All other interface methods are implemented by
delegation to the encapsulated SSLSocketFactory. Note it’s possible to further extend
PCSSLSocketFactory, to implement the HandshakeCompletedListener interface
to receive callbacks from a SSLSocket after the SSL handshake is completed.

The two figures below illustrate the sequence of interactions between the classes
PCKeyManager and PCSSLSocketFactory described above and a calling object
denoted ObjectA when an alias is not specified (Figure 7) and when it is (Figure 8).

 11

JSSE/SSLSocketFactory PCSSLSocketFactory ObjectAObjectA

Figure 7: Sequence of method calls on client to set p an SSL connection without specifying the alias

Figure 8: Sequence of method calls on client to set ficate SSL connection

 complication to the sequences shown in Figure 7 and Figure 8 arises because the SSL
ecification allows for the resumption of sessions. Specifically in Sun’s implementation

authenticating with different identities and/or different delegated rights.

u

up a named certi

A
sp
of the createSocket method on SSLSocketFactory, an entire SSL handshake is
only performed for each distinct set of parameter values. The underlying SSLContext
from which an SSLSocketFactory is instantiated simply ‘resumes’ a previous
connection if the parameters match those used in a previous connection. Whilst this is
generally desirable given the overhead of an SSL handshake, it prevents the user from
establishing connections to the same destination using different certificates, hence

PCKeyManager X509KeyManager (X509PC)

chooseClientAlias(…)

alias

getCertificateChain(alias)

X509Certificate[]

…
..

…
..

createSocket()

socket

createSocket(…)

getCertificateChain(alias)

…
..

chooseClientAlias (…)

socket

X509Certificate[]

alias

…
..

()

ObjectA
PCKeyManager JSSE/SSLSocketFactory PCSSLSocketFactory

(X509PC)

chooseClientAlias (…)

alias

getCertificateChain(alias)

X509Certificate[]

…

…

..

..

createSocket(alias , …)

socket

X509KeyManager

setActiveAlias(alias)

getCertificateChain(alias)

createSocket (…)

socket

setActiveAlias(null)

X509Certificate[]

ObjectA

()

…

…

..

..

()

, …

 12

To avoid this, a new SSLContext is instantiated for each connection that uses a pr
certificate for authentication. Within the PCSSLSocketFactory implem

oxy
entation we

ore the necessary state to perform this action, whilst encapsulating an instance of the

cts
LSocketFactory objects it is necessary to create a custom

 by implementing an (). This context

t allow the
n

he next step to support developers using proxy certificates, is to provide a means to
d validate a
 section.

 simplify the creation of X.509 proxy certificates, the Bouncy Castle [14]
eGenerator was extended with methods to set and get the values

certificate information extension [3]. Refer to Figure 4.

hConstraint
• getPolicyLanguage

ateProxyExtension forms an ASN.1 DER encoding of the
e methods above and adds it to the set of

ertificate extensions. The generateX509Certificate methods are overridden,
ng

st
default SSLSocketFactory to delegate createSocket calls that do not specify an
alias identity.

In order to provide the same interface for the creation of PCSSLSocketFactory obje
as for regular SS
SSLContext SSLContextSpi PCSSLContext
creates PCSSLSocketFactory objects and returns them when getSocketFactory is
invoked. Unfortunately, due to export regulations the JDK 1.4.x release did no
return of custom SSLSocketFactory or SSLServerSocketFactory objects from a
SSLContext. Thus developers wishing to use the functionality provided by
PCSSLSocketFactory objects must directly instantiate them rather than create them
through an SSLContext.

3.3 Proxy Certificate Creation, Issuance and Validation
T
create new proxy certificates, request their issuance (i.e. certificate request) an
certificate path containing proxy certificates. These steps are described in this

3.3.1 Creation

To
X509V3Certificat
of the fields defined in the proxy
The extra methods are

• getPathLengthConstraint
• setPathLengt

• setPolicyLanguage
• getPolicy
• setPolicy

A utility method upd
information which has been specified using th
c
calling updateProxyExtension before generating the certificate, and then wrappi
the generated certificate in a PCertificate before returning it to the calling user.

 13

3.3.2 Issuance

s an operation on a service, the service may require a proxy
is is

e

e operations offered by a service must be

ct to a service and a protocol which defines (i)

e user to specify rights which can be delegated.

essarily human) first connects to Service A, and

.

When the user invoke
certificate to be issued by the user in order to perform the requested operation. Th
because services it calls on behalf of the user enforce access control policies based on th
end user’s identity, or assigned roles, and not the identity of the service making the call.
The service infrastructure thus needs to define

1. Metadata describing which, if any, of th
invoked over an SSL connection established with a proxy certificate issued by the
user. In a more sophisticated model, the metadata may also describe the rights the
service requires in order to fulfill a given operation. Various Web Service
specifications address this issue.

2. A means for the user to first conne
how the user should request a service to generate a new key pair for a proxy
certificate and secondly (ii) how the service will send a signing request to the user
using the generated public key.

3. An optional policy language for th

In our service architecture, the intent was to be able to trace back a request to the identity
of the originating user, the so called identity based authorization with impersonation [1].
In effect, the user delegates all rights to a service they call. Therefore, there is no need
for the user to place restrictions on the rights granted to the service. To further simplify,
it is assumed here that a services must always be invoked by the user using a proxy
certificate issued beforehand by first establishing a secure socket using end entity
certificates. The steps involved in issuance, creation and subsequent use of a proxy
certificate are illustrated in Figure 9.

eferring to R Figure 9, the user (not nec
establishes a secure connection between both parties using their end entity certificates
(step 1). The user is then assumed to request the issuance of a new public private key
pair as the basis for a new proxy certificate using the secure connection. The syntax of
the issuance request is undefined, but could be simply realized as a RESTful service call
The target service creates the public and private key pair (step 2) and sends the public key
to the user in a signed certificate request over the secure channel (step 3). The user then
signs the certificate request with their private key associated with their end entity
certificate thereby generating a new proxy certificate which is sent to Service-A (step 4).
The user may then invoke operations on Service A which may then use the user’s proxy
certificate to call service-B (step 5). In so doing Service-B (steps 6, 7) is now able to
attribute the request from the originating user. Note that Service A will in practice deal
with multiple requests in parallel from different users. This is why control over which
alias/certificate is used to establish a secure connection (e.g. to service B) is required

 14

6.

User Service A Service B

Public Key User
Private Key User

SSL connection
established using User

and Service A
TTP public key certs

SSL connection
established using Proxy

Certificate issued to
Service A and Service Bs

TTP public key cert.

[User: Service A]
Public Key
Private Key

Generate public / private key pair
for use in Proxy Certificate.

Send request to User
for a Proxy Certificate

covering public key
generated in (2)

Public Key A
Private Key A

Public Key B
Private Key B

TTP

TTP

TTP

U
ser

Service B treats Service A
as if it were User, depending

on the delegation policy in
use.

1.

2.

3.

4.

5.

7.

User returns a Proxy
Certificate to Service A,

signed using its private key.

Service B verifies the Proxy
Certificate and determines

what privileges apply

Figure 9: Process for requesting issuance and creation of a proxy certificate

3.3.3 Validation

The standard method for validating an X.509 certificate chain is to validate the path from
an end-entity certificate back to a trusted Certificate Authority (CA). The certificate
path is an ordered list of certificates where each certificate is issued by the next in the
chain. However, the standard PKIX algorithm for such validation does not apply to
chains that contain proxy certificates issued by EECs rather than by CA certificates.
Fortunately, the Certification Paths API provides a set of interfaces which allow users to
either use existing algorithms for validation, or implement their own validation
algorithms. Therefore, an algorithm was implemented to validate certificate chains
containing proxy certificates in PCPathValidator a concrete instance of
CertPathValidatorSpi.

This PCPathValidator class first validates the section of the chain from the first non-
proxy certificate to the end of the chain using the standard PKIX algorithm, and
following this validates from the first non-proxy certificate back to the first proxy
certificate iteratively. The implementation follows the algorithm specified in RFC 3820,
however it is left to programmers using the API to extract the appropriate policy

 15

information from a validated Certificate Path. Section 4.1.3 (d) from the RFC concerning
processing of other certificate extensions is not currently implemented.

In order to support X.509 proxy certificates in the validation chain, the
PCPathValidator introduced above was used in a custom X509TrustManager called
PCTrustManager to determine whether or not a given certificate chain is trusted. At the
server, the checkClientTrusted method is called to validate credentials provided by
the client to the server using the PCPathValidator just described. Clients determine
whether they should trust a server by calling the checkServerTrusted method (our
current implementation requires a certificate chain pass regular PKIX validation with
anchorage at a trusted certificate). Like the implementation of PCKeyManager, the
PCTrustManager instance encapsulates the default X509TrustManager, to which
getAcceptedIssuers invocations are delegated. An associated
TrustManagerFactorySpi was implemented called PCTrustManagerFactory for
the creation of PCTrustManagers.

3.4 Propagation of KeyStore updates at runtime
The next significant challenge was to allow for proxy certificates to be created by the
user during runtime and to then make them immediately available for use to establish
new secure connections to services. To allow for this, the KeyStore must be able to
propagate changes during runtime.

Unfortunately, there is a cascading initialization of all objects involved in the setup
required for establishing SSL connections, originating at the KeyStore (see Figure 5).
The implementation of the default classes that ship with Suns JSSE will not propagate
updates from the KeyStore through to the SSLContext without reinitializing each
object in the chain manually. This occurs because each initialization step shown in
Figure 5 occurs by value using a cloned object rather than by reference. Thus, while a
given certificate might have been inserted into the underlying KeyStore it will not be
available for authentication of SSL connections until all objects through to the
SSLContext have been re-initialized. In our service architecture, we require updates to
the KeyStore be immediately reflected in associated SSLContext instances. In this
way, new SSL sockets can be created using recently generated proxy certificates.

Two capabilities must be added to support dynamic updates. Firstly, detecting when the
KeyStore is updated and secondly, propagating updates to previously initialized objects.

To address the first problem, Sun’s KeyStore was encapsulated in a custom
KeyStoreSpi implementation called PCKeyStore which delegates calls to the
encapsulated KeyStore, but adds additional code to those methods which cause a
change in state of the KeyStore to notify listeners of changes. The relevant methods are
load, setCertificateEntry and setKeyEntry.

 16

In addressing the second problem, either a push model where an object actively informs
other registered listeners objects of updates, or a pull model where the objects poll
objects to determine if it has been updated. Our implementation uses the push approach
to propagate KeyStore changes i.e. the KeyStore notifies the related SPI objects of
changes to its contents. There are however a couple of issues that complicate this
approach.

1. The JCA engine class [10] which encapsulates the concrete Service Provider
Interface (SPI) implementations of both TrustManagerFactory and
KeyManagerFactory objects and critically KeyStore objects cannot be
modified to support notifications. Ideally, KeyStore updates could be sent
directly to the encapsulated SPI implementation, but direct access through
existing APIs is not possible.

2. A means to reinitialize the PCTrustManager and PCKeyManager instances
referenced by the SSLContext is required (refer to Figure 5). This is to allow
updates to the KeyStore to be reflected in the current PCTrustManager and
PCKeyManager instances.

To tackle the first issue, a singleton class PCKeyStoreUpdateBroadcaster was
introduced with which objects implementing the PCKeyStoreUpdateListener
interface can register to receive notifications of KeyStore changes. Additionally,
custom PCKeyManagerFactory and PCTrustManagerFactory implementations
were created which implement the KeyStoreUpdateListener interface and register
themselves with the KeyStoreUpdateBroadcaster. In effect, this registers the SPI
implementation rather than the external Engine. When a successful update operation
occurs on the PCKeyStore, it calls the informRegisteredUpdateListeners
method on the KeyStoreUpdateBroadcaster to notify the PCKeyManagerFactory
and PCTrustManagerFactory of the update.

As soon as the PCKeyManagerFactory and PCTrustManagerFactory instances are
notified of the KeyStore update they must reinitialize the associated PCTrustManager
and PCKeyManager instances for the update to take effect. This is the second issue
identified above and is addressed by exploiting the extra level of indirection provided by
the delegation pattern used extensively in this work. Specifically, the
PCKeyManagerFactory class encapsulates an underlying KeyManagerFactory. A
call to the getKeyManagers method on PCKeyManagerFactory is first delegated to
the KeyManagerFactory. Each returned KeyManager is encapsulated in an instance
of a PCKeyManager which is then returned and used to initialize an SSLContext. A
similar delegation pattern is implemented in the PCTrustManagerFactory. The
PCKeyManagerFactory and PCTrustManagerFactory also cache their initialization
parameters which include the KeyStore. Whenever the KeyStore is updated, the
encapsulated KeyManager and TrustManager instances of the PCKeyManager and
PCTrustManager are updated by the PCKeyManagerFactory and
PCTrustManagerFactory respectively using the setHandleRef methods on

 17

PCKeyManager and PCTrustManager. Since the SSLContext is initialized from the
PCKeyManager and PCTrustManager instances, it is effectively updated i.e. new SSL
connections can be made referring to certificates added to the KeyStore after the
SSLContext was initialized. Essentially the delegation pattern provides a stable
PCKeyManager and PCTrustManager reference for the SSLContext, whilst allowing
the encapsulated KeyManager and TrustManager instances to be updated as necessary.

In summary, the propagation of PCKeyStore updates occurs as follows:

1. A PCKeyStore is created, wrapping another KeyStore.

2. PCKeyManagerFactory and PCTrustManagerFactory instances are created
and initialized using the PCKeyStore from (1). These Factory instances register
themselves with the singleton PCKeyStoreUpdateBroadcaster. Each
instantiates the associated JDK Factory object and initializes it using the
PCKeyStore. X509KeyManager and X509TrustManager instances are then
obtained from their associated factory classes and encapsulated in
PCKeyManager and PCTrustManager instances by the
PCKeyManagerFactory and PCTrustManagerFactory respectively.

3. Calls to getTrustManagers / getKeyManagers on those custom Factories
from (2) return the persistent PCKeyManager and PCTrustManager instances
inside arrays. These arrays are used to initialize an SSLContext.

4. When an update operation occurs on the PCKeyStore (e.g. a newly issued proxy
certificate is added), it calls the informRegisteredUpdateListeners
method on the singleton PCKeyStoreUpdateBroadcaster. This iterates over
all registered PCKeyStoreUpdateListener objects, invoking their
keyStoreUpdated method.

5. In response to a keyStoreUpdated invocation the engineInit method is
invoked on each Factory object using the parameters originally used to initialize
the class instance. This causes the PCKeyManagerFactory and
PCTrustManagerFactory objects to re-initialize as described in (2). However,
as the persistent handle stored in those instances has already been initialized, we
simply update its internal reference to point to the updated X509KeyManager and
X509TrustManager objects obtained from the reinitialized Factory objects, thus
reflecting the update without requiring any reference changes inside the
SSLContext.

It is necessary to synchronize access to instantiated PCTrustManager / PCKeyManager
objects to ensure a change to the underlying manager object does not occur during some
existing method invocation (e.g. one thread is setting up an SSL connection using the
PCKeyManager while another is propagating a modification to the PCKeyStore on
which it is based). Similarly the underlying Factory objects within
PCTrustManagerFactory and PCKeyManagerFactory objects were protected to
ensure conflicting access does not occur across threads (e.g. One thread invokes

 18

keyStoreUpdated while another executes engineInit, possibly propagating some
previous PCKeyStore modification).

3.5 HTTPS Protocol Support
Typically the developer, both at the server and client, will not want to work at the raw
socket level in most cases. The final challenge was, therefore, to allow the developer to
easily open HTTPS connections to servers using proxy certificates and handle client
proxy certificates paths at the server. This section describes how this was accomplished.

3.5.1 Client HTTPS Support

In general, to establish an HTTPS connection the following is all that is necessary

URL url = new URL("https://some.address");
HttpsURLConnection urlCon = (HttpsURLConnection) url.openConnection();

However, to allow a named certificate to be used when setting up an HTTPS connection
we would like to return a custom HttpsURLConnection from the call to
url.openConnection(), which offers this ability, rather than Sun’s default
implementation. The relevant classes to achieve this are packaged in
com.hp.hpl.csf.security.https. The Handler is a concrete implementation of
URLStreamHandler, whose openConnection(URL) method simply returns a new
HttpsConnection. HttpsConnection is a concrete implementation of
HttpsURLConnection which also implements the AliasNamer interface to provide
our extended functionality. The AliasNamer interface has a single method,
setAlias(String).

Much of the HttpsURLConnection implementation must be overridden. For example

• The abstract methods for accessing the local and server certificates as well as the
cipher suite in use must be implemented.

• The connect method from URLConnection must be implemented to setup the
SSL transport using the extended interface defined in our Provider that allows the
naming of a local certificate.

• Implementing the connect method entails implementing the full HTTP/1.1 [15]
compliant implementation, to parse headers and form requests.

• The default set/getParameter methods also had to be overridden.

 19

3.5.2 Server HTTPS support

Jetty is a HTTP server and Java Servlet Container written entirely in Java which can
easily be embedded in applications, or run as a stand alone application in its own right
[12]. It is developed by the developers at Mort Bay consulting and made available under
the Apache 2.0 license.

In Jetty, the server model for processing client HTTP requests is as follows:

[Listener(s)] [HttpServer] [HttpContext(s)] [Handler(s)]

Listeners act as a source of requests for the HTTP server. SocketListener is the main
implementation used which listens on standard TCP/IP ports for requests, although others
also exist like that for SSL, non-blocking IO etc. The SSL listener interface is defined in
the abstract org.mortbay.http.JsseListener class, concrete implementations of
which can be configured to accept incoming requests to a Jetty server.

Our implementation overrides the SSLServerSocketFactory createFactory
method inherited from JsseListener. The createFactory method is used to
instantiate an SSLServerSocketFactory from which an SSLServerSocket will be
created for accepting requests over. Within this method, a PCKeyStore is loaded,
PCTrustManagers and PCKeyManagers obtained, a PCSSLContext created and
finally a PCSSLServerSocketFactory obtained, all from our custom Provider
implementations. The necessary configuration to make use of this is listed in the
appendix, allowing the server accept requests that use proxy certificates for client
authentication.

Servlets that are part of installed web applications can access the chain of proxy
certificates that are associated with requests via the
javax.servlet.request.X509Certificate request attribute.

4 Summary
This report outlines an approach to implementing proxy certificates described in [1] using
the Java Cryptography API and related APIs. This was conducted as part of an
evaluation of proxy certificates for deployment in a service-oriented architecture. Proxy
certificates provide a convenient means to support single sign-on and delegated authority
whilst utilizing existing infrastructure. The security provider described in the report
should be useful for developers looking to add support for proxy certificates within
existing applications.

 20

5 Appendix A
This appendix provides a summary of the main Java classes and interfaces created to
support the proxy certificates using the Java Cryptography API.

5.1 Package com.hp.hpl.csf.security

Interface Summary

AliasNamer

The AliasNamer interface provides a single method to allow
application programmers to specify which certificate alias should
be used from a PCKeyStore when establishing a secure
connection over which an application level protocol will run.

PCKeyStoreUpdateListener Listener interface to receive notifications about changes to the
PCKeyStore.

Class Summary
PCertificate A PCertificate exposes accessor methods for the additional

attributes present in an X.509 certificate containing a proxy
certificate extension.

PCGenerator A PCGenerator is used to create X509Certificate objects
which may contain a proxy certificate extension.

PCKeyManager A PCKeyManager encapsulates a KeyManager and allows a
client alias to be specified to control which proxy certificate is
used to establish an SSL connection.

PCKeyManagerFactory PCKeyManagerFactory objects are used to instantiate
PCKeyManagers, and dynamically ensure that their
encapsulated X509KeyManager is kept up to date with changes
to the KeyStore.

PCKeyStore A PCKeyStore informs registered listeners of updates made to
its contents.

PCKeyStoreUpdateBroadcaster This singleton class broadcasts changes to the PCKeyStore to
registered listeners.

PCPathValidator A PCPathValidator is used to validate CertPaths of
X509Certificates that might contain a chain of certificates using
the proxy certificate extension.

PCProvider A PCProvider implements a JCA Provider offering services
for the creation, validation and management of X509Certificates
which use the proxy certificate extension.

PCSSLContext PCSSLContext implements an SSLContext which supports
the creation of SSLSocketFactory objects that allow the
explicit naming of a proxy certificate for use in the creation of
an SSLSocket.

 21

PCSSLSocketFactory A PCSSLSocketFactory exposes an interface that allows the
creation of sockets using a named certificate for the SSL
handshake.

PCTrustManager A PCTrustManager is an X509TrustManager that supports
X509Certificate paths that may contain the proxy certificate
extension.

PCTrustManagerFactory PCTrustManagerFactory objects are used to instantiate
PCTrustManagers, and dynamically ensure that their
encapsulated X509TrustManager is kept current with updates to
the PCKeyStore.

5.2 Package com.hp.hpl.csf.security.https
For convenience additional classes were created to allow HTTPS connections using
named proxy certificates to be easily created.

Class Summary
Handler A custom handler for URL objects for the HTTPS scheme, which

exposes an interface allowing the certificates to be specified.

HttpsConnection An implementation of the abstract HttpsURLConnection class, which
exposes the AliasNamer interface. This allows the developer to
control which certificate held in the PCKeyStore is used to authenticate
an SSL connection.

5.3 Jetty Configuration
Below is an example of a Jetty configuration to support a secure socket handler which
can process proxy certificates.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE Configure PUBLIC "-//Mort Bay Consulting//DTD Configure 1.1//EN"
"http://jetty.mortbay.org/configure_1_2.dtd">

<Configure class="org.mortbay.jetty.Server">

<Call name="addListener">
<Arg>

<New class="com.hp.hpl.csf.security.mortbay.PCJsseListener">
<Set name="Port">8443</Set>
<Set name="Keystore">c:\\certificates\\store.jks</Set>

 <Set name="Password">test</Set>
 <Set name="KeyPassword">test</Set>
 <Set name="NeedClientAuth">true</Set>

</New>
</Arg>

</Call>
<Call name="addWebApplication">

<Arg>/</Arg>
<Arg>C:\\eclipse\\workspace\\X509ProxyCert\\examples</Arg>

</Call>
</Configure>

 22

 23

References

[1] Von Welch, Ian Foster, Carl Kesselman, Olle Mulmo, Laura Pearlman, Steven Tuecke, Jarek
Gawor, Sam Meder, and Frank Siebenlist. X.509 Proxy certificates for dynamic delegation.
Proceedings of the 3rd Annual PKI R&D Workshop, 2004.

[2] R. Housley, W. Ford, W. Polk and D. Solo. Internet X.509 Public Key Infrastructure
Certificate and CRL Profile. IETF RFC 2459, January 1999.

[3] Steven Tuecke, Von Welch, Doug Engert, Laura Perlman, and Mary Thompson. Internet
X.509 Public Key Infrastructure (PKI) Proxy certificate Profile. IETF RFC 3820, June 2004.

[4] Alan O. Freier, Philip Karlton and Paul C. Kocher. The SSL Protocol Version 3.0. Netscape
Communications, November 18, 1996. http://wp.netscape.com/eng/ssl3/

[5] The Globus Alliance. Globus Toolkit. http://www.globus.org/

[6] Java CoG Kit. http://www-unix.globus.org/cog/distribution/1.1/API.html

[7] GridSite. http://www.gridsite.org/

[8] The OpenSSL Project. http://www.openssl.org/

[9] European DataGrid Java Security project. http://edg-wp2.web.cern.ch/edg-wp2/security/edg-
java-security.html

[10] Sun Microsystems, Inc. How to Implement a Provider for the JavaTM Cryptography
Architecture. http://java.sun.com/j2se/1.4.2/docs/guide/security/HowToImplAProvider.html

[11] Brian Maso. A New Era for Java Protocol Handlers. August 2000.
http://java.sun.com/developer/onlineTraining/protocolhandlers/

[12] Jetty: Web Server and Servlet Container. http://jetty.mortbay.org/jetty/index.html

[13] Jessie - A free software implementation of the JSSE. http://www.nongnu.org/jessie/

[14] The Legion of the Bouncy Castle. http://www.bouncycastle.org/

[15] R. Fielding, J. Gettys, J. Mogul, H. Frystyk and T. Berners-Lee. Hypertext Transfer Protocol
- HTTP/1.1. IEFT RFC 2068, January 1997.

http://wp.netscape.com/eng/ssl3/
http://www.globus.org/
http://www-unix.globus.org/cog/distribution/1.1/API.html
http://www.gridsite.org/
http://www.openssl.org/
http://edg-wp2.web.cern.ch/edg-wp2/security/edg-java-security.html
http://edg-wp2.web.cern.ch/edg-wp2/security/edg-java-security.html
http://java.sun.com/j2se/1.4.2/docs/guide/security/HowToImplAProvider.html
http://java.sun.com/developer/onlineTraining/protocolhandlers/
http://jetty.mortbay.org/jetty/index.html
http://www.nongnu.org/jessie/
http://www.bouncycastle.org/

	1 Introduction
	2 Introduction to Proxy Certificates
	2.1 Single Sign-On
	2.2 Delegation over a network
	2.3 Structure of a Proxy Certificate
	2.4 Existing implementations

	3 Implementing Proxy Certificates using the Java Cryptography Architecture
	3.1 The Java Cryptography Architecture and relevant APIs
	3.2 Creating a secure socket using a named certificate
	3.3 Proxy Certificate Creation, Issuance and Validation
	3.3.1 Creation
	3.3.2 Issuance
	3.3.3 Validation

	3.4 Propagation of KeyStore updates at runtime
	3.5 HTTPS Protocol Support
	3.5.1 Client HTTPS Support
	3.5.2 Server HTTPS support

	4 Summary
	5 Appendix A
	5.1 Package com.hp.hpl.csf.security
	5.2 Package com.hp.hpl.csf.security.https
	5.3 Jetty Configuration

