

Keyword(s):

Abstract:

©

A Logical and Computational Theory of Located Resource

Matthew Collinson, Brian Monahan, David Pym

HP Laboratories
HPL-2008-74R1

Bunched logic, process algebra, resource semantics, location, systems modelling

Experience of practical systems modelling suggests that the key conceptual components of a model of a
system are processes, resources, locations, and environment. In recent work, we have given a
process-theoretic account of this view in which resources as well as processes are first-class citizens. This
process calculus, SCRP, captures the structural aspects of the semantics of the Demos2k modelling tool.
Demos2k represents environment stochastically using a wide range of probability distributions and
queue-like data structures. Associated with SCRP is a (bunched) modal logic, MBI, which combines the
usual additive connectives of Hennessy-Milner logic with their multiplicative counterparts. In this paper,
we complete our conceptual framework by adding to SCRP and MBI an account of a notion of location that
is simple, yet sufficiently expressive to capture naturally a wide range of forms of location, both spatial and
logical. We also provide a description of an extension of the Demos2k tool to incorporate this notion of
location.

External Posting Date: December 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: December 6, 2008 [Fulltext]

Submitted to Journal of Logic and Computation

Copyright 2008 Hewlett-Packard Development Company, L.P.

A Logical and Computational Theory of

Located Resource

Matthew Collinson∗ Brian Monahan† David Pym‡§

November 27, 2008

Abstract

Experience of practical systems modelling suggests that the key conceptual components
of a model of a system are processes, resources, locations, and environment. In recent work,
we have given a process-theoretic account of this view in which resources as well as processes
are first-class citizens. This process calculus, SCRP, captures the structural aspects of the
semantics of the Demos2k modelling tool. Demos2k represents environment stochastically
using a wide range of probability distributions and queue-like data structures. Associated
with SCRP is a (bunched) modal logic, MBI, which combines the usual additive connectives
of Hennessy-Milner logic with their multiplicative counterparts. In this paper, we complete
our conceptual framework by adding to SCRP and MBI an account of a notion of location
that is simple, yet sufficiently expressive to capture naturally a wide range of forms of location,
both spatial and logical. We also provide a description of an extension of the Demos2k tool
to incorporate this notion of location.

1 Introduction

In this paper, we are concerned with the theoretical foundations of systems modelling. We wish
to focus on systems that feature agents that undergo state-change in a step-wise fashion (discrete
event systems), and that make use of resource which is distributed around a space of locations.
The techniques we will bring to bear will be those of logic and theoretical computer science,
particularly synchronous process calculus [27, 28, 29].

Process calculi are formal systems that allow for the compositional construction of discrete
dynamical systems. As such they may be fruitfully regarded as idealized languages for modelling
and simulation. Furthermore, the use of a formal logic of system properties provides an analysis
technique for systems described by the process calculus. We refer to this as the two-language
approach, and it is greatly strengthened in the presence of automated model-checking.

All formal calculi make foundational commitments. Process calculi are no exception. Most
standard process calculi make the commitment that system states are formally represented by a
syntactic category of processes. Thus all aspects of system state must be represented within the
syntax of processes: this includes any form of resource and location that one wishes to consider.
The great advantage of this approach is that it allows one to work within a very elegant and
minimal calculus, for which it is straightforward to prove metatheorems. On the other-hand, the
disadvantage is that it can obscure the evolution of those features (location and resource) and add
computational burden.

Pym and Tofts, and also Collinson, have initiated a line of research which explictly takes a
contrary view [16, 17, 40, 41]. In the SCRP family of calculi, system states carry a resource

∗matthew.collinson@hp.com
†brian.monahan@hp.com
‡david.pym@hp.com
§All authors: HP Labs, Stoke Gifford, Bristol BS34 8QZ, England, U.K.; David Pym also: University of Bath,

BA2 7AY, England, U.K.

1

component and a process component, and we sometimes say that resources are first-class citizens
within the formalism. The resource components are used to represent passive entities in models,
whilst the process component is used, primarily, to represent active entities (agents).

The notion of resource (e.g., space, memory, money) taken corresponds to the resource seman-
tics of bunched logic [34, 37, 38, 39], based on (ordered, partial, commutative) monoids (e.g., the
non-negative integers with zero, addition, and less-than-or-equals), which captures the following
basic properties of resources:

• Each type of resource is based on a basic set of resource elements;

• Resource elements can be combined (and the combination has a unit);

• Resource elements can be compared.

The notion of process is an algebraic one, based on a calculus that is a natural development in
this setting of Milner’s SCCS [28].

The basic idea is that resources, R, and processes, E, co-evolve,

R,E
a
→ R′, E′,

according to the specification of a partial function, µ : (a,R) 7→ R′, that determines how an action
a evolves E to E′ and R to R′.

The base case of the operational semantics is given by action prefix:

R, a : E
a
→ R′, E

(µ(a,R) = R′).

Concurrent composition exploits the monoid composition on resources,

R,E
a
→ R′, E′ S, F

b
→ s′, F ′

R ◦ S,E × F
ab
→ R′ ◦ S′, E′ × F ′

.

Sums and recursion are formulated in the evident way (see [17, 40, 41]; cf. Section 2). Of more
interest is hiding,

R ◦ S,E
a
→ R′ ◦ S′, E′

R, (νS)E
(νS)a
→ R′, (νS′)E′

,

in which the resource S becomes bound to the process E. This construction replaces, and gener-
alizes, the restriction operation of calculi such as SCCS.

The decomposition of states using resource makes the process calculus rather close in spirit
to practical systems modelling languages, like Demos2k [21]. Further, it makes the states of the
system amenable to the techniques of substructural, particularly bunched, logic [34, 37, 38, 39, 33].
The additional expressivity leads to logical characterizations of process constructors — a feature
which is not usually present in two-language process calculi — and allows for the specification of
the form of processes used in a model.

More specifically, with an explicit model of resources as above, we are able to work with a
logical judgement

R,E |= φ,

read as ‘relative to the available resources R, process E has property φ’. In this setting, we obtain,
using the multiplicative conjunction, ∗, a finer analysis of this logical judgement than is available
in Hennessy-Milner logic [23, 45]. A characterization of parallel composition, ×, where ∼ is the
appropriate notion of bisimulation, obtains as follows, where ◦ is resource combination and ⊑ is
resource comparison:

R,E |= φ1 ∗ φ2 iff there are R1 and R2 such that R1 ◦R2 ⊑ R
and there are E1 and E2 such that E1 × E2 ∼ E,
such that R1, E1 |= φ1 and R2, E2 |= φ2.

2

That is, we are able to characterize logically the concurrent structure of the system, together
with its resource-constrained synchronization. In addition to the usual (additive) modalities and
quantifies of Hennessy-Milner logic, this set-up admits also multiplicative modalities and quanti-
fiers (see [17, 40, 41]; cf. Section 6). A characterization of the hiding operator, similar to the one
given above for product, is obtained using a multiplicative quantifier. This logic is called MBI.

If one wishes to construct models of systems with location in the SCRP calculus, then this
must be done using the resource and/or process components. For some simple situations, the
notion of location can be treated as resource — for example, this would be sufficient to give a
process algebraic account of Separation Logic (where location is thought of as resource). For more
complex notions, an encoding into the process component must be used.

The focus of this paper will be to extend the SCRP programme by having system states with
three components: location, resource and process. Thus location will be treated as a first-class
citizen in the formalism. This follows up a suggestion in [41] and completes the addressing of the
structural components in our characterization of the conceptual components of a system model.
(The remaining component, environment, is handled in our framework and tools using stochastic
processes [51, 41, 6, 21].) We name the resulting (family of) calculi LSCRP.

The calculus gives rise to systems with dynamic behaviour of the form

L,R,E
a
→ L′, R′, E′

where a is an action (in the usual process sense), L, L′ are location environments, R, R′ are
resource environments and E, E′ are processes used to control the evolution. Following the
approach sketched above, we define a modification function, µ, which, for each action a, location
L, and resource R, determines the evolved location L′ and resource R′. In a state L,R,E, the L
carries the relevant information about the topology of the model and R carries relevant information
about the distribution of the resources around the model’s topology.

In our subsequent development, the fragment consisting of resources and processes amounts to
the calculus SCRP [16, 17, 40, 41], sketched above. For the purposes of this paper, we take as
motivation the following as the properties of location that we wish to capture:

• A collection of atomic locations — the basic places — which generate a structure of locations;

• A notion of (directed) connection between locations — describing the distributed of the
system;

• A notion of sublocation;

• A notion of substitution (of a location for a sublocation) that respects connections — sub-
stitution provides a basis for abstraction and refinement in out system models;

• A product of locations (an inessential but possibly useful technical property).

The notions of sublocation and substitution are intimately related, with the former being a pre-
requisite for the latter. We will not develop or implement substitution in this paper (except for
brief comments in examples) rather deferring it as a next step.

Treating location as a first-class citizen in this way does not lead to a process calculus with
operational behaviour that is more expressive in absolute terms. It does, however, lead to greater
pragmatic expressiveness: we claim that it is simplifies the construction of models of a wide range
of systems. It also makes it easier to write specifications about located resource in the logical
language. In some circumstances, such as those that obtain in Separation Logic [43, 25], location
can be treated as a form of resource. This is because, in such settings, the topology of locations
essentially plays no role.

Our research in this area is partly driven by a number of practical systems modelling situations.
The kinds of examples we consider are often quite detailed. In order to be able to tackle these
examples efficiently, we have constructed Located Demos2k (LD2k) [12, 13, 14], a prototype tool
for modelling with distributed resources. This tool is an extension of the existing Demos2k (D2k)

3

tool. D2k has been used extensively in large-scale commercial projects undertaken by, and related
to, HP’s services businesses [46, 51, 3, 4]. Our intention is that LD2k should bear the same relation
to LSCRP as D2k does to SCRP. In particular, LSCRP should be able to serve as a theoretical
foundation for LD2k.

There are a number of alternative approaches to modelling with location in the literature
of both logic and process algebra. For example, Barwise and Seligman [2] produce a logic for
distributed systems based on translations along morphisms connecting domains used to model
locations. The calculus of (mobile) ambients of Cardelli and Gordon [9] is a specialized calculus
that combines process calculus with spatial structures. It provides processes that lie at the nodes of
certain trees, and mobility corresponds to the ability of process terms to dynamically reconfigure
such trees. An even more sophisticated system is the bigraph approach of Milner [26, 31]. As
the name (perhaps) suggests, a bigraph is a mathematical structure that combines two types of
structure. It has both a graph signifying connectivity and a graph signifying the sublocation
relation. Milner’s ingenious set-up allows for various algebraic connections and pluggings of such
bigraphs, allowing for the compositional formation of complicated systems. These systems are
equipped with rewrite rules, called reactions, that describe dynamical behaviour, in particular
reconfgurations. Bigraphs have been shown to encode the above mobile ambients.

Our aims are somewhat more prosaic than the goals of bigraphs, and our destination may
well be less powerful (in absolute terms of definability) than the calculus of mobile ambients.
The simplicity of the underlying semantics leads, however, to (what we believe is) a particularly
practical framework for a wide-range of real-world modelling problems, such as those described
in [46, 51, 3, 4]. For the same reason, it comes equipped with a modal logic featuring natural
assertions about location and resource.

In § 2, we give an introduction to the LSCRP-family of process calculi. In § 3, we study
the metatheory of such calculi. In § 4, we give an introduction to the LD2k modelling language
and a specialized version of LSCRP intended as an intermediary between the general theory of
LSCRP and LD2k. In § 5, we give an example to illustrate the kind of idioms we wish to be able
to easily express. In § 6, we give a logic for reasoning about LSCRP systems. We conclude with
a discussion of our achievements and intended future work in § 7.

2 A General Theory of Location, Resource and Process

In this section, we define the LSCRP-family of process calculi. Each member of the family is
determined by a signature consisting of supporting structures (for location and resource) and
certain partial functions (to be explained). A number of choices have been made in the design
of this version of LSCRP, and it is important to note that many other self-consistent choices
are possible; we expect that some of these may occur to the reader. It should also be noted,
however, that the theoretical development of these ideas is deceptively delicate, with many traps
for the unwary. The apparently straightforward presentation given herein belies the delicacy in
its development.

2.1 The Supporting Structures

We begin by defining mathematical structures to support our use of location and resource.
Each member of the family LSCRP is determined by a signature

(Act,L,R, µ, ν)

consisting of the action monoid, location structure, resource monoid, modification function and
(action) hiding function. Act generates the process terms and R is an ordered partial commutative
monoid of rsources, as discussed above. Initially, we shall require just an order structure for L
(to which a product can easily be added). Although connections are not (necessarily) represented
explicitly, they are captured implicitly via the modification function, µ, which describes how
resources move between locations (see below). Note that processes are not located in this sense.

4

The full name of each calculus is (Act,L,R, µ, ν)-LSCRP, but will be referred to by the generic
name LSCRP when the fixed signature is clear.

Partially defined expressions will be used a great deal. We write E ↓ or E ↑ when an expression
E is either defined or undefined, respectively. We often use Kleene-equality, writing E ≃ F if, E
is defined exactly when F is defined and when defined they are equal.

A partial commutative monoid (or pcm) is a structure

R = (R,⊑, ◦, e)

with carrier set R (which we do not distinguish from the structure), preorder ⊑, and partial binary
composition ◦ with unit e. This is further required to satisfy the bifunctoriality condition,

R ⊑ R′ and S ⊑ S′ and R′ ◦ S′ ↓ implies R ◦ S ↓ and R ◦ S ⊑ R′ ◦ S′

for all resources R, R′, S, S′ in R. The natural numbers with their usual ordering, addition and
zero provide a simple example of a pcm.

Fix the pcm R — this is to be used as the resource monoid. Reserve the letters R, S, T for
the elements of the resource monoid R = (R,⊑, ◦, e), with resource order ⊑, resource composition
◦, and resource unit e.

Fix a poset L = (L,�, ℓ), with least element ℓ, to be used as the location structure. Reserve
the letters L, M , N for elements of the location structure. The relation � is referred to as the
sublocation relation.

The poset L is often a pcm, L = (L,�, cp , ℓ), but we shall not require this. The operation cp

is then referred to as location composition and the location ℓ as the location unit. Given a location
structure and resource monoid as above the set LR = L × R itself carries an order

(L,R) ⊑ (M,S) iff L �M and R ⊑ S

for all locations L, M and resources R, S.
The location structure L and resource monoid give rise to a structure

LR� = (LR,⊑�,�, {e
L
� | L ∈ L})

with
(L,R) ⊑� (M,S) ⇐⇒ L = M and R ⊑ S

and

(L,R) � (M,S) =

{

(L,R ◦ S) if L = M and R ◦ S ↓
↑ otherwise

eL
� = (L, e).

This is almost, but not quite, a pcm — there are no units, only a family of partial units eL
�, each

of which is a unit for pairs with location component L.
In Proposition 3, below, we see that LR supports further useful structure of its own. If L is a

pcm then LR can also be made into a pcm in the evident pointwise way — composition defined
just when both component compositions defined — but we shall not make much use of this fact
here. For notational convenience, we often omit the brackets around any pair (L,R) ∈ LR.

The location structure and resource monoid will usually be very different. In particular, they
will most often carry additional structure of very different kinds. Although this additional structure
is not required for the general theory, it is often very important in particular situations. In contrast
to the quantity-based resource monoid example above, the location structures used in practice are
usually based upon structures with spatial characteristics, often graphs.

Example 1. The simplest practical examples of location structures are generated from some given
set V . The elements of V are referred to as vertices, nodes or atomic locations. Then, by using a

5

powerset construction, we produce the carrier set of L. For example, L = (PV ,⊆,∪, ∅) is a pcm
that can be used as a location structure.

Important variants include: the finite powerset; the powerset but with the non-overlapping
union operation (composition undefined when arguments overlap); the hierarchy generated from
V by iterations of the powerset. The second of these is important for situations in which we
wish to make assertions about disjointness of locations, and the fourth for situations in which
we have locations containing (embeddings of) sublocations. Notice that locations may overlap
without either being a sublocation of the other. In this example, there are no connections that
substitution must respect.

Example 2. (A topological example) A location L = (XL,ΩL) is a topological space. An atomic
location is a point of L. The composite of locations is the sum of spaces. The sublocation relation
is the subspace relation. The least element is the empty space.

Example 3. For a richer example, assume the existence of a directed graph, G, with vertices V
and uniquely labelled edges E . Again, we think of the vertices as atomic locations. The edges are
referred to as basic links. The unique labelling of edges is the assumption of an injective function

from E to some set N of (basic) link names. We use the notation l
n
։ l′ to signify a basic link

with name n from vertex l to vertex l′. A location structure L can be generated as in the previous
example, but using all subgraphs instead of all subsets. Thus a location, L, is just a subgraph of
G. The order between locations is the subgraph relation. Given a pair of subgraphs G1 = (V1, E1)
and G2 = (V2, E2) we form the composite

G3 = (V3, E3) = G1 cp G2 = (V1 ∪ V2, E1 ∪ E2)

by taking the union of vertices and the union of the edges. The unit of this monoid is the empty
graph.

Again, there are many useful variants of this basic version. It can also be useful to extend the
basic links to connections between arbitrary (not necessarily atomic) locations. For example,

L
n
։ L′ iff ∃l ∈ L.∃l′ ∈ L′. l

n
։ l′

for all L, L′ in L and n ∈ N . These connections between arbitrary locations, which must be re-
spected by substitution, provide a basis for defining, over this structure of locations, a modification
function which respects the intended structural constraints of the model.

Example 4. We start with a labelled graph G = (V , E) of basic locations. The set L of locations
is the disjoint union

⊎

i∈N
Li of sets Li of graphs defined below. An element L of L0 is a subgraph

of G: we write v
n
։ v′ when there is an edge from v to v′ labelled by n. An element L of Li+1

is a graph such that each vertex is a set of elements of Li. Edges between vertices v and v′ of
L ∈ Li+1 are given by

v
n
։ v′ iff ∃M ∈ v.∃M ′ ∈ v′.∃w a vertex of M. ∃w′ a vertex of M ′. w

n
։ w′ .

The order between locations is given for all L and M by: L � M iff there is some i such that
L,M ∈ Li and L is a subgraph of M .

Example 5. (Higher-order locations)
For any graph G, let C(G) be the set of connected components. Assume a set V of atomic

locations. A location L is any family of graphs (Gi
L = (V i

L, E
i
L) | i ∈ N) satisfying:

V0
L ⊆ V

x ∈ V i+1
L =⇒ ∃X ⊆ C(Gi

L). x =
⋃

X

x, y ∈ V i+1
L =⇒ x and y are disjoint

6

where
⋃

is the union of (disjoint) graphs. We call Gi
L the ith-level of L. The disjointness condition

above ensures that no connected component at the ith-level can ever be included in two vertices
at the (i+ 1)th-level.

The order on locations is
L �M iff ∀i ∈ N. Gi

L ⊆ Gi
M

where ⊆ is the subgraph relation. The least element ℓ is the location which is empty at all levels.
Let L = (Gi

L | i ∈ I) and M = (Gi
M | i ∈) be locations. Define the compositie L cp M as follows:

L cp M ↓ iff V 0
L ∩ V 0

M = ∅

Gi
L cp M = Gi

L ∪ Gi
M

for each i ∈ N, where note that ∪ is the (disjoint) union of graphs.
Note that L may be such that Gi

L is empty for all sufficiently large i. An example of such an
L is shown below.

Pictures of this kind are often found to be a convenient level of representation in discussions of
distributed systems.

As in other process calculi, processes are generated from the actions that they may perform.
An action is an element of the given monoid Act. This is not required to be a resource monoid,
nor is it required to be a group (as it is in SCCS), but the monoid composition is required to be
total. We write composition as juxtaposition (occasionally using brackets for clarity) and write
the unit (also known as tick) as 1. Let a, b, c range over actions. In most cases, the monoid is
freely generated from a countable set Act0 of atoms — we reserve the letter α for atomic actions.

Given a choice of Act, L and R a modification is a partial function

µ : Act × L × R −−⇀ L × R

satisfying the conditions:

(id) µ(1, L,R) = L,R

(⊗c) if µ(a, L,R), µ(b, L, S) and R ◦ S are defined then

µ(ab, L,R ◦ S) ≃ µ(a, L,R) � µ(b, L, S)

for all locations L, M , resource R, S and all actions a, b. These are sometimes referred to as the
identity and located composition conditions.

Sometimes a variant (⊗sc) of (⊗c) is required in which the Kleene-equalities (⊗c) is taken
to be actual equality, that is, the quantities on either side are defined. The following additional
conditions are sometimes required:

(lm) If µ(a, L,R) ↓ and L �M then µ(a,M,R) ↓ and µ(a, L,R) ⊑ µ(a,M,R)

(re) If µ(a, L,R) = (L′, R′) and R ◦ S ↓ then µ(a, L,R ◦ S) = (L′, R′ ◦ S).

7

If µ satisfies (id), (⊗sc), (lm) and (re) then we say that it is a strong modification.
It is often useful to write the modification using a pair µ1, µ2 of functions, so that

µ(a, L,R) = µ1(a, L,R), µ2(a, L,R)

for all actions a, locations L and resources R. In many applications either or both of these
functions is independent of the other. In constructing models, it is intended that µ respects the
spatial structure of locations (often given by the connections).

A hiding is a (total) function
ν : L × R × Act −→ R

with no particular properties required. We write the result of hiding R at L in a as ν(L,R)a. For
example, an important choice of hiding is

ν(L,R)a =
∏

1≤i≤m & µ(αi,L,R)↑

αi

for all a, L andR, where Act is freely generated and a is written as a product of atoms a = α1 . . . αm

for some integer m ≥ 0. Note that if m = 0 then the above product defines the tick action 1. The
hiding is used to give a resource-based form of restriction in the process calculus.

2.2 The Process Calculus

In addition to the data (Act,L,R, µ, ν) we further assume a collection of (process) variables, ranged
over by X . Processes are formed according to the grammar

E ::= X | a :E |
∑

i∈I Ei | ν(R)E | fix jX.E | E ⊗ E,

whereX is a process variable, a is an action, I is any set, L ∈ L, R ∈ R, 1 ≤ j ≤ m, X is anm-tuple
of process variables, and E an m-tuple of processes. We refer to these forms as variables, prefixes,
sums, hidings, fixed points and (located) products, respectively. We use brackets to disambiguate
process expressions.

Write Ei for the ith component of any tuple E of processes. The expression fix jX.E is an
alternative notation for (fixX.E)j . We often use the infix notation +, rather than summation
notation, for binary sums. The zero process, 0 is formed by taking a sum indexed by the empty
set. When m = 1 for the m-tuples in a fixed point we drop the subscript in the fixed point notation
and write fixX.E instead of fix1X.E, where X and E are the components of X and E, respectively.
The unit process 1 is defined by taking the fixed point 1 = fixX.1 :X . In the usual way, fixed
points may be defined equivalently by systems of simultaneous recursion equations. For example,
1 := 1:1 is an alternative way to define the unit process.

In the usual way, the process variables X are bound in a fixed point fix jX.E. We distinguish
open processes which contain free process variables and closed processes which do not. We write
E[F/X] for the n-tuple of processes formed by substituting each Fi for each Xi into the n-tuple
E, where F is an m-tuple of processes and X is an m-tuple of variables. Let Proc be the set of
all processes and CProc be the set of closed processes. A state is a triple L,R,E, where L is a
location, R is a resource and E is a process. A state is closed just when its process component is
closed. Let States be the set of states and CStates be the set of closed states.

The dynamic behaviour of processes uses a state-space with states of the form

L,R,E,

where L ∈ L, R ∈ R and E is a process. For notational convenience we identify triples L,R,E with
pairs (L,R), E. The dynamics are given as a transition system, with a family of action-labelled
binary transition relations, with transitions of the form

L,R,E
a
→ L′, R′, E′

8

Prefix
L,R, a : E

a
→ µ(a, L,R), E

Sum
L,R,Ei

a
→ L′, R′, E′

L,R,
∑

i∈I Ei
a
→ L′, R′, E′

Fix
L,R,Ei[E/X]

a
→ L′, R′, E′

L,R,fix iX.E
a
→ L′, R′, E′

L-Product
M,R,E

a
→M ′, R′, E′ N,S, F

b
→ N ′, S′, F ′

L,R ◦ S,E ⊗ F
ab
→ µ(ab, L,R ◦ S), E′ ⊗ F ′

(S⊗)

Hide
L,R ◦ S,E

a
→ L′, R′ ◦ S′, E′

M,R, ν(S)E
ν(L,S)a
→ µ(ν(L, S)a,M,R), ν(S′)E′

(Sν)

Frame
L,R,E

a
→ L′, R′, E′

L,R ◦ S,E
a
→ L′, R′ ◦ S,E′

(µ(a,R ◦ S) ↓)

Figure 1: Structural Operational Semantics for LSCRP

between states. This family is specified uniquely by the structural operational semantics given
in Figure 1 below. Thus, it is the smallest family of transitions satisfying the rules. There are
implicit side-conditions that all values and terms appearing in the rules are defined — for example,
in the Prefix rule it is implicit that µ(a, L,R) is required to be defined for the indicated transition
to exist. The explicit side-conditions in Figure 1 are:

(S⊗) M � L and N � L
(Sν) L �M and µ1(ν(L, S)a, L,R) = L′.

This completes the definition of an LSCRP-calculus. The sub-family of OLSCRP-calculi consists
of those with a strong modification.

The calculi we have set up above emphasize the ordered structure of location. An alternative
choice is to emphasize the partial monoidal structure. This leads to a different choice of syn-
chronous product rule. In particular, one can study calculi in which location is treated in the
same way as resource: that is, the location environment is split by the processes in a synchronous
product. It is also possible to consider products in which the components are constrained to either
start or finish in the same location. The Frame rule is recognizable as a structural rule in the
usual sense of proof theory.

2.3 Simulation

In a process algebra, one should have a notion of equality for process terms that goes beyond
syntactic identity and identifies processes with similar behaviour. The usual notion is that of
an equivalence relation called bismulation. The treatment in SCRP-like calculi is rather subtle
because of the decomposition of state. The addition of location has been set up so as to be a
straightforward adaptation of the underlying set-up for SCRP.

We define the local equivalence relation ≈ ⊆ CStates×CStates to be the largest binary relation
on closed states such that the following condition holds: if there are any two states in the relation
L,R,E ≈M,S, F then

9

1. L = M and R = S,

2. if there is a transition L,R,E
a
→ µ(a, L,R), E′ for any a and E′ then there is a some

transition L,R, F
a
→ µ(a, L,R), F ′ with µ(a, L,R), E′ ≈ µ(a, L,R), F ′ for some F ′, and

3. if there is a transition L,R, F
a
→ µ(a, L,R), F ′ for any a and F ′ then there is some transtion

L,R,E
a
→ µ(a, L,R), E′ with µ(a, L,R), E′ ≈ µ(a, L,R), F ′ for some E′.

The local equivalence relation is extended to a relation ≈⊆ States × States on all states by
defining L,R,E ≈ L,R, F iff L,R,E[E/X] ≈ L,R, F [E/X] for all m-tuples E of closed processes,
where X is an m-tuple containing (one-copy of) all free variables of E and F .

Define E ≈ F iff ∀L.∀R. L,R,E ≈ L,R, F , and E ≈ F iff ∀1 ≤ i ≤ n. Ei ≈ Fi for processes E,
F and n-tuples of processes E and F. We say that two processes E and F are locally equivalent
whenever E ≈ F holds.

The local equivalence on states looks very like the standard notion of bisimulation. It is not,
however, a congruence [16]: it is truly local. Even in the absence of the congruence property, it
remains a useful relation.

We sometimes use a more restrictive relation which is a congruence. This time the relation
is defined initially on processes rather than states. Define the global equivalence relation ∼ ⊆
CProc × CProc to be the largest binary relation on closed processes such that: if any two such
processes are in the relation E ∼ F then

1. if there is any transition L,R,E
a
→ µ(a, L,R), E′ for some L, R, a and E′, then there is

some F ′ with a transition L,R, F
a
→ µ(a, L,R), F ′ and E′ ∼ F ′, and

2. if there is any transition L,R, F
a
→ µ(a, L,R), F ′ for some L, R, a and F ′, then there is

some E′ with a transition L,R,E
a
→ µ(a, L,R), E′ and E′ ∼ F ′.

This is extended to all processes (not just closed ones) and to tuples of processes in the usual
way (as with ≈ above). It is then extended to states, by taking L,R,E ∼ L,R, F just when
E ∼ F , for and L and R. The remainder of this paper will use the global equivalence.

3 Properties of the General Theory

In this section, we explore some of the technical properties of the calculi.

3.1 Transition Properties

The transition structure can be restricted to the closed states, since they are closed under transi-
tions.

Lemma 1. If L,R,E is a closed state and L,R,E
a
→ L′, R′, E′ is any transition, then L′, R′, E′

is a closed state.

Proof. By induction on the derivation of transitions. The Prefix case is immediate. The Sum,
L-Product, Product, Hide, Fix and Frame cases all follow straightforwardly using the evident
induction hypothesis.

The evolution of processes is, in general, non-deterministic as the Sum rule allows for choice
between many actions, and there can be multiple decompositions of resource in the L-Product
and Hide rules. However, once the action has been chosen, the evolution of resource is completely
deterministic.

Lemma 2. If L,R,E
a
→ L′, R′, E′ then L′, R′ = µ(a, L,R).

10

Proof. By induction on derivations. The Prefix case is by definition. The Sum, Fix and Frame
cases are by the evident induction hypothesis. The Product, L-Product and Hide cases use the
side-conditions on the rules. The result then follows since the family of transition relations is the
smallest such family that is closed under the rules.

Lemma 3. If L,R,E
a
→ µ(a, L,R), E′ and L � M then M,R,E

a
→ µ(a,M,R), E′ is also a

transition, provided µ is a strong modification.

Proof. By induction on the derivation of transitions according to the SOS and, therefore, by case
analysis of rule instances. In the case of Prefix, the condition (lm) gives the result. The Sum,
Fix and L-Product cases are simple applications of the induction hypothesis. The Hide case is
immediate since any preorder ⊑ is transitive.

Thus there is an admissible structural rule

L,R,E
a
→ µ(a, L,R), E′

M,R,E
a
→ µ(a,M,R), E′

(L �M)

valid in OLSCRP-calculi.

Proposition 1. The global equivalence relation ∼ on states is contained in the local equivalence
relation ≈.

Proof. It is easy to verify that {〈(L,R,E), (M,S, F)〉 | L,R,E ∼ M,S, F} is a set of pairs of
states which is closed under transitions in the sense required by the definition of ≈. Thus ∼ is
smaller than ≈.

The converse to the above proposition does not hold, and the counterexamples from [16, 17]
can easily be modified to show this.

3.2 Simulation Results

Here we present some of the algebraic theory of location, resource and process.

Proposition 2. The relation ∼ on processes is a congruence with respect to the process constuc-
tors. To be precise, it is an equivalence relation and satisfies:

a : E ∼ a : F E +G ∼ F +G
νS.E ∼ νS.F E ⊗G ∼ F ⊗G

fix iX.E ∼ fix iX.F

for all actions a, processes G, resources S and E ∼ F and E ∼ F. Similarly, the relation ∼ is a
congruence.

Proof. Mostly a straightforward verification using the standard methods. As usual, the clause for
fix uses the preceding clauses, and an induction to show that L,R,G[fixX.E/X] ≈ L,R,G[fixX.F/X]
for all L,R,G. The proofs for ∼ are only slightly different.

Various simple algebraic properties hold for processes in OLSCRP.

Lemma 4. With ≈ as equality between OLSCRP-processes:

E + F ∼ F + E E + (F +G) ∼ (E + F) +G
E + 0 ∼ E
E ⊗ 0 ∼ 0 E ⊗ 1 ∼ E

E ⊗ F ∼ F ⊗ E E ⊗ (F ⊗G) ∼ (E ⊗ F) ⊗G

The same properties hold with ∼ in place of ≈.

11

Proof. The proofs are all by the standard method — checking that relations are closed under all
possible transitions are required. The unit property for ⊗ requires the fact that ℓ is the least
element of L, and the Frame rule.

It is not, in general, possible to represent a process E by a globally equivalent normal form
N (E) consisting of a sum of prefixes of the immediate actions of E, because of the possibility
of multiple decompositions of the same resource. Therefore the standard method for proving
completeness of the equational theory of bisimulation cannot be applied to ∼ in the current,
general setting.

The above facts allow us to conclude the following proposition, in the presence of the Frame
rule.

Proposition 3. The state space (quotiented by the congruence ∼) is a disjoint union of pcms
indexed by locations L. Define composition on the whole state space by Kleene-equality

(L,R,E) ◦ (M,S, F) =

{

(L,R ◦ S,E ⊗ F) if L = M
↑ otherwise

and pre-order by

(L,R,E) ⊑ (M,S, F) ⇐⇒ L �M and R ⊑ S and E ∼ F

for all L, M , R, S, E, F . The composition has a family of units

eL = (L, e, 1)

indexed by locations L.

4 A Basic Model, a Special Theory, and a Modelling Tool

It is not always easy to write and comprehend models of large systems in a process algabraic
formalism, even when an interpreter exists for automated execution. It is often easier to work
in a higher-level simulation language. However, most such languages lack a clear and coherent
semantic foundation.

The existing tool D2k combines the advantages of both approaches as one may write models in
a higher-level language, but the tool has a semantics in a variant of SCCS (it is also rather close
to SCRP).

In this section, we give an introduction to LD2k, an extension of D2k for more easily writing
models with distributed resource and evolving spatial structure. It is intended that this language
be founded in a particular member of the LSCRP-family, which we describe here. So far, this
correspondence is conceptual rather than formal. That is to say, the prototype tool embodies
essentially the same notion of location, resource and process. However, the very considerable work
of giving a semantics to LD2k in LSCRP has not been completed. We give an extended example
in both LD2k and LSCRP-syntax to highlight the close correspondence betwen the two.

4.1 LD2k

The general principles behind the LD2k tool [12, 13, 14] are already present in the existing D2k tool
[21]. Our development makes one extension/refinement of the tool, namely the explicit treatment
of location as a first-class citizen. These commitments are motivated by a modelling framework
with the following four essential features:
Environment: We consider that the environment is the source of events that are incident upon
the system’s (logical or spatial) boundary. The events considered include not only the intended
interaction of the system with its environment, but also unintended interactions, such as security
incidents. Mathematically, we consider these events to be represented stochastically;

12

Locations: In general, a system is not confined to a single (logical or spatial) place. Rather, it
is distributed over a collection of interconnected places. In the current version of LD2k, one may
declare (atomic) locations and connections between them. This is closely related to Example 3
above. In particular, location is used to house resource (rather than process) as discussed below.
At any point in the execution of a model there is a unique location environment (graph) associated.
Location environments form a location structure: there is a partial order and a least element. They
also form a pcm in a natural way. There is an evident notion of connection-preserving substitution,
although this is yet to be exploited;

Resources: Resources are, essentially, the passive components of the system. They are both
required for processes to execute and manipulated by process execution. In the current version of
LD2k all resources are associated with an atomic location. Thus, at any stage of the execution
of a model there is a unique resource environment associated. Resource environments can be
combined and compared. Mathematically, we require that the set of resource environments carries
the structure of a pcm;
Processes: The processes that execute (relative to the resources available around the distributed
system) describe the dynamics of the system and the service it provides. Mathematically, we
describe processes as terms of a process algebra. More specifically, we use a synchronous calculus
of processes which execute relative to available resources. Note that processes are not themselves
associated directly with locations.

LD2k models contain an initial segment in which various declarations are made — let us call
this the preamble. The atomic locations and connections present in the model are declared in this
preamble. For example,

l o c a t i o n loc1 ;
l o c a t i o n loc2 ;
connect loc1 −> l o c2 ;

declares two locations and a link from the first to the second. Resources are then declared at
various of these locations. For example,

newR(res1@loc1 , 4) ;
newR(res1@loc2 , 5) ;
newR(res2@loc2 , 3) ;

declares four units of resource res1 at location loc1, etc. Note that the same sort of resource may
be declared at more than one location

The LD2k syntax allows for the construction of simple concurrent processes from a small
collection of basic actions (there are also atomic imperative assignments, but we do not wish to
complicate the discussion unnecessarily at this point). Here we focus on the core actions that deal
with location and resource. These take the forms shown in Figures 2 and 3.

A simplifying design decision was to keep location-modifying and resource-modifying actions
separate. Notice also that the resources currently present in LD2k have an implicit protocol
attached: processes cannot put what they do not own, but must return all resources before they
terminate. There are other types of resource, bins and syncs, in D2k, which we intend to build
into LD2k in the near future. The forget and recall actions were not implemented in the prototype
version in [12]. We have since extended the prototype with these features [14].

Atomic actions are assembled into processes by standard imperative programming constructs:
sequencing, conditionals and while loops. An example process declaration is of the form:

proce s s Proc1 = { . . . }

where the imperative ‘programs’ are inserted between the braces. During the execution of a model,
individual process instances are then launched at chosen intervals. For example,

launch (Proc1 , t)

13

getR(r@l, n) Get n units of resource r from location l, provided they are available,
otherwise wait until they are, and then get them. These resources are
then owned by the process issuing this action.

putR(r@l, n) Put n units of resource r at location l, provided the process owns at
least n units assigned to this location, otherwise wait until they are,
then perform this action. After this action the process issuing this
action owns n fewer of the resource at this location.

moveR(r, l −> m, n) The issuing process waits until it owns n units of resource from
location l. When it does so, it transfers them to location m.
Afterwards, the additional n units are owned by the process at the
location m.

Figure 2: LD2k resource actions

forget(l −> m) The issuing process instructs the location environment to drop the link
from location l to location m. If the link is already absent, then skip.

recall(l −> m) The issuing process instructs the location environment to recall the link
from l to m. The link must have been declared in the preamble. If it is
already present, then skip.

hold(t) Delay the issuing process for t units of time.

Figure 3: LD2k location and timing actions

launches an instance of Proc1 after time delay t.
To get a better feel for the power of the language and how it is intended tobe used, it may be

instructuve to turn briefly to examine the lengthy example in Subsection 5.2.

4.2 The Basic Location Model and the Special Theory

The basic model and particular process calculus that follow have been used extensively to inform
the design of LD2k.

In LD2k, all of the underlying location structure is initially declared in the preamble (before
the dynamical behaviour is initiated, and outside of the process definitions), via the location and
connect declarations. Semantically, this amounts to assuming the existence of a given graph,
G = (V , E) of atomic locations and basic links, as in Example 3 above, but with unlabelled edges.

Let the location monoid L be generated by taking all finite subgraphs of G. A location (envi-
ronment) is a such a finite subgraph. We use the restriction of the location composition (union
on both vertices and edges), unit (empty graph) and sublocation (subgraph) from Example 3.

Resources in LD2k are initially declared in the preamble using the newR declaration. How-
ever, the quantities, locations and availability of resources vary dynamically during execution. A
declaration newR(r@l,Q) creates a resource r at location l with initial contents Q. Define r to
be a resource name and let the set of all such names be RNm. The quantity Q is drawn from a
fixed, total resource monoid Rr = (Rr,⊑r, ◦r, er) with subtraction. That is, for all Q1, Q2 in Rr,
there is at most one Q3 such that Q1 = Q2 ◦r Q3. We write this Q3 as Q1 − Q2. Examples are
the positive integers (as in current LD2k) or rationals with addition as the monoid composition.
For the current version

Rr = N = (N,=,+, 0)

for all resource names r. We call Rr the sort of r, and assume that it is unique: thus one cannot,
in the same model, declare newR(r@l,Q) and newR(r@l′,Q′) with Q and Q′ of different sorts.

14

Eventually, non-commutative sorts Rr will be required for dealing with value-bins, basically
lists with composition as concatenation, but in this paper we ignore this complication.

A resource (environment) R is a dependent function with finite support from V × RNm to
quantitities of the appropriate sort,

R ∈
∏

(l,r)∈V×RNm

Rr .

That is, for any (l, r) ∈ V × RNm we have R(l, r) ∈ Rr, and furthermore R(l, r) = er, the unit of
Rr, for all but finitely many (l, r). The set of all such resources gives the carrier of the resource
monoid R. The composite of resources R and S is defined pointwise as follows:

(R ◦ S)(l, r) = R(l, r) ◦r S(l, r)

for all (l, r). The order on R is the discrete order,

R ⊑ S iff R = S

for all resources R, S. The unit of the resource monoid is eR with eR(l, r) = er for all (l, r).
Write R(l,r,Q) for the resource which maps (l, r) to Q and all other (l, r) to the appropriate

unit. Note that R has subtraction, and we use the notation R − S for the (possibly undefined)
term representing the resource formed by subtracting S from R. Note that L also has subtraction,
and extend the notation in the evident manner. Write L(l,l′) = ({l, l′}, {l ։ l′}) for the subgraph
of G consisting of the single link l ։ l′, and note that L(l,l′) ↓ iff l ։ l′ ∈ E .

We fix a small number of atomic actions for use as the primitives of our process language.
They are as follows

get(l, r, Q) get quantity Q of resource r from node l
put(l, r, Q) put quantity Q of resource r at node l
move(r, l, l′, Q) shift quantity Q of resource r from location l to l′

forget(l, l′) drop the underlying link l ։ l′

recall(l, l′) pick-up the underlying link l ։ l′.

All actions are assumed to be generated from these atoms.
Thus there are two sharply distinguished types of atomic action:

• those that modify the resource distribution, but leave the available location structure un-
touched;

• those that modify the available location structure, but leave the resource alone.

The behaviours of actions are described (using Kleene-equality) by the modification µ given
on atomic actions in Figure 4.2.

The proof of the following Proposition is then entirely standard, with the key fact being the
existence of subtraction on the location and resource monoids.

Proposition 4. The assignments above for µ specify a unique modification.

The resulting modification is strong, so we generate a member of the OLSCRP-family of
Section 2 with processes E and states L,R,E.

A state
L,R,E

now contains the following information:

• E, a process term, used to control transitions;

• L, the current location environment, determining which parts of G that E may (currently)
use;

15

µ(put(l, r, Q), L,R) = L,R ◦R(l,r,Q)

µ(get(l, r, Q), L,R) ≃ L,R−R(l,r,Q)

µ(move(r, l, l′, Q), L,R) ≃

{

L, (R−R(l,r,Q)) ◦R(l′,r,Q) if l ։ l′

↑ otherwise

µ(forget(l, l′), L,R) ≃ L− L(l,l′), R

µ(recall(l, l′), L,R) ≃ L cp L(l,l′), R

Figure 4: Specification of LD2k modification

• R, the current resource environment, determining which resources are (currently) available
to E, and at which atomic locations, l ∈ L.

The three state components co-evolve and there are often strong dependencies between all of
them. For example, we have processes E with actions that move resource r from some atomic
location l to another l′: in such examples the location L must contain some connection l ։ l′,
and R must contain (l, r, Q) with sufficiently large Q. We also have processes that alter the
visible sub-graph L of G: for example, some link between atomic locations may be broken, thus
preventing future move actions. On the other-hand, the breaking of this link may depend upon
some permission held as a resource r at some atomic location.

Partial definedness is used to represent the inability of a process to perform an action at a
particular time. Thus processes which repeatedly try to perform an action are represented using
sums and fixed-points. The actions get, put and move act on a slightly more general resource than
the particular LD2k-style resource. Processes do not own resources after such actions and there
are no associated protocols relating to such ownership. Ownership is only for the duration of the
corresponding actions. The move action actually moves the specified quantity of resource, rather
than shifting the obligations as to which quantities resources are to be returned at the various
locations.

4.3 Comparison of LD2k with the Special Theory

As LD2k is substantially based upon the modelling language D2k, it naturally inherits a number
of characteristics such as

• the real-valued passage of time,

• imperative actions/effects for a guarded-command like language,

• shared variables, and

• both sequential and synchronously concurrent processes.

The mathematical semantics of applied languages like LD2k are, ideally, naturally expressed as a
straightforward homomorphism from an appropriate term algebra representing the language itself
into an algebra expressed in terms of a process algebra (here LSCRP). Our particular collection of
language features represents, however, an interesting challenge to capture directly in this way. Our
purpose here is to mention briefly some of these technical challenges, and then to point towards
how we believe they can be resolved.

16

4.3.1 Sequencing and timed actions

Each LD2k process is internally sequential, consisting of both simple and compound statements.
Simple statements, for example, consist of simple assignments and ‘holds’ in which an explicit
amount of (real-valued) time passes. Other processes can, however, be launched after an explicit
(real-timed) time delay. Resources can be claimed and released. Compound statements include
scoping block statements, looping constructs such as repeat and while and finally the try condi-
tional statement.

The ‘try’ statement inherited from D2k is particularly useful since it effectively provides multi-
way synchronisation of resource access and introduces both blocked waiting and non-blocking tests.
Because we have both simple and compound statements in LD2k, this means that sequencing — the
semi-colon operator — would not directly correspond to an Action Prefix (or even the asynchronous
action prefix) in LSCRP. As is well-known, explicit acknowledgement of completion is required
to deal with sequencing. The SCRP semantics of a simple imperative language has been sketched
in [16].

Now, each LD2k process moves forward in timed synchrony - that is, real-valued time passes
simultaneously in each process. The upshot of this is that each statement may concurrently
consume different amounts of time. We can illustrate this as follows:

proce s s A = { hold (1 . 4) ; p r i n t (”A − 1”) ;
hold (3 . 4) ; p r i n t (”A − 2”) ; }

proce s s B = { hold (0 . 8) ; p r i n t (”B − 1”) ; hold (1 4 . 0) ;
p r i n t (”B − 2”) ; hold (2 . 0) ; }

launch (” process−A” , A, 1 . 0) ; // Launches i n s t an c e o f p roce s s
// A a f t e r 1 .0 un i t o f time .

launch (” process−B” , B, 0 . 3) ; // Launches i n s t an c e o f p roce s s
// B a f t e r 0 .3 un i t s o f time .

hold (3 7 . 4) ;
c l o s e ;

Executing this fragment in LD2k results in an explicit timed trace:

0 .0 : s imu lat ion beg in s
0 .3 : ” process−B−1” s t a r t s
1 .0 : ” process−A−1” s t a r t s
1 .1 : ” process−B−1” p r i n t s ”B − 1”
2 .4 : ” process−A−1” p r i n t s ”A − 1”
5 .8 : ” process−A−1” p r i n t s ”A − 2”
5 .8 : ” process−A−1” e x i t s

15 .1 : ” process−B−1” p r i n t s ”B − 2”
17 .1 : ” process−B−1” e x i t s
37 .4 : s imu lat ion c l o s e s

Notice that both the instances of process A and process B make progress — even though each
action they perform happens at a different moment in time.

The form of synchrony covered here in SCRP (given by the L-Product rule in Figure 1)
assumes that each action is atomic and synchronization take place at the completion of each
action. In the case of LD2k, we must mark the flow of time even though some of the actions in
each component process may not have completed.

4.3.2 Starting and stopping processes synchronously

Processes in LD2k can take different amounts of elapsed time to complete. Thus, LD2k processes
can start and terminate at different times. Obviously this is awkward to do with a synchronised
product that proceeds in lock-step. We need to be able to introduce and eliminate LD2k processes
cleanly without unduly disrupting the execution of other, independent processes.

17

Fortunately, termination can be cleanly handled in a translation of each terminating LD2k
process into LSCRP so that the translated process always ends in the process 1, so that we can
exploit the fact:

1 ⊗ E ∼ E ∼ E ⊗ 1

for all processes E.
Dually, starting a fresh process instance can exploit the same idea (but in reverse) to introduce

process terms into a product. In practice, we may also need to have appropriate process creation
and termination rules to expand and contract synchronous product terms.

4.3.3 Tracking ownership of shareable resources

Like its predecessor D2k, LD2k keeps track of how much sharable resource that each process has
claimed. The idea is to guarantee that, when a process terminates, it has exactly returned all of
this resource, or else that the simulation aborts when that is not the case. This is a highly useful
integrity property for LD2k processes to have automatically and systematically checked.

This tracking of resource ownership is not naturally incorporated within LSCRP — but it
could be handled as part of a semantic translation from LD2k terms into LSCRP terms. What
is required here is suitable mechanism to maintain a per-process dynamic mapping of how much
resource each process has claimed, and to check at process termination that this mapping is empty.

4.3.4 Partiality of actions

The concept of location in LSCRP introduces more ways of naturally expressing distinctions into
SCRP models. Consequently, this means that LD2k can also introduce more ways of naturally
expressing and introducing distinctions. This also means, however, that functions, actions, and
decisions can depend upon these distinctions — and, in particular, they may also fail. For example,
access control decisions typically depend upon the identity/role of the claimant, their location,
and for what purpose they are claiming the resource.

The upshot here is that incorporating location into LD2k introduces the potential for partially
defined actions. This is a strict extension of the D2k execution model — if a resource is not
currently available in D2k, then it is assumed that resource may be available at a later stage —
there is no explicit refusal to provide resource in D2k.

This is of course different in LD2k and thus we need to represent how to manage such refusals
when they arise. Incorporating this will require both syntactic and semantic extensions to the
current LD2k framework.

4.3.5 Priority and choice

As mentioned above, a significant feature of both D2k and LD2k is the try statement; here is an
example:

t ry [getR (ports@server42 , 1) , count < 100] with {

. . . do statements (b lock 1) . . .

}
e t ry [getR (f i l e Sha r e s@se rv e r 67 , 4)] with {

. . . do other statements (b lock 2) . . .

}
e t ry [getR (account@cl ient35 , 4) ,

getR (wr i t ePr iv i l e g e@serve r 56 , 1)] with {

. . . do yet more statements (b lock 3) . . .

18

} .

The try statement provides priority for the guarded alternatives: in essence, each guard is tested
and the alternative taken is the first that can be accepted. If none can be accepted immediately
then the process blocks (i.e., waits) until there is an alternative that can be accepted. If there
is more than one accepting alternative, then the earliest one is taken. A pleasing consequence of
this approach is that by adding a ‘default’ alternative with empty acquisition condition (which
can always be satisfied), we can obtain the traditional non-blocking form of conditional, allowing
us to express immediate tests upon resource availability.

A simple-minded translation of try from LD2k into process sum in LSCRP will not work
because of this need to encode priority. To do this, we need to incorporate ‘weighting’ into the
underlying process calculus — this work was done for D2k by Tofts in the context of his WSCCS
[48].

4.3.6 An approach to resolving these challenges

A promising approach to attacking these issues is to proceed on the following two fronts:

1. Subsume time as a particular kind of resource in LSCRP, thus introducing time as a “cost”
(with the obvious monoid structure);

2. Assuming an explicit granularity of atomic action — thus, hold statements would consume
time as integral multiples of some minimal time (e.g., 10−9). This would then allow LD2k
processes to have timed synchrony, since each process would naturally decompose into se-
quences of atomic actions.

Note that a side-effect is a pleasing simplification of the semantics of sequencing — it suffices
to use action prefix.

5 Secure Boats: A Paradigmatic Example

5.1 Introduction

The example of this section is a variant of an important example that we call secure boats. This
appears in in [14] together with its output trace. An earlier, more restricted version appeared in
[12]. This is itself a variant of the standard boats example of D2k. We give both models in both
the process calculus LSCRP and the modelling language LD2k. The variant here enables us to
illustrate the use of all of the basic actions described in Section 4.

The situation we wish to model consists of a marine port with a high-security zone and a
low-security zone. Submarines and boats arrive at the port and dock in the appropriate zone with
the help of a cast of supporting resources. In addition, there is an information resource that may
flow around the system. We intend to model a situation in which secure information may not
leak, because resource transfers from the high-security area to the low-security area are rigidly
controlled.

Both the LD2k and LSCRP models that follow have the salient features listed below.

1. There are locations: openSea, harbour, ferryDock, subDock, debZone. The totality of con-
nections is given by the graph G = (V , E) shown in Figure 5.

2. The following kinds of resource are present in the model: ferry, sub, crane, info, jetty,
tug, sectug.

3. Ferries and submarines are resources rather than processes. It is more natural to represent
such model elements as resources, since we wish to gather location information about them.
The standard dual representability of D2k components as either resources or processes is
less natural in the LD2k setting.

19

openSea

harbour
?

6

ferryDock -
�

-

subDock

�

-

debZone
�

�

Figure 5: Locations for Secure Boats

4. Submarines and ferries begin at openSea. Submarines attempt to dock at subDock; ferries
attempt to dock at ferryDock.

5. The unloading processes for both ferries and subs both use cranes. There is a potential flow
of crane resources directly from the unsecure ferryDock to the secure location subDock,
but not vice-versa. The link from the ferryDock to the subDock is one-way and only open
some of the time (this represents a gate).

6. The docking process for subs requires the use of the information resource by the cranes.

7. There is a potential flow of crane resource from the subDock to the ferryDock, but only via
the debriefing area debZone. The secure information is scrubbed from cranes at this point.
The one-way cycle ferryDock → subDock → debZone→ ferryDock is used to allow cranes
to move between locations, whilst controlling the flow of information.

8. Both the ferryDock and subDock have two-way connections to a third area, the harbour.
This allows vehicles (ferries and subs as resources) to move in and out of the docks to the
harbour. The docking takes place by commandeering tug and jetty resources. The tugs are
divided into two sorts, (ordinary) tugs and secure tugs. Ordinary tugs may only visit the
ferrydock and secure tugs only the subDock. This prevents tugs from moving from subDock
to ferryDock via the two-way connections to the harbour. This is desirable since tugs may
transmit the information resource, but secure tugs do not.

5.2 An LD2k Executable Model

Our first model of the situation is presented in the executable code of (a version of) LD2k. The
model has been executed — the resulting execution trace (too long to be included in this paper)
is presented in [14]. There are some very minor differences in the syntax of the code presented in
there (the model is executed as an OCAML term [32, 42]) but for our purposes this distinction is
superficial.

(∗ Example LD2k model : Secure in fo rmat ion f low con t r o l ∗)

(∗ constant d e c l a r a t i o n s : no d i s t r i b u t i o n s yet ∗)

20

const f e r r y i n = 2 ;
const f e r r yd e l ay = 3 ;

const f e r r ydock in g = 5 ;
const f e r y l oad in g = 2 ;
const tugreturn = 1 ;
const f e r r y r e t u r n = 4 ;
const f e r r y ou t = 2 ;

const subdelay = 3 ;
const subin = 1 ;

const subdocking = 6 ;
const sub load ing = 2 ;
const s tugre tu rn = 1 ;
const subreturn = 3 ;
const subout = 1 ;

const ga t e c l o s ed = 12 ;
const gateopen = 12 ;

const promtime = 1 ;

const scantime = 3 ;
const scrubt ime = 2 ;
const cranede lay = 24 ;
const c ranere tu rn = 2 ;

(∗ atomic l o c a t i o n d e c l a r a t i o n s ∗)
l o c a t i o n openSea , harbour , ferryDock , subDock , debZone ;

(∗ atomic l i n k d e c l a r a t i o n s ∗)
connect openSea <−> harbour ;
connect harbour <−> subDock ;
connect harbour <−> ferryDock ;
connect ferryDock −> subDock ;
connect subDock −> debZone ;
connect debZone −> ferryDock ;

(∗ i n i t i a l r e s ou r c e d i s t r i b u t i o n ∗)

newR(ferry@openSea , 2) ; // 2 f e r r i e s at openSea
newR(sub@openSea , 3) ; // 3 subs at openSea

newR(jetty@ferryDock , 1) ; // 1 j e t t y at ferryDock
newR(crane@ferryDock , 2) ; // 2 c ranes at ferryDock

newR(tug@harbour , 2) ; // 2 tugs at harbour
newR(sectug@harbour , 4) ; // 4 sec . tugs at harbour

newR(jetty@subDock , 2) ; // 2 j e t t i e s at subDock
newR(crane@subDock , 1) ; // 1 crane at subDock
newR(info@subDock , 5) ; // 5 i n f o un i t s at subDock

(∗ Process d e c l a r a t i o n s ∗)

p roce s s genFer r i e s = {
req [getR (ferry@openSea , 1)] ; // try to get a f e r r y from openSea

21

moveR(fe r ry , openSea −> harbour , 1) ; // move from openSea to harbour
hold (f e r r y i n) ; // time to do move
putR(ferry@harbour , 1) ; // r e l e a s e f e r r y in to harbour
launch (genFer r i e s , f e r r yd e l ay) // repeat a f t e r de lay

}

proce s s genSubs = {
req [getR (sub@openSea , 1)] ; // reques t sub from openSea
moveR(sub , openSea −> harbour , 1) ; // move sub to harbour
hold (subin) ; // time f o r move
putR(sub@harbour , 1) ; // r e l e a s e sub in harbour
launch (genSubs , subdelay) // repeat a f t e r de lay

}

proce s s dockFerry = {
req [getR (ferry@harbour , 1) ; getR (tug@harbour , 2)] ; // reques t f e r r y

// and 2 tugs

moveR(fe r ry , harbour −> ferryDock , 1) ; // move f e r r y to dock
try [getR (in fo , harbour , 1)] // fo rk on a v a i l a b i l i t y o f i n f o
{
moveR(tug , harbour −> ferryDock , 2) ; // move tugs to dock
moveR(in fo , harbour −> ferryDock , 1) ; // move i n f o with tugs
getR (jetty@ferryDock , 1) ; // grab j e t t y
hold (f e r r ydock in g) ; // time to dock f e r r y
putR(in fo , harbour , 1) ; // r e l e a s e i n f o at harbour

}
e t ry [] then // no i n f o grabbed
{
moveR(tug , harbour −> ferryDock , 2) ; // move tugs to dock
getR (jetty@ferryDock , 1) ; // grab j e t t y
hold (f e r r ydock in g) ; // time to dock f e r r y

} ;
moveR(tug , ferryDock −> harbour , 2) ; // re tu rn tugs to harbour
putR(tug@harbour , 2) ; // r e l e a s e tugs

getR (crane@ferryDock , 1) ; // grab crane
hold (f e r r y l o ad i n g) ; // time to load f e r r y
putR(crane@ferryDock , 1) ; // r e l e a s e crane

getR (tug@harbour , 2) ; // get tugs
try [getR (info@harbour , 1)] // fo rk on a b i l i t y to grab i n f o
{
moveR(tug , harbour −> ferryDock , 2) ; // move tugs to f e r rydock
moveR(in fo , harbour −> ferryDock , 1) ; // move i n f o with tugs
hold (tugreturn) ; // time f o r tugs to re tu rn to ferryDock
putR(info@ferryDock , 1) ; // r e l e a s e i n f o

}
e t ry [] then
{
moveR(tug , harbour −> ferryDock , 2) ; // move tugs to ferryDock
hold (tugreturn) ; // time f o r tugs to re tu rn to ferryDock

} ;
putR(jetty@ferrydock , 1) ; // r e l e a s e j e t t y
moveR(fe r ry , ferryDock −> harbour , 1) ; // move f e r r y back to harbour
moveR(tug , ferryDock −> harbour , 2) ; // move tugs to harbour
hold (f e r r y r e t u r n) ; // time to move f e r r y to harbour
putR(tug@harbour , 2) ; // r e l e a s e the tugs

22

moveR(fe r ry , harbour −> openSea , 1) ; // re tu rn f e r r y to open sea
hold (f e r r y ou t) ; // time f o r t h i s r e tu rn

putR(ferry@openSea , 1) ; // r e l e a s e f e r r y

launch (dockFerry , 0) // repeat
}

proce s s dockSub = {
req [getR (sub@harbour , 1) , getR (sectug@harbour , 2)] ; // grab sub

// and sec . tugs

moveR(sub , harbour −> subDock , 1) ; // move sub to dock
moveR(sectug , harbour −> subDock , 2) ; // move sec . tugs to dock

getR (jetty@subDock , 1) ; // grab j e t t y
hold (subdocking) ; // time to dock sub
moveR(sectug , subDock −> harbour , 2) ; // re tu rn sec . tugs to harbour
putR(sectug@subDock , 2) ; // r e l e a s e sec . tugs

try [getR (crane@subDock , 1)] then // try to grab crane
{
}
e t ry [] then {
req [getR (crane@ferryDock , 1)] // or grab crane from ferryDock
moveR(crane , ferryDock −> subDock , 1) ; // move crane to subDock
hold (promtime) ; // time to do promotion

} ;

getR (info@subDock , 1) ; // crane needs i n f o f o r load ing sub
hold (sub load ing) ; // time to load sub
putR(info@subDock , 1) ; // r e l e a s e i n f o on b eha l f o f crane
putR(crane@subDock , 1) ; // r e l e a s e crane

getR (sectug@harbour , 2) ; // get sec . tugs
moveR(sectug , harbour −> subDock , 2) ; // move s . tugs to subdock
hold (s tugre tu rn) ; // time f o r sec . tugs to re tu rn to dock
putR(jetty@subDock , 1) ; // r e l e a s e j e t t y
moveR(sub , subDock −> harbour , 1) ; // move sub back to harbour
moveR(sectug , subDock −> harbour , 2) ; // move sec . tugs to harbour
hold (subreturn) ; // time to move sub to harbour
putR(sectug@harbour , 2) ; // r e l e a s e the sec . tugs

moveR(sub , harbour −> openSea , 1) ; // move sub to open sea
hold (subout) ; // time f o r t h i s move
putR(sub@openSea , 1) ; // r e l e a s e sub

launch (dockSub , 0) ; // now do i t again
}

proce s s c raneDec las s = {

req [getR (crane@subDock , 1)] ; // get any spare c ranes from subDock
try [getR (info@subDock , 1)] // p ick up i n f o
{

moveR(crane , subDock −> debZone , 1) ; // move to d eb r i e f i n g zone
moveR(i n f o , subDock −> debZone , 1) ; // move i n f o with crane
hold (scantime) ; // time to scan f o r i n f o

23

hold (scrubt ime) ; // time to scrub crane
moveR(in fo , debZone −> subDock , 1) ; // re tu rn i n f o to subDock
putR(info@subDock , 1) ; // r e l e a s e i n f o

}
e t ry [] then
{
hold (scantime) ; // time to scan

} ;
moveR(crane , debZone −> ferryDock , 1) ; // move crane to ferryDock
hold (c ranere tu rn) ; // time to re tu rn crane
putR(crane@ferryDock , 1) ; // r e l e a s e crane

launch (craneDec lass , cranede lay) ; // wait b e f o r e r epeat ing
}

proce s s gateKeeper = {

f o r g e t (ferryDock , subDock) ; // c l o s e gate (i n i t i a l l y)
hold (ga t e c l o s ed) ; // time gate i s c l o s ed
r e c a l l (ferryDock , subDock) ; // open gate

launch (gateKeeper , gateopen) ; // repeat a f t e r gateopen un i t s
}

(∗ i n i t i a l p roce s s launches ∗)
launch (genFer r i e s , 0) ;
launch (genSubs , 0) ;
launch (gateKeeper , 0) ;
launch (craneDec lass , 0) ;

do 2 { launch (dockFerry , 0) ; launch (dockSub , 0) ;} // always have 2x2
// docking p roc e s s e s

hold (100) ; // s imu lat ion durat ion
c l o s e ; // terminate sim .

5.3 A Process Model in LSCRP

We now give a process algebraic model of the situation. This is slightly different model from the
LD2k model above. The reasons for the differences are discussed in Subsection 5.4 below.

We use the notation ‘.’ for the encoding of asynchronous prefix in LSCRP. That is, we define

a.E = a : δ(E)

where
δ(E) = E + 1 : δ(E)

for all a and E, defines the delay operator δ. We use this to represent arbitrary integer (non-zero)
time sections in the model, all of which we leave indeterminate.

An atomic location is a vertex of the graph G above. A location (environment) is a finite
subgraph of G. The location structure L is then as described in the Basic Model above. The
elements are locations, ranged over by L,M,N .

An atomic resource is a triple (l, r, n), where l is an atomic location, r is a resource name
(ferry, sub, crane, info, jetty, tug or sectug), and n is a natural number.

A resource R is a finite set of such atomic resources, such that there is a at most one n with
(l, r, n) ∈ R for each pair (l, r). Let R be the set of all resources. Each resource R may be viewed
as a function R : V × R −→ N as in the Basic Model. The composition of resource is given by

(R ◦ S)(l, r) = R(l, r) + S(l, r)

24

with unit as the map that is identically zero.
The actions and processes of the process calculus are those from the Basic Model, using the

location and resource parameters described above.
The model is given by a location-resource-process triple

L0, R0, E0

which we shall now describe. The initial location L0 is G − L(ferryDock,subDock), the whole graph
except for the link between the two docks. The inital resource R0 is

{(openSea, ferry, 2), (openSea, sub, 3), (ferryDock, jetty, 1), (ferryDock, crane, 2),
(harbour, tug, 2), (harbour, sectug, 4), (subDock, jetty, 2), (subDock, crane, 1),
(subDock, info, 5)} .

The initial process E0 is a product

GF ×GS × CD ×GK ×DF ×DS

of processes, for which we allow the above two letter names and which we shall now describe. The
process GF generates ferries (seen from the perspective of the harbour). It does this by moving
ferries from the open sea into the harbour. Similarly, the process GS generates submarines. We
take

GF = 1 : GF + move(ferry, openSea, harbour, 1) : GF
GS = 1 : GS + move(sub, openSea, harbour, 1) : GS .

The gatekeeper process periodically closes and opens the link from the ferry dock to the sub dock:

GK = 1 : GK + forget(ferryDock, subDock) : GK
+ recall(ferryDock, subDock) : GK .

There is a processes to declassify cranes:

CD = 1 : CD + (move(crane, subDock, debZone, 1)
move(info, subDock, debZone, 1)) : CD1

+ move(crane, subDock, debZone, 1) : CD2

CD1 = 1 : CD1 + (move(crane, debZone, ferryDock, 1)
move(info, debZone, subDock, 1)) : CD

CD2 = 1 : CD2 + move(crane, debZone, ferryDock, 1) : CD .

There is a process DF to dock a ferry:

DF = 1 : DF +DF1 +DF2

consisting of a process to dock and unload and possibly leak information into the harbour:

DF1 = (move(ferry, harbour, ferryDock, 1)
move(tug, harbour, ferryDock, 2)
move(info, harbour, ferryDock, 1)) :
(get(ferry, ferryDock, 1)
get(tug, ferryDock, 2)) :
get(jetty, ferryDock, 1).
put(tug, ferryDock, 2) :
move(tug, ferryDock, harbour, 2).
get(crane, ferryDock, 1).
put(crane, ferryDock, 1) :
(DF11 +DF12)

25

or to dock and unload without leaking:

DF2 = (move(ferry, harbour, ferryDock, 1)
move(tug, harbour, ferryDock, 2)) :
(get(ferry, harbour, ferryDock, 1)
get(tug, harbour, ferryDock, 2)) :
get(jetty, ferryDock, 1) :
put(tug, ferryDock, 2) :
move(tug, ferryDock, harbour, 2).
get(crane, ferryDock, 1).
put(crane, ferryDock, 1) :
(DF11 +DF12)

with sub-processes to ‘undock’ with leakage:

DF11 = (move(info, harbour, ferryDock, 1)
move(tug, harbour, ferryDock, 2)) :
get(tug, ferryDock, 1)).
put(jetty, ferryDock, 1) :
put(tug, ferryDock, 2) :
(move(ferry, ferryDock, harbour, 1)
move(tug, ferryDock, harbour, 2)).
move(ferry, harbour, openSea, 1).
DF

or undock without leakage:

DF12 = move(tug, harbour, ferryDock, 2).
put(jetty, ferryDock, 1) :
(move(ferry, ferryDock, harbour, 1)
move(tug, ferryDock, harbour, 2)).
move(ferry, harbour, openSea, 1).
DF .

Similarly, there is a process to dock a sub:

DS = 1 : DS +DS1

consisting of a process to grab the sub and secure tugs and move them from the harbour to the
subDock:

DS1 = (move(sub, harbour, subDock, 1)
move(sectug, harbour, subDock, 2)) :
(get(sub, subDock, 1)
get(sectug, subDock, 2)) :
get(jetty, subDock, 1).
put(sectug, subDock, 2) :
move(sectug, subDock, harbour, 2).
(DS11 +DS12) .

A non-deterministic choice is then made to grab an available crane already in the subDock:

DS11 = get(crane, subDock, 1).DS2

or we move a crane to the subDock, consuming time asynchronously in so doing:

DS12 = move(crane, ferryDock, subDock, 1).
get(crane, ferryDock, 1).
DS2

26

We complete each choice in DS with the process DS2 and finally continue with DS:

DS2 = get(info, subDock, 1).
put(info, subDock, 1) :
put(crane, subDock, 1) :
move(sectug, harbour, subDock, 2).
put(jetty, subDock, 1) :
put(sub, subDock, 1) :
(move(sub, subDock, harbour, 1)
move(sectug, subDock, harbour, 2)).
move(sub, harbour, openSea, 1).
DS .

5.4 Comparison of the Models

We reiterate that our two models are not identical, and that this is entirely deliberate. Slightly
different aspects of the same situation are easy to capture with the two different methodologies.
However, this does not mean that the two methodologies express fundamentally different concepts
of location, resource and process.

In particular, the process calculus model above captures the intent of the LD2k model only
partially. The following aspects of LD2k are in addition to the points discussed in §4.3:

1. Timing concerns are of central importance in the LD2k model;

2. Certain actions which are synchronized in the process model are sequenced in the LD2k
model (e.g. moving the ferry then the tugs) but with no timing difference between the
actions. This difference can impact upon resource use and so affect the possible traces of
the models;

3. In the LD2k model, moves are performed upon resources which are owned by the process
which does the moving. In the process calculus this is not the case. Thus an instance of
move(r, l, l′, n) in the process model corresponds broadly to an LD2k sequence:

getR (r@l , n) ; moveR(r , l −> l ’ , n) ; putR(r@l ’ , n)

with no hold(t) instances between the getR and the putR;

4. Our process model here does not capture the subtleties of priority intended by a try statement
in LD2K/D2K models. Instead we merely use non-deterministic choice to represent each
alternative possibility. Because we can only test for the presence of each resource by claiming
it, this means that we cannot eliminate the potential for overlapping access and hence prevent
the possibility of claiming the ‘wrong’ resource. In short, the try statement in both LD2k
and Demos2k is a form of prioritized choice. A weighted refinement of LSCRP, along the
lines of [48], would allow us to express the full detail of these aspects of the tool.

6 Logic

6.1 Syntax

We now introduce a logic of OLSCRP-system properties. The logic is a semantically defined
system in the style of Hennessy-Milner logic [23], based on the bunched logic BI. In addition to BI’s
basic (intuitionistic) additives and multiplicatives, the logic of OLSCRP-system properties admits
both additive and multiplicative quantifiers and both additive and multiplicative modalities.

Some features of the Hennessy-Milner style forcing relation are noteworthy:

• Multiplicative conjunction characterizes the (synchronous) concurrent composition;

27

• Multiplicative quantification characterizes hiding;

• The multiplicative modalities express properties of processes in the presence of additional
resources at extended locations.

Assume a collection of action variables x, y that range over the set of actions, Act. Assume a
collection of atomic formulae, ranged over by p. Define the set of atomic propositions by

φ ::= p | ⊥ | φ ∨ ψ | ⊤ | φ ∧ ψ | φ→ ψ | 〈a〉φ | [a]φ | ∃x.φ | ∀x.φ
| I | φ ∗ ψ | φ−−∗ ψ | 〈a〉νφ | [a]νφ | ∃νx.φ | ∀νx.φ

where a is either an action a or an action variable x. Let φ, ψ range over such propositions.
The conectives ∗, −−∗, I, 〈a〉ν , [a]ν , ∃ν , ∀ν are the multiplicative conjunction, implication, unit,
modalities and quantifiers. We refer to this language as LMBIi.

6.2 Interpretation

The logical language above has an intepretation on the states of OLSCRP. First, we introduce
a few more notions before we give the interpretation.

We make use of the order on states given by

L,R,E ⊑M,S, F iff L �M and R ⊑ S and E ∼ F

for all L,M,R, S,E, F .
We use a binary relation, <, on resources given by: S<R iff for any T , the composite S ◦T is

defined whenever R ◦ T is defined. This relation holds for all pairs of resources when the resource
monoid is total. This is the case for LD2k resources, as explained above.

An (action) environment is a partial function, η from action variables to actions. Environments
are partially ordered by inclusion of their graphs: write η ⊑ η′ iff η(x) = η′(x) for all action
variables x such that η(x) is defined. Say that η and η′ are consistent if they agree on all x such
that both are defined. Write η ◦ η′ for the environment formed by taking the union of the graphs
of η and η′, and note that this is well-defined just when η and η′ are consistent.

In what follows, it is convenient to extend all environments with the identity map on actions,
so that they map all actions (in Act) to themselves: we do not distinguish the two notions with
any particular notation and refer to both notions as environments.

The semantics that will be presented below is a variant of a Kripke model for first-order logic.
Thus the state space is presented at stages-of-definition, indexed so that the state space develops
as variables are assigned to constants. Define the state space at η to be the transition system with
the same states as OLSCRP and transitions

L,R,E
a

→η L
′, R′, E′

whenever η(a) ↓ and L,R,E
η(a)
→ L′, R′, E′.

A valuation is a map from atomic formulae to the set of functions from environments to states
such that, if the free variables of p are x1, . . . , xn then the set of states V(p)η depends only upon
p and the values η(x1), . . . , η(xn), and is the same for any other η′ that agrees with η on these
variables.

We further assume that all such valuations are closed under the following:

• if L,R,E ∈ V(p)η and L �M then M,R,E ∈ V(p)η

• if L,R,E ∈ V(p)η and R ⊑ S then L, S,E ∈ V(p)η

• if L,R,E ∈ V(p)η and E ∼ F then L,R, F ∈ V(p)η.

The valuation is extended to an interpretation of all formulae using the forcing relation of
Figures 6, 7.

28

L,R,E, η � p(x1, . . . xn) iff L,R,E ∈ V(p)η

L,R,E, η � ⊥ never L,R,E, η � ⊤ always

L,R,E, η � φ ∧ ψ iff L,R,E, η � φ and L,R,E, η � ψ

L,R,E, η � φ ∨ ψ iff L,R,E, η � φ or L,R,E, η � ψ

L,R,E, η � φ→ ψ iff ∀M,S, η′. L �M and R ⊑ S and η ⊑ η′ and
M,S,E, η′ � φ implies M,S,E, η′ � ψ

L,R,E, η � 〈a〉φ iff ∃E′. L, R,E
η(a)
→ µ(η(a), L, R), E′ and µ(η(a), L, R), E′, η � φ

L,R,E, η � [a]φ iff ∀M,S,E′. L �M and R ⊑ S and η ⊑ η′

M,S,E
η
′(a)
→ µ(η′(a),M, S), E′ implies µ(η′(a),M, S), E′, η′ � φ

L,R,E, η � ∃x.φ iff (∃x. η(x) = a) and L,R,E, η � φ[a/x]

L,R,E, η � ∀x.φ iff ∀η′.∀a. η ⊑ η′ and (∃x.η′(x) = a) implies L,R,E, η′ � φ[a/x]

Figure 6: Interpretation of atomic and additive formulae

L,R,E, η � I iff e ⊑ R and E ∼ 1

L,R,E, η � φ1 ∗ φ2 iff ∃R1, R2, E1, E2. R1 ◦ R2 ⊑ R and E1 × E2 ∼ E and
L,R1, E1, η � φ1 and L,R2, E2, η � φ2

L,R,E, η � φ−−∗ ψ iff ∀M,S, T, F, η′. R ◦ S ⊑ T and L �M and η ◦ η′ ↓ and
M,S, F, η′ � φ implies M,T,E × F, η ◦ η′ � ψ

L,R,E, η � 〈a〉νφ iff ∃S. R ◦ S ↓ and ∀M,T. L �M and R ◦ S ⊑ T implies

∃E′. M, T, E
η(a)
→ µ(η(a),M, T), E′ with µ(η(a),M, T), E′, η � φ

L,R,E, η � [a]νφ iff ∀M,S, T,E′, η′. L �M and R ◦ S ↓ and R ◦ S ⊑ T and η ⊑ η′

and M,T,E
η
′(a)
→ µ(η′(a),M, T), E′ implies µ(η′(a),M, T), E′, η′ � φ

L,R,E, η � ∃νx.φ iff ∃S,F, a, x. η(x) = a and R ◦ S ↓ and µ(a, L, S)↓ and S <R
and E ∼ νS.F and L,R ◦ S, F, η � φ[a/x]

L,R,E, η � ∀νx.φ iff ∀M,S, F, a, η′. L �M and R ◦ S ↓ and η ⊑ η′ and
µ(a,M,R ◦ S)↓ and E ∼ νS.F implies M,R ◦ S, F, η′ � φ[a/x]

Figure 7: Interpretation of multiplicative formulae

29

6.3 Theory

The theorem below (which is half of the appropriate Hennessy-Milner theorem in this setting)
holds.

Theorem 1. If L,R,E, η � φ and E ∼ F then L,R, F, η � φ.

Proof. The proof is the by induction on the structure of φ. We omit the details as they are
similar to those found in [16]. However, the additive modalities cases work because the relation
∼ on states is contained in the relation ≈. The case −−∗ works because ∼ is a congruence. The
multiplicative modalities require both of these facts.

Also, we have the following monotonicity property, again proved by the evident induction on
the structure of φ. In particular, the < predicate is used in the proof.

Theorem 2. If L,R,E, η � φ and L,R,E ⊑M,S, F and η ⊑ η′ then M,S, F, η′ � φ holds.

If the partial order on locations and resources is taken to be discrete, and we restrict our
attention to total environments then the interpretation of connectives is, essentially, that which
one would expect of a classical logic. Negation (interpretated by complementation) agrees with
the interpretation of the pseudocomplement ((−)→⊥).

In this classical setting [16], for the fragment of LMBIi without

−−∗, 〈a〉ν , and [a]ν

an interpretation can be given that uses the local bisimulation relation ≈, such that this interpre-
tation satisfies Theorem 1 (modifying [16]). In this situation, the standard proof [23, 40, 41, 45]
of the converse to Theorem 1 can be easily adapted (assuming a classical meta-theory). Note that
congruence for ≈ is not required for this proof.

Theorem 3. If, forall φ and η, (L,R,E, η � φ iff L,R, F, η � φ), then, for the fragment given
above, L,R,E ≈ L,R, F .

In fact, any fragment including ⊤, ∧, ¬, and 〈a〉 will allow this theorem to go through.

6.4 Examples

Example 6. We construct an example in the process language of Section 4 above.
Suppose that there are two atomic locations l and m. Consider a simple location L1 in which

there is just one link, and this has source l and target m.

l m

Suppose that there is just one resource name r. A resource R can then be represented by a
pair (p, q) of natural numbers, where p is the quantity of resource at l and q is the quantity of
resource at m. Composition is componentwise addition. Suppose that there is an initial resource
R1 = (1, 0), and a process E1 := move(r, l,m, 1) : 1 + 1 : E1.

An important consequence of the splitting of system state into location, resource and process
is that it is possible to have simple, atomic assertions about location and resource in the logical
assertion language. For any (p, q) let φ(p,q) be the atomic assertion that the current resource
distribution is (p, q). For any atomic locations l and m let ψ(l,m) be the atomic assertion that
there is a link from l to n. Then,

L1, R1, E1 � φ(1,0) ∧ ψ(l,m) ∧ ¬ψ(m,l) ∧ ¬ψ(l,l) ∧ ¬ψ(m,m)

completely describes the initial location graph and resource distribution.
Simple modal assertions describe the one-step evolution of the system as follows:

L1, R1, E1 � 〈move(r, l,m, 1)〉φ(0,1) ∧ [move(r, l,m, 1)]φ(0,1) ∧ 〈1〉φ(1,0) ∧ [1]φ(1,0) .

30

If there is any other process G such that G has a tick action, then

L1, R1, E1 ×G � 〈move(r, l,m, 1)〉φ(0,1)

and so
L1, eR, E1 � (φ(1,0) ∧ 〈1〉⊤) −−∗ 〈move(r, l,m, 1)〉φ(0,1) (1)

holds.
Much of the force of such −−∗-statements is that they allow for a kind of modular reasoning,

in which we move from assertions about parts of systems to assertions about whole systems. For
example, with G1 := (1 : G1) × (get(r,m, 1) : 0) we have L1, R1, G1 � (φ(1,0) ∧ 〈1〉⊤) and so for
the larger system

L1, R1, E1 ×G1 � 〈move(r, l,m, 1)〉φ(0,1)

using (1) above. Of course, this particular assertion could also have been produced directly using
the semantics of the additive diamond modality.

As an example of the use of a multiplicative modality we have,

L1, eR, G1 � ([get(r,m, 1)]⊥) ∧ 〈get(r,m, 1)〉νφ(0,0)

since the get action can occur just when there is at least one unit of resource at location m.

Example 7. Again, this is an example in the style of Section 4.
Suppose that there are two atomic locations l and m. Let L2 be the location consisting of l,

m, a link from l to m, and a link from m to l. Suppose that there are two resource names r and s.

l m

Resources are now described by quadruples (pr
l , p

r
m, p

s
l , p

s
m), where each pj

i is the quantity of
resource j at location i. Let φ(p,q,i,j) be the assertion that the current system has resources
(p, q, i, j). We focus here on a situation in which there is at most one unit of r summed over all
locations, and similarly for s. Each such unit can be regarded as a token representing the position
of that resource. So, for example, if there is one unit of resource r at vertex l then the position of
r is l.

Consider processes

E2 := (1 : E2) + (move(r, l,m, 1) : E2) + (move(r,m, l, 1) : E2)
F2 := (1 : F2) + (move(s, l,m, 1) : F2) + (move(s,m, l, 1) : F2)
G2 := (1 : G2) + (get(r, l, 1)get(s, l, 1) : 0) + (get(r,m, 1)get(s,m, 1) : 0) .

The system L2, (1, 0, 0, 1), E2 ×F2 ×G2 cycles resources around the graph L2 until they lie at the
same vertex at the same time. At this point the G2 component of the system may simultaneously
claim both of the resources and then terminate.

Let θ1 be ((φ(0,1,0,0) ∧ 〈move(r,m, l, 1)〉⊤). Let θ2 be (φ(0,0,1,0) ∧ 〈move(s, l,m, 1)〉⊤). Let θ3
be the assertion φ(0,0,0,0).

Then
L2, (1, 0, 0, 1), E2 × F2 ×G2 � (φ(1,0,0,0) ∧ 〈move(r, l,m, 1)〉θ1)∗

(φ(0,0,0,1) ∧ 〈move(r, l,m, 1)〉θ2)∗
〈1〉θ3

since, in particular,
L2, (1, 0, 0, 0), E2 � 〈move(r, l,m, 1)〉θ1
L2, (0, 0, 0, 1), F2 � 〈move(s,m, l, 1)〉θ2
L2, (0, 0, 0, 0), G2 � 〈1〉θ3

all hold. We also have

L2, (1, 0, 0, 1), E2 × F2 ×G2 � 〈move(r, l,m, 1)move(s,m, l, 1)〉(θ1 ∗ θ2 ∗ θ3)

31

so that, after the positions of the r and s tokens are exchanged the first time, they may be
exchanged a second-time.

More generally, for any assertions φ1, . . . φn we have

L,R,E � ∀x1 . . . ∀xn((〈x1〉φ1) ∗ . . . ∗ (〈xn〉φn)) implies L,R,E � 〈x1 . . . xn〉(φ1 ∗ . . . ∗ φn)

for all L,R,E.

Example 8. Consider the example L0, R0, E0 from Section 5. This satisfies

L0, R0, E0 � φ1 ∗ φ2

where φ1 is ‘there are two free tugs’ and φ2 is ‘there are two free secure tugs’. The fact that the
model satisfies this multiplicative conjunction in one of the facts that allows ferries and submarines
to dock simultaneously using the DF and DS processes since the tugs can used by DF and the
secure tugs by DS.

This can reach a state L,R,E that has no get(crane, subDock, 1)-transition, because it lacks
a free crane at the subDock. Such a state does not satisfy the relation

L,R,E � 〈get(crane, subDock, 1)〉⊤

and so a paticular submarine cannot currently dock. There are, however, such states that do
satisfy

L,R,E � 〈get(crane, subDock, 1)〉ν⊤

so that the submarine may dock given additional resource (another crane). This suggets the
structural property of models (which we have) that cranes can be drafted in to the subDock along
a connection from another location (in our case the ferryDock).

Let φ be the assertion ‘the information component of the resource at ferryDock is zero’. Then

L0, R0, E0 � ∀x1 . . . xn.[x1] . . . [xn]φ

asserts the valid statement that information is not leaked in n-steps. It seems that a more powerful
language with, say, infinitary conjunction, or quantification over the natural numbers is needed
for making the assertion that information never leaks.

In the above example, the underlying location structure G is small. In larger examples, it may
be useful to have a logical language with variables for atomic locations (and possibly atomic links)
in atomic formulae and quantification over such variables.

Further examples of the use of ∗ and −−∗ in reasoning about resource and process (but not
location) are given in [40, 41]. More complex properties of systems often require enrichments of
the logical language presented here, for example ‘always’ or ‘eventually’ modalities.

7 Discussion

We have produced a theoretical framework that encompasses both the dynamic behaviour of
discrete event systems with distributed resource and a logic for formal reasoning about system
properties. We believe that this leads to scalable, practical tools for systems modelling. We have
described a kernel of a tool (LD2k) which demonstrates our ideas.

Nevertheless, much work remains fully to deliver a well-founded, practical tool. The rela-
tionship between LSCRP and LD2k is clearly very close: indeed, we claim that LSCRP is the
correct foundation for LD2k. That said, making this correspondence formal requires a good deal
of further work, and clearly involves giving a semantics to LD2k using LSCRP. This should take
the form of a (completely formalized) translation that defines LD2k phrases and commands by
the use of LSCRP expressions.

As part of developing our current LD2k framework further, it will be necessary to make a large
number of extensions to give a better-rounded platform for developing large-scale systems models.
Applied modellers expect to have all of the same kinds of language features that are familiar from
using D2k — but extended with location concepts.

32

References

[1] J. Baeten and J. Bergstra. Real space process algebra. Formal Aspects of Computing, 5:481–529,
1993.

[2] J. Barwise and J. Seligman. Information Flow: The Logic of Distributed Systems. C.U.P, 1997.

[3] A. Beautement, R. Coles, J. Griffin, B. Monahan, D. Pym, M. A. Sasse, and M. Wonham. Modelling
the human and technological costs and benefits of usb memory stick security. In M. Johnson, editor,
Managing Information Risk and the Economics of Security. Springer, Forthcoming (5th December
2008). Conference version at: http://weis2008.econinfosec.org/papers/Pym.pdf.

[4] Y. Beres, J. Griffin, and S. Shiu. Security analytics: Analysis of security policies for vulnerability
management. Technical Report HPL-2008-121, HP Labs, 2008. Conference version to appear as:
‘Analyzing the performance of security operations to reduce vulnerability exposure windows’, Y.
Beres, J. Griffin, S. Shiu, M. Heitman, D. Markle, P.Ventura, Annual Computer Security Applications
Conference (ACSAC) 2008, IEEE.

[5] N. Biri and D. Galmiche. Models and separation logics for resource trees. Journal of Logic and
Computation, 4(17):687–726, 2007.

[6] G. Birtwistle. Demos — discrete event modelling on Simula. Macmillan, 1979.

[7] G. Birtwistle, R. Pooley, and C. Tofts. Characterising the structure of simulations using CCS.
Transactions of the Simulation Society, 10(3):205–236, 1993.

[8] C. Calcagno, P. Gardner, and U. Zarfaty. Context logic and tree update. In Proceedings of the 32nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages 2005 (POPL), pages
271–282, 2005.

[9] L. Cardelli and A. Gordon. Mobile ambients. Theoret. Comp. Sci., 240:177–213, 2000.

[10] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench. In J. Sifakis, editor, Automatic
Verification Methods for Finite State Systems (CAV ’89), volume 407 of Lecture Notes in Computer
Science, pages 24–37. Springer-Verlag, 1989.

[11] R. Cleaveland, J. Parrow, and B. Steffen. The concurrency workbench: A semantics-based verification
tool for the verification of concurrent systems. ACM Transactions on Programming Languages and
Systems, 15(1):36–72, 1993.

[12] M. Collinson, B.Monahan, and D. Pym. Located Demos2k: A tool for executing processes relative
to distributed resources. Technical Report HPL-2008-76, HP Labs, 2008.

[13] M. Collinson, B.Monahan, and D. Pym. A logical and computational theory of located resource.
Technical Report HPL-2008-74R1, HP Labs, 2008.

[14] M. Collinson, B.Monahan, and D. Pym. An Update to Located Demos2k. Technical Report HPL-
2008-205, HP Labs, 2008.

[15] M. Collinson and D. Pym. Algebra and logic for access control. Technical Report HPL-2008-75R1,
HP Labs, 2008.

[16] M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling. Submitted:
http://www.cs.bath.ac.uk/∼pym/mbi.pdf, 2008.

[17] M. Collinson, D. Pym, and C. Tofts. Errata for Formal Aspects of Computing (2006) 18:495–517
and their consequences. Formal Aspects of Computing, 19(4):551–554, 2007.

[18] G. Conforti, D. Macedonio, and V. Sassone. Static bilog: a unifying language for spatial structures.
Fundamenta Informaticae, 80:1–20, 2007.

[19] O.-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula 67 common base language. NCC Publication
S-52, Norwegian Computing Center, Oslo, 1970.

[20] R. De Nicola and M. Loreti. A modal logic for mobile agents. ACM Transactions on Computational
Logic, 5(1):79–128, 2004.

[21] Demos2k. http://www.demos2k.org.

[22] M. Hennessy, M. Merro, and J. Rathke. Towards a behavioural theory of access and mobility control
in distributed systems. Theoretical Computer Science, 322:615–669, 2003.

[23] M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM, 32(1):137–
161, 1985.

33

[24] M. Hennessy and J. Riely. Resource access control in systems of mobile agents. Information and
Computation, 173:82–120, 2002.

[25] S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In Proc. POPL
2001, pages 14–26. ACM, 2001.

[26] O. Jensen and R. Milner. Bigraphs and mobile processes (revised). Technical Report 580, Computer
Laboratory, University of Cambridge, 2004.

[27] R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer, 1980.

[28] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267–310, 1983.

[29] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[30] R. Milner. Communicating systems and the π-calculus. Cambridge University Press, 1999.

[31] R. Milner. Bigraphs as a model for mobile interaction. In Graph Transformation, volume 2505 of
Lecture Notes in Computer Science, pages 8–13. Springer Berlin / Heidelberg, 2002.

[32] OCAML. http://caml.inria.fr/.

[33] P. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science, 375(1–
3):271–307, 2007.

[34] P. O’Hearn and D. Pym. The logic of bunched implications. Bull. Symb. Logic, 5(2):215–244, 1999.

[35] G. Plotkin. Structural operational semantics. Journal of Logic and Algebraic Programming, 60:17–
139, 2004. Original manuscript 1981.

[36] S. Popkorn. First Steps in Modal Logic. Cambridge University Press, 1994.

[37] D. Pym. On bunched predicate logic. In Proc. LICS’99, pages 183–192. IEEE, 1999.

[38] D. Pym. The Semantics and Proof Theory of the Logic of Bunched Implications, volume 26 of
Applied Logic Series. Kluwer Academic Publishers, 2002. Errata at: http://www.cs.bath.ac.uk/
∼pym/BI-monograph-errata.pdf.

[39] D. Pym, P. O’Hearn, and H. Yang. Possible worlds and resources: The semantics of BI. Theoretical
Computer Science, 315(1):257–305, 2004.

[40] D. Pym and C. Tofts. A calculus and logic of resources and processes. Formal Aspects of Computing,
18(4):495–517, 2006. Errata in [17].

[41] D. Pym and C. Tofts. Systems Modelling via Resources and Processes: Philosphy, Calculus, Se-
mantics, and Logic. In L. Cardelli, M. Fiore, and G. Winskel, editors, Computation, Meaninig and
Logic: articles dedicated to Gordon Plotkin, volume 107 of Electronic Notes in Theoretical Computer
Science, pages 545–587. Elsevier, 2007. Errata in [17].

[42] D. Rémy. Using, Understanding, and Unraveling the OCaml Language. In G. Barthe, editor, Applied
Semantics. Advanced Lectures, number 2395 in LNCS, pages 413–537. Springer Verlag, 2002.

[43] J. Reynolds. Separation logic: a logic for shared mutable data structures. In Proc. LICS’02, pages
55–74. IEEE, 2002.

[44] J. Riely and M. Hennessy. Distributed processes and location failures. Theoretical Computer Science,
226:693–735, 2001.

[45] C. Stirling. Modal and temporal properties of processes. Springer, 2001.

[46] R. Taylor, C. Tofts, and M. Yearworth. Open Analytics. Technical Report HPL-2004-138R1, HP
Labs, 2004.

[47] The Concurrency Workbench. http://www.lfcs.inf.ed.ac.uk/cwb/.

[48] C. Tofts. Processes with probabilities, priority and time. Formal Aspects of Computing, 6:536–564,
1994.

[49] B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. In D. Dill, editor,
CAV’94: Computer Aided Verification, volume 818 of Lecture Notes in Computer Science, pages
428–440. Springer-Verlag, 1994.

[50] B. Victor and F. Moller. The Mobility Workbench — a tool for the π-calculus. Technical Report
DoCS 94/45, Department of Computer Systems, Uppsala University, Sweden, February 1994. Also
available as Technical Report ECS-LFCS-94-285, Laboratory for Foundations of Computer Science,
Department of Computer Science, University of Edinburgh, UK.

34

[51] M. Yearworth, B. Monahan, and D.Pym. Predictive modelling for security operations economics
(extended abstract). Technical Report HPL-2006-125, HP Labs, 2006. Also appeared at: Proc.
I3P Workshop on the Economics of Securing the Information Infrastructure (WESSI), 2006, http:
//wesii.econinfosec.org/workshop/.

35

