

Pairings in Trusted Computing

Chen, Liqun; Morrissey, Paul; Smart, Nigel P
HP Laboratories
HPL-2008-73

Keyword(s):
Trusted computing, Direct Anonymous Attestation (DAA), pairing

Abstract:
Pairings have now been used for constructive applications in cryptography for around eight
years. In that time the range of applications has grown from a relatively narrow one of identity
based encryption and signatures, through to more advanced protocols. In addition implementors
have realised that pairing protocols once presented can often be greatly simplified or expanded
using the mathematical structures of different types of pairings. In this paper we consider another
advanced application of pairings, namely to the Direct Anonymous Attestation (DAA) schemes
as found in the Trusted Computing Group standards. We show that a recent DAA proposal can
be further optimized by transferring the underlying pairing groups from the symmetric to the
asymmetric settings. This provides a more efficient and scalable solution than the existing RSA
and pairing based DAA schemes.

External Posting Date: June 21, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: June 21, 2008 [Fulltext]

To be published in The Second International Conference on Pairing Cryptography Proceedings, Sept 1-3, 2008

© Copyright 2008 The Second International Conference on Pairing Cryptography Proceedings

Pairings in Trusted Computing?

L. Chen1, P. Morrissey2 and N.P. Smart2

1 Hewlett-Packard Laboratories,
Filton Road,
Stoke Gifford,

Bristol, BS34 8QZ,
United Kingdom.

liqun.chen@hp.com
2 Computer Science Department,

Woodland Road,
University of Bristol,
Bristol, BS8 1UB,
United Kingdom.

{paulm, nigel}@cs.bris.ac.uk

Abstract. Pairings have now been used for constructive applications in
cryptography for around eight years. In that time the range of applica-
tions has grown from a relatively narrow one of identity based encryption
and signatures, through to more advanced protocols. In addition imple-
mentors have realised that pairing protocols once presented can often
be greatly simplified or expanded using the mathematical structures of
different types of pairings. In this paper we consider another advanced
application of pairings, namely to the Direct Anonymous Attestation
(DAA) schemes as found in the Trusted Computing Group standards.
We show that a recent DAA proposal can be further optimized by trans-
ferring the underlying pairing groups from the symmetric to the asym-
metric settings. This provides a more efficient and scalable solution than
the existing RSA and pairing based DAA schemes.

1 Introduction

The growth of pairing based cryptography and the growth of elliptic curve cryp-
tography from an implementation perspective closely follow the same path. Orig-
inally elliptic curve systems were defined over supersingular elliptic curves. This
was mainly due to the difficulty in constructing suitable curves with a known
group order of the required size, and also due to perceived performance advan-
tages which accrue from using supersingular curves. With the discovery of the
MOV attack [20], implementors moved over to using non-supersingular (or ordi-
nary) elliptic curves. This move was supported by the research conducted into
the Schoof algorithm and its variants, [2]. The Schoof algorithm enabled ordinary

? The second and third author would like to thank EPSRC for partially supporting
the work in this paper.

elliptic curves to be constructed with a known number of group elements, thus
enabling standard elliptic curve cryptography to be performed using ordinary
elliptic curves.

Pairing based cryptography also started by using supersingular elliptic curves,
via the use of symmetric pairings. Again this was mainly because such curves
enabled one to compute the number of points very efficiently, and because it
appeared that symmetric pairings could be implemented much more efficiently
than standard pairings. However, a major drawback of symmetric pairings is
that their security properties scale badly. This poor scaling is due to the embed-
ding degree being bounded by six. Thus with the wider acceptance of AES style
security levels it has been necessary for pairing protocols to also move to the
setting of ordinary elliptic curves, where asymmetric pairings are required. This
security concern, which has prompted the move to asymmetric pairings, has been
supported by a large body of research into optimizing pairings in the ordinary el-
liptic curve setting, and in generating the required parameters. Probably, at the
time of writing the best choice for parameters is to choose a Barreto-Naehrig
curve [1], implement the Ate-pairing [18], and use sextic twists to reduce the
complexity of the group operations.

However, whilst protocols in the standard elliptic curve cryptography setting
move seamlessly from the supersingular case to the ordinary case, this is not true
in the pairing based cryptography setting. For example, issues arise with respect
to hashing onto various groups, or from mappings between the two groups in
the domain, see [15]. Thus in pairing based cryptography various initial protocol
suggestions often needed to be revisited as asymmetric pairings became more
accepted as the default implementation choice. For example the original Boneh-
Franklin encryption scheme [6] was originally presented for symmetric pairings
and in this setting is highly efficient. However, at high security levels it is less
attractive than some of the more modern approaches such as the Boneh-Boyen
scheme [3] (which is preferred by those who worry about exact security) and the
SK-KEM scheme [13] (which has a better performance than the Boneh-Boyen
scheme, but worse exact security). Another example of the need to fully evaluate
pairings in the asymmetric setting can be found in ID-based key agreement, for
which [14] provides a good summary of the issues involved.

Over the years various more advanced protocols have been proposed which
use pairings; for example encryption with keyword search [5], group signatures
[4], traitor tracing [19]. In this paper we consider another advanced application
of pairings, namely to Direct Anonymous Attestation (DAA) schemes as found
in the Trusted Computing Group standards [21]. We show that a recent DAA
proposal [8] can be further optimized, and hence we provide a more efficient and
scalable solution than the existing RSA and pairing based DAA schemes.

The original DAA scheme [7] was based on a signature scheme of Camenisch
and Lysyanskaya [10] whose security was based on the strong-RSA assumption
and the decisional Diffie–Hellman assumption in a finite field. In [16] another
DAA scheme was presented, based on the Camenisch and Michels signature

scheme [12], this again results in a DAA scheme which is secure under the strong-
RSA and the decisional Diffie–Hellman assumption in a finite field.

Recently, Brickell et. al. [8] have presented a DAA scheme based on symmetric
pairings. This DAA protocol is based on another signature scheme of Camenisch
and Lysyanskaya [11] which makes use of symmetric pairing groups. This results
in a scheme which is secure under the DBDH assumption and the LRSW as-
sumption. This latter assumption is a non-standard assumption which underlies
the Camenisch and Lysyanskaya signature scheme. The LRSW assumption was
introduced in [17], where it was shown that it holds in the generic group model.

As a starting point we take the pairing based DAA scheme of Brickell et. al.
and provide some efficiency improvements. In addition we present the scheme
in the asymmetric setting, which requires, as is usual in this situation, some
minor modifications to the original scheme. We show that the new scheme is
particularly suited to the environment in which the DAA scheme is meant to
run. This is because our new scheme places a smaller computational requirement
on the TPM, which is a small hardware device which sits on the motherboard
of the trusted platform. In fact the TPM has only to perform a single basic
elliptic curve point multiplication in the signing protocol, and in all parts of the
protocol the TPM requires no operation to be performed in large finite fields nor
any pairing calculations. In addition we reduce the number of pairings computed
by the Host during a signing operation from three to one.

In the full version of this paper we shall show that our optimized asymmetric
pairing based protocol is secure in a security model based on real/ideal world
simulations. This is closer to the original security model of [7], than the security
model used in [8]. Thus our protocol is not only more efficient than that in [8],
but it also enjoys enhanced security properties.

2 Introduction to Direct Anonymous Attestation

In order to give an intuitive explanation of what direct anonymous attestation
(DAA) is, its importance and its impact, we use the following scenario. Con-
sider a user, Alice, who owns a laptop computer. Alice uses this computer for
online shopping with a given retailer Charlie and to remotely log on to network
server Bob in order to work from home as part of her day job. Both Bob and
Charlie want some assurance that Alice is using a laptop which contains some
combination of hardware and software from some specific set. This is to pro-
tect themselves from malicious users who may try to compromise their systems.
In other words they want some assurance that Alice’s platform can be trusted.
On the other hand Alice does not want either Bob or Charlie to know exactly
which laptop she owns, what hardware it contains, or what software it runs: just
that it can in fact be trusted. Furthermore, Alice wants Bob to be able to link
transactions made with her laptop to each other (without giving Bob any more
information than that the transactions were made using the same platform), but
does not want any other transactions to be linked. Informally, a DAA scheme is
a mechanism for achieving each of these seemingly contradictory goals.

We assume that each trusted platform has a certain module, known as a
trusted platform module (TPM), embedded into it at the time of manufacture.
Each TPM will have a unique endorsement key pair (EK) which is also chosen
at the time of manufacture and which is hidden inside the TPM. Usually the
TPM is a small chip embedded onto a computer’s motherboard and as a result
the TPM has only limited computational and storage resources. As such the
TPM is a potential bottleneck within a DAA scheme. To make a DAA scheme
as efficient as possible the main goal is to minimize the amount of computation
that a given TPM will have to perform. We refer to the platform into which the
TPM is embedded as the Host and the combination of TPM and Host as a user.

In order to convince a verifier that a platform contains such a TPM, and can
hence be trusted, the user has to first obtain a credential from some credential
issuer. It does this by having its TPM compute a commitment to a secret internal
value f that is unique for each issuer/TPM pair. This commitment is then used
as evidence to the issuer that the user does in fact have a valid TPM embedded
within it. Note that a given user can obtain many credentials from a given issuer.

In order to convince a given verifier that a user owns such a credential the
user computes a “signature of knowledge” of such a credential and the associated
value f corresponding to this credential. This signature of knowledge is then
sent to the verifier. Then, since the credential was issued by a specific issuer, the
verifier is convinced that a given user contains a valid TPM but does not know
which TPM this is. If a user wants a verifier to be able to link transactions then
that user simply computes the signature of knowledge in a certain specified way:
by using a given verifier basename.

One last consideration is what happens if a given TPM is compromised and
its secret internal values published? In this case we use rogue tagging. Each
issuer and verifier maintains their own list of rogue values. When a given value
of f is published they then decide whether to add it to their list or not. Then
we require, when a user computes a signature of knowledge of a given credential
this includes some information that allows for the signature to be recognised as
produced by a compromised TPM secret value

Since the verifier is only given a signature of knowledge of a credential, and
not the credential itself, if the issuer and the verifier that computed the credential
collude, then they should not be able to identify transactions made by a specific
TPM. Yet a given verifier will be assured that any transaction that does take
place was made by a platform that contains such a TPM and that this TPM has
not been compromised.

2.1 The DAA Players

We refer to each of the entities in a DAA scheme as players. We first describe the
types of players we consider in our model. This set of players is the same set as
in [9] and is intended to represent a DAA scheme in which a given TPM wishes
to remotely and anonymously authenticate itself to a given verifier. Intuitively,
the set of players will consist of a set of users, each comprising a Host and a

TPM, a set of issuers, and a set of verifiers to which users want to authenticate
their TPM.

We now give a formal description of each of the DAA players. A general DAA
scheme has a set of players that consists of the following.

– A set of users U where each Ui ∈ U consists of
• A TPM mi from some set of TPMs M with an endorsement key eki and

seed DaaSeedi;
• A Host hi from some set of hosts H which will have a counter value cnti,

a set of commitments {comm}i and a set of credentials {cre}i.
– A set of issuers I where each Ik ∈ I has a public and private key pair

(ipkk, iskk) and long term value Kk (for example a long term public key of
the issuer). Each Ik ∈ I also maintains a list of rogue TPM internal values,
we denote this list by RogueList(Ik).

– A set of verifiers V. Each verifier Vj ∈ V maintains a set of base names
{bsn}j and a list of rogue TPM internal values RogueList(Vj). Each Vj may
optionally maintain a list of message and signature pairs received (this can
be used to trade memory for computation in linking).

We assume that initially the sets {comm}i, {cre}i are empty for all Ui ∈ U .
In addition we assume that the list RogueList(Ik) are empty for all Ik ∈ I, and
that the list RogueList(Vj) and the sets {bsn}j are empty for all Vj ∈ V.

It is worth describing the various player parameters and how they relate
to each other. Generally, at the time of manufacture, each TPM will have a
single endorsement key eki embedded into the TPM chip. In addition, each TPM
generates a TPM-specific secret DaaSeedi and stores it in nonvolatile memory,
this value will never be disclosed or changed by the TPM. We do not consider
choosing and assigning the values eki and DaaSeedi in the setup algorithm, since
the setup algorithm is run only by an issuer. The DaaSeedi is generally a 20–byte
constant that, together with a given issuer value Kk, allows for the generation
and regeneration of a given value of an internal secret key f . Each TPM can have
multiple possible values for f (at least one per issuer and possible more if a given
issuer has more than one value of Kk). We refer to the set of possible values of f
for a given user i as {f}i Since the TPM has limited storage requirements it does
not store the current value for f , it regenerates it as required from DaaSeedi.
For each value of f the TPM will be able to compute a single commitment on
f . The value cnti that a given Host maintains can be thought of as an index for
a particular f and commitment pair.

For each commitment, as we will see later, a given issuer could issue mul-
tiple credentials. We assume the Host only stores one credential for a given
f/commitment pair, and hence the value of cnti will also refer to the current
value of the corresponding credential.

The set {bsn}j is used to achieve user controlled linkability of signatures.

2.2 Formal Definition of a DAA Scheme

Informally a DAA scheme consists of a system setup algorithm, a protocol for
users to obtain credentials, a signing protocol, algorithms for verifying and link-

ing signatures and an algorithm for tagging rogue TPM values. Our definition
is similar to that given in [8] but with some modifications. Specifically, we give
a single protocol for the joining functionality as opposed to multiple protocols,
and our signature functionality is given as a protocol as opposed to an algorithm.
Also we have an additional rogue tagging algorithm.

Definition 1 (Daa Scheme). Formally, we define a Daa scheme to be a tuple of
protocols and algorithms Daa = (Setup, Join,Sign, Verify, Link, RogueTag) where:

– Setup(1t) is a p.p.t. system setup algorithm. On input 1t, where t is a security
parameter, this outputs a set of system parameters par which contains all of
the issuer public keys ipkk and the various parameter spaces. This algorithm
also serves to setup and securely distribute each of the issuer secret keys iskk.

– Join(Ui, Ik) is a 3 party protocol run between a TPM, a Host and an issuer.
In a correct initial run of the protocol with honest players the Host should
obtain an additional valid commitment and an additional valid credential. In
correct subsequent runs one valid credential should be replaced with another.

– Sign(Ui,msg) is a 2 party protocol run between a TPM and a Host used
to generate a signature of knowledge on some message msg. In a correct
run of the protocol with honest players the signature of knowledge will be
constructed according to some basename for some specified verifier that may
or may not allow the signature to be linked to other signatures with this same
verifier.

– Verify(σ,msg) is a deterministic polynomial time (d.p.t.) verification algo-
rithm that allows a given verifier to verify a signature of knowledge σ of a
credential on a message msg intended for a given verifier with a specific base-
name. The verification process will involve checking the signature against the
list RogueList(Vj). This algorithm returns either accept or reject .

– Link(σ0, σ1) is a d.p.t. linking algorithm that returns either linked , unlinked
or ⊥. The algorithm should return ⊥ if either signature was produced with
a rogue key, return linked if both are valid signatures and the user who
produced them wanted these to be linkable to each other, and return unlinked
otherwise.

– RogueTag(f, σ) is a d.p.t. rogue tagging algorithm that returns true if σ is
a valid signature produced using the TPM secret value f and returns false
otherwise.

For correctness we require that if

– a user Ui ∈ U engages in a run of Join with Ik, resulting in Ui obtaining
a commitment comm on a TPM secret value f and a credential cre corre-
sponding to f ,

– the user Ui then creates two signatures σb on two messages msgb for b ∈ {0, 1}
intended for verifier Vj ∈ V with basename bsn (which could be ⊥),

– and the secret TPM value used to compute these f is not in RogueList.

Then
Verify(σ0,msg0) = Verify(σ1, msg1) = accept

and if bsn 6=⊥ then Link(σ0, σ1) = linked .

3 The Camensich-Lysyanskaya Signature Scheme

Before proceeding it is worth pausing to present the pairing based Camensich-
Lysyanskaya signature scheme which is at the heart of not only our DAA scheme,
but also the scheme of [8]. We let t̂ : G1 × G2 → GT denote a pairing between
three groups of prime order q. We let the generator of G1 (resp. G2) be denoted
by P1 (resp. P2).

– KeyGeneration: The private key is a pair (x, y) ∈ Zq ×Zq, the public key
is given by the pair (X,Y) ∈ G2 ×G2 where X = xP2 and Y = yP2.

– Signing: On input of a message m ∈ Zq the signer generates A ∈ G1 at
random and outputs the signature (A,B,C) ∈ G1×G1×G1, where B = yA
and C = [x + mxy]A.

– Verification: To verify a signature on a message the verifier checks whether
t̂(A, Y) = t̂(B, P2) and t̂(A,X) · t̂(mB, X) = t̂(C, P2).

The original signature scheme is given in the symmetric pairing setting (i.e.
where G1 = G2), we have chosen the above asymmetric version to reduce the
size of the signatures and to have the fastest signing algorithm possible. The
key property of this signature scheme is that signatures are re-randomizable
without knowledge of the secret key: given (A,B, C) one can re-randomize it by
computing (rA, rB, rC) for a random element r ∈ Zq.

There is an interesting difference between this signature scheme in the sym-
metric and the asymmetric settings. In the symmetric setting the signer, on
being given two valid signatures (A,B,C) and (A′, B′, C ′), is able to tell that
they correspond to a randomization of a previous signature, without knowing
what that message is. He can do this by verifying that A′ = rA, B′ = rB and
C ′ = rC, for some value r, by performing the following steps:

t̂(A′, B) = t̂(A,B′) and t̂(A′, C) = t̂(A,C ′).

This makes use of the fact that the DDH problem is easy in G1 in the symmetric
setting.

In the asymmetric setting a signer is unable to determine if two signatures
correspond to the same message, since in this setting the DDH problem is be-
lieved to be hard in G1. Indeed one can show that an adversary who can tell
whether (A′, B′, C ′) is a randomization of (A,B,C), even if the adversary knows
x and y, is able to solve DDH in G1. This difference provides one of the main
optimizations of our scheme below.

4 Previous DAA Schemes

In this section we present prior work on DAA schemes, and we analyse their
performance.

4.1 Factoring Based Schemes

The original DAA scheme from [7] makes use of the Camenisch-Lysyanskaya
signature scheme [10], and hence is based on the strong-RSA assumption. In
particular it makes use of a strong-RSA modulus N = p·q, i.e. where p = 2·p′+1
and q = 2 · q′ + 1 for primes p′ and q′. In addition it uses a finite field of prime
order Γ . The difficulty of discrete logarithms in FΓ and of factoring N should
be roughly equivalent, so Γ and N are chosen to be roughly the same size.

As in all systems the Setup procedure is rather involved. However, this is
only run once and the resulting parameters are only verified once by each party
so we ignore the cost of the Setup algorithm and its verification.

In Table 1 table we present the computational cost for all the other algo-
rithms, with respect to each player. An entry of the form

1 ·GN + 2 ·GΓ + 3 ·G2
N

implies that the cost is about one exponentiation modulo N , two modulo Γ and
three multiexponentiations with two exponents modulo N , i.e. three operations
of the form ga·hb (mod N). Note, that a multiexponentiation with m exponents
can often be performed significantly faster than m separate exponentiations.

In the table we let Pc denote the cost of generating a prime number of the
required size and Pv the cost of verifying that a given number of the required
size is prime. We let n denote the number of keys in the verifier’s rogue secret
key list. We do not specify the time for the linking algorithm, as it is closely
related to that of the verification algorithm, and we give the additional time for
the RogueTag algorithm over and above the verification algorithm time (which
needs to be carried out).

Table 1. Cost of the DAA protocol from [7]

Operation Party Cost

Join TPM 3 ·GΓ + 2 ·G3
N

Issuer n ·GΓ + 2 ·GN + 1 ·G4
N + 1 ·G2

Γ + Pc

Host 1 ·GΓ + 1 ·G2
N + Pv

Sign TPM 3 ·GΓ + 1 ·G3
N

Host 1 ·GΓ + 1 ·GN + 1 ·G2
N + 2 ·G3

N + 1 ·G4
N

Verify Verifier 4 ·G2
Γ + 2 ·G4

N + 1 ·G6
N + nGΓ

RogueTag Verifier 1 ·G4
N

Note that the exponents involved in many of the operations, especially the
verification operation, are not of full length. Hence, the above table grossly
overestimates the required computational resources. However, one can see that
the constrained computing device, namely the TPM is having to perform a
considerable number of RSA-length operations.

In [16] a different variant of the DAA protocol is given which tries to reduce
the computational cost of the Host, thus allowing trusted computing technologies
which use the DAA protocol to be deployed in small devices such as mobile
phones. We do not analyse, for reasons of space, the performance of this protocol,
but it is also based on factoring assumptions and so all parties need to compute
with large integers.

4.2 Symmetric Pairing Based Schemes

Given the increase in RSA key lengths as required by moving to AES key levels,
since AES-128 is equivalent to roughly 3000 bits of RSA security, the above two
protocols are not going to be suitable in the long term. This led to Brickell et.
al. [8] to propose an elliptic curve variant, which reduced the load of the TPM
at the expense of requiring pairings to be computed by the other parties.

The Brickell et. al. protocol uses symmetric pairings t̂ : G1 × G1 −→ GT .
As above we let Gm

1 etc denote the cost of a multiexponentiation of m values
in the group G1. We also let P denote the cost of a pairing computation. The
associated costs are then given by Table 2.

Table 2. Cost of the DAA protocol from [8]

Operation Party Cost

Join TPM 3 ·G1

Issuer (2 + n) ·G1 + 2 ·G2
1

Host 6 · P
Sign TPM 4 ·GT

Host 3 ·G1 + 2 ·GT + 3 · P
Verify Verifier (n + 1) ·GT + 1 ·G2

T + 1 ·G3
T + 5 · P

RogueTag Verifier 1 ·GT

To get some idea of the comparison between the factoring based scheme and
the pairing based scheme, consider that the groups GT and GN (or GΓ) are
represented by bit strings of roughly the same size. In addition operations in GT

can be made slightly more efficient than those in GN , as in GT we can make
use of various torus-like representations and tricks, which are not available in
standard RSA groups. Finally, the operations in G1 are about 1/4 the cost of
operations in GT

1.
In the next section we present a variant of the Brickell et. al. pairing based

protocol which uses asymmetric pairings. By using asymmetric pairings and
1 This is a rough estimate derived as follows: GT is a subgroup of Fq6 and operations

in Fq will be 36 = 62 times more efficient generally than operations in GT , G1 is an
elliptic curve over Fq and so will have operations which take around 10 Fq operations,
and 10/36 ≈ 1/4.

Barreto-Naehrig curves, we are able to obtain, for the same size of GT , operations
in G1 which are around 144/10 ≈ 14 times more efficient than those in GT , as
opposed to 4 times as above. This is because now GT is a subgroup of Fq12 .

5 The Optimized Pairing Based DAA Scheme

We now give a detailed description of the our new DAA scheme based on asym-
metric bilinear maps, as opposed to symmetric ones.

5.1 The Setup Algorithm

To set the system up we need to select parameters for each protocol and algo-
rithm used within the DAA scheme well as the long term parameters for each
Issuer. On input of the security parameter 1t the algorithm executes the follow-
ing:

1. Generate the Commitment Parameters parC. For this three groups, G1,G2

and GT , of sufficiently large prime order q are selected. Two random gener-
ators are selected such that G1 = 〈P1〉 and G2 = 〈P2〉 along with a pairing
t̂ : G1 × G2 7→ GT . Next a hash function H1 : {0, 1}∗ 7→ Zq is selected and
parC is set to be (G1,G2,GT , t̂, P1, P2, q, H1).

2. Generate the Rogue List Parameters parR. A hash function H2 : {0, 1}∗ 7→ Zq

is selected. The rogue list parameters parR are then set to be (H2).
3. Generate Signature and Verification Parameters parS. Two additional hash

functions are selected: H3 : {0, 1}∗ 7→ Zq, and H4 : {0, 1}∗ 7→ Zq. We set
parS to be (H3,H4).

4. Generate the Issuer Parameters parI. For each Ik ∈ I the following is per-
formed. Two integers are selected x, y←Zq and the issuer secret key iskk is
assigned to be (x, y). Then the values X = x · P2 ∈ G2 and Y = y · P2 ∈ G2

are computed and the issuer public key ipkk is assigned to be (X, Y).
Then an issuer value Kk is computed according to the issuer public values
in some predefined manner (we leave the specific details of how this is done
as an implementation detail).
Finally, parI is set to be ({ipkk, Kk}) for each issuer Ik ∈ I.

5. Publish Public Parameters. Finally, the system public parameters par are set
to be (parC, parR, parS, parI) and are published.

The grouping of system parameters is according to usage. For example the
set parC contains all system parameters necessary for computing commitments
and the set parR contains those for any rogue checking computations (and also
linking).

The group order q is selected so that solving the decisional Diffie–Hellman
problem in G1,G2 and GT takes time 2t, as does solving the appropriate bilinear
Diffie–Hellman problem with respect to the pairing t̂.

An additional optional check of issuer public key values can be added by
having each issuer compute X ′ = x · P1 and Y ′ = y · P1 and publishing these as
part of par. Then to check that both X and Y are correctly formed one simply
checks that t̂(P1, X) = t̂(X ′, P2) and t̂(P1, Y) = t̂(Y ′, P2).

5.2 The Join Protocol

This is a protocol between a given TPM m ∈M, the corresponding Host h ∈ H,
and an Issuer I ∈ I. We first give an overview of how a general Join protocol
proceeds. There are 3 main stages to a Join protocol. First the TPM m generates
some secret message f using the value Kk provided by the issuer and its internal
seed DaaSeed. The TPM then computes a commitment on this value and passes
this to its Host who adds this to the list of commitments for that user and
forwards it to the Issuer. In the second stage the issuer performs some checks on
the commitment it receives and, if these correctly verify, computes a credential
such that the correctness of this credential can be check by the TPM and Host
working together. This credential is passed to the Host in an authenticated
manner (using ek). The final stage of a Join protocol involves the Host and TPM
working together to verify the correctness of the credential. In our case the Host
first performs some computations and stores some values related to these before
passing part of the credential on to the TPM prior to verifying the correctness
of the credential and then adding this to the list of credentials for that user.

TPM (m) Host (h) Initiator (I)

nI←{0, 1}t

commreq¾ commreq¾ commreq←nI

str←1‖X‖Y ‖nI str←1‖X‖Y ‖nI

f←H1(0‖DaaSeed‖Kk)

u←Zq

U←u · P1; F←f · P1

c←H1(str‖F‖U)

s←u + c · f (mod q)

comm←(F, c, s) comm- comm- U ′←sP1 − cF

If F = f · P1 for some

f on the rogue list, or

c 6= H1(str‖F‖U ′)
then abort

r←Zq

A←r · P1; B←y · A
C←(x · A + rxy · F)

cre←(A, B, C)

E¾ E¾ E←Eek(cre)

cre←E−1
ek (E); E←f · B cre, E- ρa←t̂(A, X)

ρb←t̂(B, X)

ρc←t̂(C, P2)

If t̂(A, Y) 6= t̂(B, P2)

or t̂(A + E, X) 6= ρc

then abort

Fig. 1. The Join Protocol

Our protocol proceeds as shown in Figure 1. The following notes should be
born in mind when examining this protocol.

– If the points P1, P2, X, Y are not formed correctly then this could leak in-
formation about the value of a given f , for example due to small subgroup
attacks. To prevent this from happening each TPM needs to verify that P1

generates G1, P2 generates G2 and that X, Y ∈ G2. This need be done once
for each TPM so we do not give this as part of the Join protocol. Algorithms
for checking whether points are elements of particular pairing groups are
given in [14].

– The value of cre is not sent in the clear and hence only the intended user
can obtain the complete credential. This is done by encrypting the value cre
under a public key corresponding to the TPM endorsement key ek. Again, we
do not consider these calculations in the performance analysis of the scheme.

– In contrast with the RSA-based DAA schemes we do not require a relatively
complicated proof of knowledge of the correctness of a given commitment.
Instead, the proof of knowledge is provided by a very efficient Schnorr sig-
nature, on the value F computed using the secret key f .

– Once a credential is issued from I, the TPM and the Host verify that this
credential is correctly formed. This is to avoid performing computations
with a credential that is incorrectly formed since this could lead to leak-
ing information about the value f held by the TPM. The last part of the
protocol therefore performs the verification algorithm from the Camenisch-
Lysyanskaya signature scheme. In addition the TPM should check that the
value of B it receives in the credential is correctly formed. Since B ∈ G1 this
can be performed very efficiently and so we ignore its cost when computing
the cost of running the protocol.

– We note that the Host does not perform any verification on values that are
provided by the TPM. Since we assume that it is harder to compromise a
TPM than a Host, we do not model the case of a corrupt TPM inside an
honest Host and hence the Host will always trust the correctness of values
provided by its TPM.

– The values ρa, ρb, ρc and E are stored for later use by the Host in the sign-
ing algorithm. This improves the performance by avoiding recomputation of
various pairing values.

5.3 The Sign Protocol

This is a protocol run between a given TPM m ∈ M and Host h ∈ H. The
objective of the sign protocol is for m and h to work together to produce a
signature of knowledge on some message. The signature should prove knowledge
of a discrete logarithm f , knowledge of a valid credential and that this credential
was computed for the same value f . We note that the Host will know a lot of
the values needed in the computation and will be able to take on a lot of the
computational workload. However, if the TPM has not had its internal value of
f published (i.e. it is not a rogue module) then the Host will not know f and
will be unable to compute the whole signature without the aid of the TPM.

TPM (m) Host (h)

bsn¾
If bsn =⊥ then r′←Zq

else r′←H2(f‖bsn)

v←Zq ; D′←(vr′) · B r
′
, D

′
- Either nV ←{0, 1}t or receive

nV ∈ {0, 1}t from the verifier

A′←r′ · A; C′←r′ · C
B′←r′ · B

ρ′a←ρr′
a ; ρ′b←ρr′

b ; ρ′c←ρr′
c

τ←t̂(D′, X); E′←r′ · E
c
′¾ c′←H3(ipk‖bsn‖A′‖B′‖C′‖D′‖E′‖ρ′a‖ρ′b‖ρ′c‖τ‖nV)

nT←{0, 1}t

c←H4(c
′‖nT ‖msg)

s←v + c · f (mod q) (c, s, nT)- σ←(A′, B′, C′, E′, c, s, nV , nT)

Fig. 2. The Sign Protocol

We again assume that we could have an adversarially controlled Host and
honest TPM and, as a result, the TPM will have to do a number of checks on
the data passed to it from its Host. We let msg denote the message to be signed
and bsn denote the base name of the verifier. The protocol then proceeds as in
Figure 2, so as to produce the signature σ.

Again we provide some notes as to the rational behind some of the steps:

– In most applications of the Sign protocol, the signature is generated as a
request from the verifier, and the verifier supplies its own value of nV , to
protect against replays of previously requested signatures. If a signature is
produced in an offline manner we allow the Host to generate its own value
of nV .

– Prior to running the protocol the Host decides if it wants σ to be linkable
to other signatures produced for the same verifier. If it does not want the
signature to be linkable to any existing or future signatures then it chooses
bsn =⊥. If it decides that it wants the signature to be linked to some previ-
ously generated signatures with this verifier then it sets bsn to be the same
as that used for the signature it wants to link to. Otherwise, if the Host
decides it may want other signatures future signatures to be able to be link
to this one then it chooses a verifier bsn that it has not used before.

– The use of E′ allows the verifier to identify if the signature was produced
by a rogue TPM by computing fi ·B′ for all fi values on the rogue list and
comparing these to E′. This is performed during the verification algorithm.
Without E′ the rogue test algorithm can be performed by using elements in
GT , however in practice this is much less efficient than using E′.

– During the run of the signature protocol two nonces are used: one from
the verifier nV and one from the TPM nT . These are used to ensure each

signature is different from previous signatures and to ensure that no adver-
sarially controlled TPM and Host pair or no honest TPM and adversarially
controlled Host can predict or force the value of a given signature.

– The value r′ is used to mask the signature created from the other players
in the scheme including the issuer. Without using r′ the credential on which
the signature is computed would be sent in the clear and hence other parties
would be able to link signatures. That the issuer cannot link the signatures
follows from the earlier mentioned property of the Camenisch-Lysyanskaya
signature scheme in the asymmetric setting. Thus it provides two types of
linking resistance: It stops any issuer from being able to link a given signature
to a given signer (since issuers know the values of r used to compute a
credential and without r′ the credential is sent in the clear), and it stops
any player in the system from being able to tell if any two signatures were
produced by the same signer (if different bsn are used).
Note, that the Host is trusted to keep anonymity because it is assumed that
the Host has the motivation to protect privacy and also because the host
can always disclose the platform identity anyway. However, the Host is not
trusted to be honest for not trying to forge a DAA signature without the aid
of TPM.

5.4 The Verification Algorithm

This is an algorithm run by a verifier V . Intuitively the verifier checks that a
signature provided proves knowledge of a discrete logarithm f , checks that it
proves knowledge of a valid credential issued on the same value of f and that
this value of f is not on the list of rogue values.

We now describe the details of our Verify algorithm. On input a signature σ of
the form σ = (A′, B′, C ′, E′, c, s, nV , nT) this algorithm performs the following
steps:

1. Check Against Rogue List. If E′ = fi ·B′ for any fi in the set of rogue secret
keys then return reject.

2. Check Correctness of A′ and B′. If t̂(A′, Y) 6= t̂(B′, P2) then return reject.
3. Verify Correctness of Proofs. This is done by performing the following sets

of computations:
– ρ†a←t̂(A′, X), ρ†b←t̂(B′, X) and ρ†c←t̂(C ′, P2).
– τ †←(ρ†b)

s · (ρ†c/ρ†a)−c

– D†←sB′ − cE′.
– c†←H3(ipk‖bsn‖A′‖B′‖C ′‖D†‖E′‖ρ†a‖ρ†b‖ρ†c‖τ †‖nV).

Finally if c 6= H4

(
c†‖nT ‖msg

)
return reject and otherwise return accept.

5.5 The Linking Algorithm

This is an algorithm run by a given verifier Vj ∈ V which has a set of basenames
{bsn}j in order to determine if a pair of signatures were produced by the same

TPM. Signatures can only be linked if they were produced by the same TPM
and the user wanted them to be able to be linked together.

Formally, on input a pair of signatures σb for b ∈ {0, 1} each having the form
σb = (A′b, B

′
b, C

′
b, E

′
b, cb, sb, nV,b, nT,b) the algorithm performs the following steps:

1. Verify Both Signatures. For each signature σb the verifier runs Verify(σb) and
if either of these returns reject then the value ⊥ is returned.

2. Compare Signatures and Basenames. If the two basenames which verify the
signatures are equal, and if A′0 = A′1 then return linked , else return unlinked .

It may be the case that one or both signatures input to the the Link algorithm
have previously been received and verified by the verifier. Regardless of this we
insist that the verifier re-verify these as part of the Link algorithm since the list
of rogue TPM values may have been updated since the initial verification.

Note, our linking algorithm works due to the way that r′ is computed in
the signing algorithm. Also note that anyone who knows bsn can link the two
signatures, but they cannot link the signatures with the signers.

5.6 The Rogue Tagging Algorithm

The purpose of the rogue tagging algorithm is to ensure that an adversary is not
able to tag a given value of TPM internal secret as rogue if the TPM that owns
that particular value is not corrupted.

On input a value of f and a signature σ intended for a given verifier Vj the
algorithm then proceeds as follows:

1. Verify the Signature. If Verify(σ) = reject then the value ⊥ is returned.
2. Check Value of f . If E′ 6= f ·B′ then return ⊥ and otherwise add an entry

f to RogueList(Vj).

We note that, since the credential computed for a given user is sent using a
secure channel, the only way that an adversary can produce a valid signature
would be if it knew the value of the credential and hence had corrupted that
user to some extent. This prevents the adversary from adding arbitrary values
of f to RogueList(Vj).

5.7 Efficiency Comparison

Table 3 presents the performance analysis of our optimized version of the pairing
based DAA protocol. We use a similar notation for computational cost as in our
previous tables. The main advantages of our version can be listed as follows:

– Due to DDH being hard in G1 we can remove a number of the checks and
masks in the original pairing based DAA protocol.

– In addition we move the computation of τ in the signature from the TPM to
the Host. This removes the need for the TPM to perform any GT operations
at all.

– The Host precomputes some pairing values at the Join stage so as to remove
the need to perform these at the signing stage. This comes at the expense of
a couple more GT operations. But an exponentiation in GT is cheaper than
a pairing.

Table 3. Cost of our DAA protocol

Operation Party Cost

Join TPM 3 ·G1

Issuer (2 + n) ·G1 + 2 ·G2
1

Host 6 · P
Sign TPM 1 ·G1

Host 4 ·G1 + 3 ·GT + 1 · P
Verify Verifier nG1 + 1 ·G2

1 + 1 ·G2
T + 5 · P

RogueTag Verifier 1 ·G1

The main point to note is that the TPM is only required to perform oper-
ations in G1, which can be an elliptic curve over a relatively small finite field.
Thus the TPM does not have to perform any expensive operations at all.

In conclusion we have presented a DAA protocol based on pairings for which
the TPM, i.e. the constrained device in the system, needs very little compu-
tational resources in comparison to other variants of the DAA protocol. This
efficiency has been achieved by moving to the asymmetric pairings setting and
by various precomputations. Our protocol can be proved secure in the random
oracle model under the strongest of the two security notions in the literature for
DAA schemes. The security proof will be in the full version of the paper.

References

1. P.S.L.M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order. In
Selected Areas in Cryptography – SAC 2005, Springer-Verlag LNCS 3897, 319–331,
2006.

2. I.F. Blake, G. Seroussi and N.P. Smart. Elliptic curves and cryptography. Cam-
bridge University Press, 1999.

3. D. Boneh and X. Boyen. Efficient selective-ID secure identity-based encryption
without random oracles. In Advances in Cryptology - Eurocrypt 2004, Springer-
Verlag LNCS 3027, 223–238, 2004.

4. D. Boneh, X. Boyen and H. Shacham. Short group signatures. In Advances in
Cryptology – CRYPTO 2004, Springer-Verlag LNCS 3152, 41–55, 2004.

5. D. Boneh, G. Di Crescenzo, R. Ostrovsky and G. Persiano. Public key encryption
with keyword search. In Advances in Cryptology – Eurocrypt 2004, Springer-Verlag
LNCS 3027, 506–522, 2004.

6. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. In
Advances in Cryptology – CRYPTO 2001, Springer-Verlag LNCS 2139, 213–229,
2001.

7. E. Brickell, J. Camenisch and L. Chen. Direct anonymous attestation. Proceedings
of the 11th ACM Conference on Computer and Communications Security. ACM
Press, 132–145, 2004.

8. E. Brickell, L. Chen and J. Li. Simplified security notions for direct anonymous at-
testation and a concrete scheme from pairings. Cryptology ePrint Archive. Report
2008/104, available at http://eprint.iacr.org/2008/104.

9. E. Brickell, L. Chen and J. Li. A new direct anonymous attestation scheme from
bilinear maps. To appear Proceedings Trust 2008.

10. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In
Security in Communications Networks – SCN 2002, Springer-Verlag LNCS 2576,
268–289, 2003.

11. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In Advances in Cryptology – CRYPTO 2004, Springer-Verlag
LNCS 3152, 56–72, 2004.

12. J. Camenisch and M. Michels. A group signature scheme based on an RSA-variant.
Technical Report RS-98-27, BRICS, University of Aarhus, 1998.

13. L. Chen, Z. Cheng, J. Malone-Lee and N.P. Smart. An efficient ID-KEM based
on the Sakai-Kasahara key construction. IEE Proceedings, Information Security,
153, 19–26, 2006.

14. L. Chen, Z. Cheng and N.P. Smart. Identity-based key agreement protocols from
pairings. Int. Journal of Information Security, 6, 213–242, 2007.

15. S. Galbraith, K. Paterson and N.P. Smart. Pairings for cryptographers. To appear,
2008.

16. H. Ge and S.R. Tate. A Direct Anonymous Attestation Scheme for Embedded
Devices. Proceedings of Public Key Cryptography – PKC 2007. Springer-Verlag
LNCS 4450, 2007.

17. A. Lysyanskaya, R. Rivest, A. Sahai and S. Wolf. Pseudonym systems. In Selected
Areas in Cryptography – SAC 1999, Springer-Verlag LNCS 1758, 184–199, 1999.

18. F. Hess, N.P. Smart and F. Vercauteren. The Eta pairing revisited. IEEE Trans-
actions on Information Theory, 52, 4595–4602, 2 006.

19. S. Mitsunari, R. Sakai and M. Kasahara. A new traitor tracing. IEICE Transac-
tions on Fundamentals, E85-A(2), 481–484, 2002.

20. A. J. Menezes, T. Okamoto and S. A. Vanstone. Reducing elliptic curve logarithms
to logarithms in a finite field. IEEE Trans. Inf. Theory, 39, 1639–1646, 1993.

21. Trusted Computing Group. www.trustedcomputinggroup.org.

