

Improving Policy Verification Capabilities of Trusted Platforms

Serdar Cabuk, David Plaquin, Theodore Hong, Derek Murray
HP Laboratories
HPL-2008-71

Keyword(s):
Trust computing, virtualization, policy verification, integrity management

Abstract:
Verifiable trust is a desirable property for computing platforms – a user has a fundamental
interest in knowing whether a computing platform about to be used behaves as expected. Current
systems provide verifiable trust by taking immutable snapshots of a platform which digest the
complex set of platform components and dependencies into relatively few measurements.
Moreover, any change to the platform is deemed malicious, and it is only possible to revert to the
previous state by restarting the computer. In this paper, we introduce a novel extensible integrity
management framework that addresses these problems. Our framework makes two key
contributions: To improve integrity management, we explicitly represent the dependency relation
between platform components, which provides the user with more information about the state of
the platform. To enable change management, we distinguish reversible changes to measured
components from the established irreversible changes. We have implemented a prototype of this
framework, based on the Xen virtual machine monitor. In addition, we demonstrate the use of
our framework for policy enforcement by implementing a credential management service on top
of it.

External Posting Date: June 21, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: June 21, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Improving Policy Verification Capabilities of Trusted Platforms

Serdar Cabuk, David Plaquin
Hewlett-Packard Laboratories

Bristol, United Kingdom
{Firstname.Lastname}@hp.com

Theodore Hong, Derek Murray
University of Cambridge Computer Laboratory

Cambridge, United Kingdom
{Firstname.Lastname}@cl.cam.ac.uk

June 11, 2008

Abstract

Verifiable trust is a desirable property for computing platforms – a user has a fundamental interest in
knowing whether a computing platform about to be used behaves as expected. Current systems provide
verifiable trust by taking immutable snapshots of a platformwhich digest the complex set of platform
components and dependencies into relatively few measurements. Moreover, any change to the platform is
deemed malicious, and it is only possible to revert to the previous state by restarting the computer. In this
paper, we introduce a novel extensible integrity management framework that addresses these problems.
Our framework makes two key contributions: To improve integrity management, we explicitly represent
the dependency relation between platform components, which provides the user with more information
about the state of the platform. To enable change management, we distinguish reversible changes to
measured components from the established irreversible changes. We have implemented a prototype of
this framework, based on the Xen virtual machine monitor. Inaddition, we demonstrate the use of our
framework for policy enforcement by implementing a credential management service on top of it.

1 Introduction

Trusted Computing has been proposed as a means of providing verifiable trust in a computing platform.
However, as virtualization becomes more popular and platform changes (such as security patches) occur
more frequently, the established model for Trusted Computing is insufficient to cope in real-world scenarios.
We therefore introduce an extensible integrity managementframework that is better suited to deal with
complicated trust dependencies and change management.

The goal of Trusted Computing is to enable third parties to remotely attest and verify the configuration
of a computing platform in a secure manner. Existingtrusted platformstypically contain a component that
is at least logically protected from subversion. The implicitly trusted components of a trusted platform – in
particular, the hardware Trusted Platform Module (TPM) – can be used to store integrity measurements, and
subsequently report these to users (or remote entities) with a cryptographic guarantee of their veracity. Users
can then compare the reported measurements with known or expected values, and thereby infer whether the
platform is operating as expected (e.g., it is running the expected software with the expected configuration
while enforcing the expected policies).

Present implementations of Trusted Computing technology can take immutable snapshots of a whole
platform, which can then be used as proof of trustworthiness[23, 11, 14, 10]. They do not, however,
provide more granular verifications of platform componentssuch as individual virtual machines (VMs) and
applications. The platform is treated as a whole, and while it is possible to store integrity measurements
of VMs and applications, the limited amount of storage in a TPM means that it is not possible to represent
individual components and the dependencies between them. Furthermore, it is not possible to manage

1

changes to measured components. The current scheme advocated by the Trusted Computing Group (TCG)
deems all such changes to be malicious [26]. This is certainly impractical for modern server environments,
which undergo a constant bombardment of security patches and policy changes. In 2007 alone, Microsoft
released 11 security related patches for the Windows operating system [1], while a typical enterprise anti-
virus application will undergo two to five updates in an average week [18].

In this paper, we introduce an extensible integrity management framework that addresses these two
shortcomings. To improve integrity management, we explicitly represent integrity dependencies between
platform components by giving individual registers to eachcomponent to store their integrity measure-
ments, and chaining these components together in a dependency graph. To improve change management,
we introduce a new distinction between reversible and irreversible changes to measured components. A
reversible change is one that can be undone and is guaranteednot to have any permanent effects. The intro-
duction of reversible changes allows the platform integrity to be modified temporarily, for example when a
device is hot-plugged and then removed. Although the platform may no longer be considered trustworthy
during the time that the change holds, its integrity can be safely restored after the change is undone.

Our resulting framework gives a better understanding of a platform’s security properties, which can be
used in policy verification. Like existing Trusted Computing implementations, our services can be used to
grant access to protected resources (such as encrypted storage) only when the policy is satisfied; however,
unlike existing implementations, these policies can be more fine-grained, dynamic, and flexible. Our pro-
totype implementation, built on the Xen virtual machine monitor [9], includes the integrity management
framework and a credential manager service, which demonstrates the use of enhanced policy checks to
control access to security credentials.

The remainder of this paper is organized as follows. Section2 provides background on Trusted Comput-
ing and virtualization. Section 3 outlines the motivation and high-level design for our integrity management
framework. Section 4 presents the basic framework, which provides integrity services to individual com-
ponents; Section 5 extends this into reversible integrity changes and an explicit dependency graph, and
provides use cases for this model. Section 6 presents some examples of security services that could make
use of our framework. Section 7 describes our prototype implementation of the framework and the creden-
tial management service on Xen. Finally, in Section 8 we discuss related work, and in Section 9 we draw
conclusions.

2 Background

Virtualization and Trusted Computing have gained prominence in the past ten years as commercial interests
have led to consolidating multiple virtual machines on a single physical host. Virtualization enables simple
consolidation and isolation while Trusted Computing promises increased security guarantees. In this section,
we introduce Trusted Computing technology in Section 2.1 and virtualization in Section 2.2.

2.1 Trusted Computing

Trusted Computing technology aims to provide a cryptographic guarantee of the integrity of a computing
platform. Arbaughet al. developed AEGIS [3], the architecture on which most subsequent Trusted Com-
puting systems are based. AEGIS is responsible for introducing two fundamental concepts: the use of
cryptographic hashes (integrity measurements) of platform code to demonstrate integrity, and thechain of
trust.

A piece of code has integrity if it has not been changed in an unauthorized manner during a defined
period of time. Any change, however small, to the code would result in a complete change in the hash value:
the hash is therefore a concise means of representing the code. The integrity of an entire platform can be

2

captured by starting the boot process with acore root of trust for measurement (CRTM), which might be a
BIOS boot block, for example. The CRTM loads the next component in the boot process, measures (hashes)
it, and stores that measurement in a secure location. That component then carries out whatever processing
is necessary before loading and measuring the next component, and chaining the measurement to the secure
log. This process repeats until all trusted components are loaded. The integrity of the whole platform can
then be proved by induction over the log of integrity measurements.

AEGIS inspired the most common Trusted Computing architecture, which is defined by the Trusted
Computing Group [26]. In this architecture, every computercontains a secure co-processor, known as a
Trusted Platform Module (TPM), which enables the enforcement of security policies by controlling access to
cryptographic material and primitives. It also provides secure storage in the form of Platform Configuration
Registers (PCRs), which may only be reset orextended. Extension is used to represent an entire chain of
trust in a single register, and we discuss this further in Section 4. A secure bootloader, such as OSLO [15], is
required to ensure that the initial state of the TPM reflects the first component that is loaded. Thereafter, all
subsequent platform components, including the operating system kernel and device drivers, can be securely
loaded by the preceding component.

A further consideration is the Trusted Computing Base (TCB). This term is used inconsistently in the
literature, and we prefer the definition from Hohmuthet al, who refer to “the set of components on which
a subsystem S depends as theTCB of S.” [13] Therefore a single platform could contain multiple TCBs,
depending on the set of applications that runs on it. In this work, we refer to theplatform TCBas the
set of components on which all other platform components depend, and theapplication TCBas the set of
components on which a particular application depends. Thisdistinction can be illustrated by considering
the following scenario. A web browser depends on an HTML renderer for correct execution: therefore
the renderer is in the application TCB of the browser. However (assuming a sensible implementation), the
renderer could not compromise the entire platform: therefore it is not in the platform TCB.

2.2 Machine Virtualization

Virtualization makes it possible to partition the resources of a computer platform – such as memory, CPU,
storage, and network connections – among severalvirtual machines (VMs), which provide an interface that
resembles physical hardware. Avirtual machine monitor (VMM)runs beneath the VMs and is responsible
for securely (and fairly) multiplexing access to the physical resources. In addition, to preserve isolation
between the VMs, the VMM executes privileged instructions on behalf of the guest VMs. In our work,
we consider an architecture whereby the VMM is the only code that runs at the highest privilege level;
alternative approaches place the VMM inside a host operating system kernel [20, 25]. In particular, we
consider the Xen VMM [9].

VMMs are increasingly used in the development of secure computing systems [7, 24, 8]. The typical
argument for using a VMM is that the amount of code is relatively small by comparison to a full operating
system: the Xen VMM comprises approximately100, 000 lines of code, while a recent version of the Linux
kernel comprises approximately over6 million lines of code. The compactness of a VMM therefore makes
it more trustworthy than a monolithic kernel. It can therefore be argued that it is feasible to include a VMM
inside a minimal TCB. Note that security flawswithin a VM are not solved by a standard VMM (although
specialized VMMs, such as SecVisor, do address this problem[24]). However, the isolation properties of
a VMM ensure that the compromise of one VM cannot affect another VM. Therefore, virtualization can
be used to host applications from mutually distrusting organizations on the same physical machine, or to
provide a sand-box for executing untrusted code.

Trusted virtualization extends the concepts from Trusted Computing, such as chains of trust, into virtual
machines. These can be used to attest the state of a VM to a third party [11], or to provide the illusion of a
physical TPM to applications running within a VM [4].

3

3 Design Overview

The typical design for a trusted platform comprises a hardware TPM and software integrity management
services. These services measure platform components, store integrity measurements as immutable logs and
attest these measurements to third parties. The services use the TPM to provide a link with the CRTM. In a
non-virtualized platform, with relatively few componentsto be measured, this model is sufficient. However,
it does not scale to complex virtualized platforms that havea plethora of components and dependencies
between these components. In this section, we first discuss the limitations of the existing model. We then
present the high-level design goals that motivate our integrity management framework.

3.1 Hardware Limitations

Current integrity management systems typically employ theTPM as the sole repository for integrity mea-
surements (see Section 8). Unfortunately, such schemes arefundamentally limited by the hardware capabil-
ities of a TPM:

1. A TPM contains a small, limited amount of memory (PCRs). The TCG specification recommends
that a TPM has at least 16 PCRs [26]. Therefore, for portability, we cannot assume that a TPM will
have any more than 16 PCRs. Hence, it is not feasible to store individual measurements for a large
number of virtualized platform components.

2. The limited number of PCRs is typically addressed by aggregating measurements in the same register.
Where two components are independent, this introduces a false dependency between them. Further-
more, the definition of theextend function introduces an artificial dependency on the order inwhich
they are aggregated.

3. It is not possible to reverse the inclusion of a measurement in a TPM register. Therefore, it is impossi-
ble for a platform component to report a change to its integrity (e.g. by the dynamic loading of some
code, or the connection of a new device) and revert back (after unloading/disconnection).

To illustrate these limitations, consider the following example. A server platform hosts tens of small
VMs, each of which runs a particular service. To keep track ofthe platform integrity on a traditional TPM-
based system, the measurements must be aggregated, becausethere are more VMs than PCRs. For example,
it might be necessary to store measurements for a virtual network switch and a virtual storage manager in
the same PCR, which creates a false integrity dependency between these two VMs. If a malicious change is
made to the virtual network switch, and this change is reported to the appropriate PCR, the integrity of the
storage manager also appears to be compromised. The same is true for all other VMs whose measurements
are aggregated in that PCR.

It would be possible to extend the set of PCRs by giving a virtual TPM to each platform component [4].
However, by allocating independent virtual PCRs to each component, it is no longer possible to represent
real dependencies between components1. Furthermore, since the virtual TPMs emulate the behavior of a
hardware TPM, it remains impossible to revert changes.

3.2 High-level Design

It is clear that software measurement support is required toaddress the limitations of hardware capabilities.
We refer to the set of software components that comprise the integrity framework as thesoftware root of

1Some virtual TPM designs share a fixed number of PCRs between all virtual TPMs and the hardware TPM, and these could be
used to express dependencies. However, the reliance on the hardware TPM leads to the same limitations as a single-TPM scheme.

4

CRTMCRTM BIOSBIOS Boot LoaderBoot Loader OS KernelOS Kernel SRTMSRTM

TPMTPM

Dynamic
Component

Dynamic
Component

...

Dynamic
Component

Dynamic
ComponentPlatform TCB

hashes stored

hashes stored

Figure 1: The position of the SRTM within the overall integrity management framework.

trust for measurement (SRTM). These components are part of the platform TCB, and should beisolated from
other components; for example, by virtualization. Dynamiccomponents outside the platform TCB rely on
the SRTM to store measurements on their behalf, rather than the underlying TPM. Figure 1 illustrates the
position of the SRTM within the overall integrity management framework.

Our framework has the following design objectives:

Unlimited measurement storageThe framework should allow the storage of individual integrity measure-
ments for an arbitrary number of components.

Explicit dependency representation The framework should allow the explicit and unambiguous represen-
tation of an arbitrary number of dependencies between platform components. There should be no
false or artificial dependencies introduced by aggregation.

Static integrity management The framework should provide a superset of the functionality of a traditional
TPM, with respect to static integrity.

Dynamic integrity management The framework should enable the integrity state of a platform component
to revert to a previous trusted state in a controlled and verifiable manner.

Link to hardware TPM The software framework should be linked in a chain of trust tothe hardware TPM.
This can be achieved by storing the measurements for the SRTMand other static components in the
platform TCB (such as the hypervisor and any physical devicedrivers) in the TPM. As this set of
components is small and non-changing, the limitations of a hardware TPM do not come into effect.

Minimal TCB In order to improve the trustworthiness of the framework, the SRTM and other components
in the TCB should have a minimal amount of code and size of interface. This paper does not focus on
minimizing the TCB, but a possible approach would involve using disaggregation [19].

Platform independence The framework should not be limited to a single hypervisor technology. Although
the implementation (see Section 7) was carried out using Xen, it should be possible to use alternative
technologies, such as VMware [25] or an L4 microkernel [17].

4 Basic Integrity Management

In this section, we present a basic design for the SRTM service that we introduced earlier. This platform-
independent service provides the minimal functionality needed to manage the integrity of dynamic (non-
TCB) platform components, which will be extended further inSection 5. Section 4.1 sets out the basic
measurement model, while Section 4.2 describes the corresponding service architecture and interfaces.

5

CCRs# CCRs

CCR03 2f:d2:c1:42:5c:ce:9e:ce:62:50:71:22:db:43:61:25:ab:82:be:55

(a) BIM component configuration register table.

VMM and Hardware

BMSI

Management Protected Storage Integrity

BIM

...Management TPM

(b) The BIM architecture.

Figure 2: Basic integrity management components.

4.1 Measurement Model

The Basic Integrity Management (BIM) service stores staticintegrity measurements of dynamic components
that are arranged in a flat hierarchy, such as the one shown in Figure 3. Each component has a single
Component Configuration Register (CCR) associated with it.A CCR is analogous to a PCR and holds
integrity measurements for that component. The measurements are held together in a global CCR table
similar to the one depicted in Figure 2(a).

4.1.1 Static Measurements

The BIM measurement model mimics TPM measurement capabilities but stores integrity measurements in
software rather than hardware. Each registered dynamic component is assigned a BIM CCR to which its
measurements are reported. This is achieved by anextend operation, which stores a new measurement in
a CCR by hashing it together with the current value of the CCR.Dynamic components use this operation
to report ongoing measurements when their contents change.For example, a firewall service would extend
its CCR if its rule-set was about to be changed. The specifics of when/how measurements are taken is
component-dependent, but the logic that performs this activity must be trusted to report changes faithfully.
This behavior is assured by the initial measurement of the component by the component that starts it. In the
BIM model, this can only be a static (platform TCB) component.

This measurement model provides better scalability than models that use the TPM as the sole repository
for measurements. By using software registers, the BIM can store a virtually unlimited number of individual
measurements. Hence, no aggregation is needed. However, the measurements are still accumulated and
the CCRs are irreversible. That is, recording a measurementM1, followed by a changed measurement
M2, followed byM1 again, results in a different value than the original recording of M1 alone. Hence,
components are not allowed to change in any way without permanent loss of integrity. Even if a change
is later undone, the component cannot return to its previoustrust state. In Section 5, we will address this
problem by employing dynamic registers for reversible measurements.

4.1.2 Simple Trust Dependency

The BIM service implements a flat hierarchy to capture the integrity dependencies between platform compo-
nents. In this model, the integrity of dynamic components solely depends on the integrity of the underlying

6

CID PID
0 -
1 0
2 0
3 0

CID PID
0 -
1 0
2 0
3 0

1 22 33

Platform TCB

VM VM VM

0

00

11 22 33

Figure 3: Simple integrity use case – a flat hierarchy.

platform TCB. We show an example flat hierarchy in Figure 3. The components labeledone, two, andthree
are virtual machines running directly on the trusted platform. Componentzero is the platform TCB that
includes the SRTM (in this case, the BIM service). Each VM depends only on the platform TCB under-
neath. If the integrity of the TCB (componentzero) is compromised, then the integrity of all of the VMs
is compromised as well. However, the VMs are independent of one another and therefore do not have a
trust dependency. As an example, if the integrity of VM1 is compromised, the integrity of VM2 and VM3

remains intact.
In what follows, we depict the integrity relationships between components using a dependency graph,

and represent it using a dependency table. Figure 3 shows a simple graph and its dependency table equiva-
lent. For example, the second row in the dependency table states that the integrity of the child component
one(VM1) depends on the integrity of the parent componentzero(TCB).

In the simple BIM model, there is always a single trusted component (the platform TCB) on which all
other components depend. This yields the “flat hierarchy” dependency graph and table in Figure 3. The flat
hierarchy arises, because a dynamic component (such as a VM)can only be started by a trusted component.
Since the TCB is static and platform-wide, it is not possiblefor a dynamic component to start – and hence
become a parent of – another dynamic component. Therefore the BIM cannot manage, for example, the
integrity of an application started within a VM. However, the BIM serves as a basis to build the hierarchical
model which addresses this limitation, which is introducedin Section 5.

4.2 The BIM Architecture

As shown in Figure 2(b), BIM services are grouped under threeinterfaces:

Integrity interface This interface provides functions to report and quote integrity measurements of dy-
namic (i.e., non-TCB) components. Components use this interface to extend their register values
when they detect significant changes to their measured content. A component is only allowed to alter
its own register, while an integrity quote can be requested by any entity. Using the underlying TPM
interface, the latter operation returns a signed integritydigest that contains the measurements of the
dynamic component and the platform TCB. Using this digest, athird party can verify the complete
integrity chain.

Protected storage interfaceThis interface provides functions to store and reveal secrets on behalf of dy-
namic components. These secrets are bound to the integrity of the TCB and the owner component,
i.e., they are revealed if and only if the integrity of the component and its ancestors (in the BIM case,
the platform TCB) is intact. The BIM uses the underlying TPM interface for sealing and unsealing
data to and from the TPM, which automatically implies a verification check on the TCB. Verification
of the component’s integrity can be done either by the BIM or delegated to a third-party verifier. Our
prototype implements the former case in which the BIM needs to store the expected measurements
for comparison. We use the TPM sealing operation itself to doso and use the CCR values at the time

7

Integrity Description
extend Takes a hash value as an argument and irreversibly extends the component

CCR with that hash.
quote Takes arbitrary external data (i.e., nonce) and returns a quotation of the current

TCB measurements, the nonce, and the component CCR value signed by a
TPM attestation identity key (AIK).

Protected Storage Description
seal Takes data to be protected, seals it to the TPM binding it to current TCB and

CCR measurements, and returns the sealed (encrypted) blob.
unseal Takes the sealed blob and unseals and returns the data iff theintegrity of the

TCB and the component are verified as intact.

Management Description
register Takes the initial measurement, adds the component to the dependency table,

and fills the CCR with the initial measurement.
delete Deletes the component and all its sealed data.

Table 1: BIM integrity, protected storage, and management interfaces.

of sealing as the future expected values. We concatenate these values to the secret and seal the whole
blob. The unsealing operation at a later time returns not only the sealed secret but also the expected
set of measurements that we compare to the CCR values at that time.

Management interface This interface provides functions to register dynamic components to the frame-
work so that their integrity can be tracked by the BIM. The BIMis a passive service, and so only
registered components are tracked. As discussed in the previous sections, the initial measurement
of the component is provided from outside by a trusted component that measures and initiates the
component. The interface also allows the deletion of components and their sealed data.

Table 1 details the individual functions provided by each interface. As shown in Figure 2(b), the BIM,
in turn, makes use of the Basic Management and Security Interface (BMSI), which provides a platform-
agnostic interface to the underlying hypervisor and hardware TPM. In particular, the BMSI provides func-
tions that enable the BIM to access the TPM and establish a link to the hardware root of trust. The imple-
mentation of the BMSI is discussed in more detail in Section 7.

5 Hierarchical Integrity Management

In this section, we present an enhanced design for the SRTM service that we introduced in Section 3. This
platform-independent service features dynamic measurements and a component hierarchy that we use to
manage the integrity of dynamic (non-TCB) platform components more effectively. We describe the security
model for measurements in Section 5.1. We describe the service architecture and interfaces in Section 5.2.

5.1 Measurement Model

The Hierarchical Integrity Management (HIM) service stores integrity measurements in a CCR table as
illustrated in Figure 2(a). To overcome the shortcomings ofthe BIM model (e.g., irreversible measurements),
we have extended it by introducing two new concepts: dynamicmeasurements and hierarchical trust.

8

Figure 4: Transition diagram for component integrity states. A component in the non-critical state can
be made intact by undoing dynamic changes, but the critical state can only return to the intact state by
re-initialization.

5.1.1 Dynamic Measurements

The HIM measurement model enhances the BIM model in two ways.First, HIM allows multiple registers to
be assigned to a single dynamic component. This way, component measurements can be tracked with better
granularity. Second, HIM supports dynamic measurements that can be reported to a resettable register. This
increases flexibility and allows a component to revert back to a trustworthy configuration if permitted by its
change policy.

Change types. We distinguish two types of component changes. More specifically: An irreversible
changeis one that requires the component to be restarted before itsintegrity can be re-established. Such
a change is one made to the integrity-critical part of the component; that is, to the code or other data of
the component that has a potential impact on the future ability of the component to implement its intended
functionality correctly. An example of an irreversible change is a kernel loading an untrusted device driver
as the driver may make a change to kernel memory that will persist even after it is unloaded.

A reversible changeis one in which the component is permitted to re-establish integrity without being
completely reinitialized. Such a change is one made to a non-critical part of the component; that is, to code
or other data of the component that has no direct or potentialimpact on the component’s future security. A
component still loses its integrity if a change is made to it.However, depending on the exact nature of the
change, we may permit the component to regain integrity (andtherefore trust) by undoing the change and
returning to its previous state. For example, changes to configuration parameters are often reversible – e.g.
changing the identity certificate that a component uses. Theintegrity management system will need to note
such a change in order to fully report the state of the platform, but the certificate may be safely changed
back without causing security implications. Another example might be loading a trusted kernel module that
is known not to leave any side effects after being unloaded.

The categorization of a change as reversible or irreversible is component-dependent and will be set by
each component’s own change-type policy. For example, a policy stating that all changes are irreversible
reduces to the static measurement model. A component that permits reversible changes is referred to as a
dynamic component(“dynamic” because its integrity state may change multipletimes).

Measurement reporting. Recording dynamic measurements requires two measurement registers, a
static registerand adynamic register, rather than the single register used in the static measurement model.
Irreversible changes are reported to the static register inthe same way as in the static measurement model;
that is, theextend operation is used to combine the new measurement with the existing register value to
obtain the new register value.

9

extend(R,M) = hash(R||M)

whereR is the value of the register andM is the measurement.
By contrast, reversible changes are reported to the dynamicregister byreplacingthe previous value held

in that register, using thereset operation.

reset(R,M) = M

We can see that attempting to reverse an irreversible changedoes not return the static register to its initial
state:

Rfinal = extend(extend(Rinitial,M2),M1) = hash(hash(Rinitial ||M2)||M1) 6= Rinitial

However, reversing a reversible changedoesreturn the dynamic register to its initial state:

Rfinal = reset(reset(Rinitial,M2),M1) = reset(M2,M1) = M1 = Rinitial

The exact nature of the reporting activity and the corresponding change-type policy is component-
dependent. However, the logic that performs this activity must be a part of the initial measurements so
that we can trust the component to report the changes to the correct register.

Integrity states. Depending on the measurement values stored in its static anddynamic registers, a
dynamic component can be in one of three local integrity states: intact, non-critical, and critical. The
component is in theintact stateif and only if the values in the static and dynamic registers are consistent
with the expected measurement values. The component is in the non-critical stateif and only if the value
in the static register is consistent with the expected measurement value but the value in the dynamic register
is not. In all other cases, the component is in thecritical state. As shown in Figure 4, the foregoing
arrangement enables a dynamic component that has only been subject to non-critical changes to be restored
to the intact state. A component that is in the critical statecannot be restored to any other state unless
re-initiated with an expected configuration (during which both registers are reset).

Security states.Depending on the integrity state, a component can be in threesecurity states: trustwor-
thy, secure, and insecure. A component istrustworthy if and only if it is in intact state. A component is
secureif and only if it is in intact or non-critical states. In all other cases, the component is deemedinsecure.

Example use case for dynamic registers.Digital Rights Management (DRM) services control the
distribution of media content onto computing platforms. Itis possible that a DRM service will not push
video content to a computing accessory if, for example, an external recording device is plugged to it. In this
case, software that detects and installs the plug-and-playdrivers for the recording device must be part of the
static measurements. However, the state in which a recording device is detected in the system can be reported
dynamically. In fact, this can be reflected in the dynamic register for a secure DRM player application. As
long as the recording device is connected, no content is downloaded. Once the user unplugs the device, the
dynamic register is reset and content can be pushed to the player without requiring the application to be
restarted.

5.1.2 Hierarchical Trust Dependency

We enhance the BIM dependency model by introducing a hierarchy of trust dependencies that we represent
as a directed acyclic graph. In such a graph, the edges indicate trust dependencies where the integrity of the
component at the origin depends on the integrity of the component at the destination. If the integrity of the
destination component is compromised, then the integrity of the origin component is always compromised

10

CID PID
0 -
1 0
2 1
3 1
4 1

CID PID
0 -
1 0
2 1
3 1
4 1

1

22

Platform TCB

VM
Manager VM

0

33

VM

44

VM 1

22 33 44

00

(a) Multi-level dependency.

CID PID

0 -

1 0

2 0

3 1

4 3

5 2

6 5

CID PID

0 -

1 0

2 0

3 1

4 3

5 2

6 5

1

Platform TCB

VM

0

00

33
33

44
APP

JVM

11 22

44

55

662

VM
55

66
VM
VMWARE

(b) Nested components.

Figure 5: Hierarchical integrity use cases.

as well. However, the reverse is not true. To illustrate these more complex trust relationships, consider the
following use cases.

In Figure 3, we see the simple flat hierarchy as previously described in Section 4. The components
labeledone, two, andthreeare virtual machines running directly on the trusted platform. Componentzero
is the platform TCB that includes the SRTM (in this case, the HIM service). Each VM depends only on the
platform TCB underneath. If the integrity of the TCB (componentzero) is compromised, then the integrity
of all of the VMs is compromised as well. However, the VMs are independent of one another and therefore
do not have a trust dependency. As an example, if the integrity of VM1is compromised, the integrity of VM2
and VM3 remains intact.

Figure 5(a) shows a more complex multi-level dependency. Componentone is a service that manages
the life-cycle of componentstwo, three, and four. All components are virtual machines. The latter VMs
are independent of one another, as before, but their integrity depends on that of the domain manager, whose
integrity in turn depends on the TCB.

In Figure 5(b), we see a nested dependency relationship. Componentsoneandtwoare virtual machines,
which themselves contain further virtual machines: component three, which is a Java virtual machine, and
componentfive, which is a VMware hypervisor. These nested virtual machines support guest components:
componentfour, a Java application, and componentsix, a VMware guest. Within componentone, a tradi-
tional linear chain-of-trust applies: Java application depends on Java virtual machine depends on operating
system. A similar chain can be found within the VMware component. However, these two chains of trust
are independent of one another, and both depend ultimately on the underlying platform TCB.

Figure 6 illustrates more complicated use cases. In Figure 6(a), we see a multiple dependency relation-
ship. Componentfive is a virtual machine that uses services from componentsone, two, andfour. These
components are small virtual machines that provide virtualnetworking, virtual storage, and virtual TPM
services, respectively. Further, the integrity of the virtual TPM depends on the integrity of the virtual TPM
manager domain (componentthree).

11

CID PID
0 -
1 0
2 0
3 0
4 3
5 {1,2,4}

CID PID
0 -
1 0
2 0
3 0
4 3
5 {1,2,4}

5

11

Platform TCB

VM vNET

0

22
vSTO

33
vTPM
MGR

44
vTPM

00

11 22 33

4455

2

(a) Disaggregated services.

2

Platform TCB

VM

0

33

55
APP

JVM

4
vTPM

11

vTPM

CID PID

0 -
1 0
2 {0,1,M(1)}
3 2
4 3
5 {0,4,M(4)}

CID PID

0 -
1 0
2 {0,1,M(1)}
3 2
4 3
5 {0,4,M(4)} 00

22 11

55 44

33
3

(b) Virtual TPM binding.

Figure 6: More complicated use cases. Dashed lines denote implicit dependency.

Figure 6(b) shows a similar VM grouping example which we intend to explore further in future work.
In this example, we use miniature virtual TPM services to assist and enhance the integrity measurement
capabilities of the framework. In this design we bind a single virtual TPM to a component (application
or VM) and delegate component measurements to this virtual TPM. The virtual TPM then replaces the
component CCRs to provide more granular run-time measurements for the component it is attached to. The
measurements for the virtual TPM service itself is still held by its own CCRs. As an example, the integrity
of componenttwo now depends on the integrity of componentone(its attached virtual TPM) and the run-
time measurements taken by this virtual TPM (e.g., during authenticated VM2 bootstrap). We refer to this
measurement set as M(one). The same holds for the application componentfiveand its attached virtual TPM
service componentfour. The present HIM implementation does not yet support virtual TPM attachment.

5.2 The HIM Architecture

The HIM service implements the same integrity, protected storage, and management interfaces as the BIM
service as presented in Section 4, but with the following enhancements.

The HIM integrity interface provides anextend function that alters the value of the static CCR in
the same way as the BIM equivalent. To support dynamic measurements, the interface also provides a
reset function that is used to report to the dynamic register and overwrite its value. In addition, to support
hierarchical integrity dependency, thequote function is modified. This function now returns the aggregated
integrity measurements of the component in question. Specifically, the signed quote now contains the TCB
integrity measurements plus the measurements of the component and all its ancestors hashed in a single
value.

In the HIM protected storage interface, theseal andunseal functions are enhanced to support com-
ponent dependency and dynamic measurements. Theseal function now binds the stored secret to the
integrity of all the trust chains that reach the component inquestion from the TCB; that is, the subgraph
of all paths from that component to the root TCB. Hence the integrity state of components not on a path

12

between that component and the TCB is ignored. For example, in the nested use case in Figure 5(b), an in-
tegrity compromise in the VMware compartment will not affect the ability of the Java application to unseal
previously sealed information, as long as the Java compartment remains intact.

Lastly, the HIM management interface providesregister anddelete functions. Thedelete
function is the same as in the BIM. However, theregister function now takes a dependency list as a
parameter that specifies additional ancestor components the component depends on besides the one that
registers the component.

6 Policy Verification for Security Services

In this section, we introduce example security services that leverage the HIM framework for policy verifi-
cation and access control. Our examples include a credential management service (Section 6.1), a virtual
TPM service (Section 6.2), and a virtual network service (Section 6.3).

6.1 Credential Management Service

Protected storage services provide secure access to secrets that are sealed to the underlying TPM on behalf
of their owners. It is expected that these services retain control over these secrets and enforce the associated
access control policies at all times. By contrast, most storage services such as [23] and the HIM provide one-
time verification, and are therefore susceptible to a time-of-check to time-of-use vulnerability. This occurs
because these services release the stored secret to the requesting component once they verify the necessary
policies (e.g., HIM unseal successfully verifies the aggregate integrity). Once the secret is revealed, these
services can no longer restrict access to it if the componentundergoes a malicious change.

To enable ongoing policy verification and enforcement, we designed and implemented a credential man-
agement service (CMS) that uses the integrity management framework to provide secure access to secrets
while maintaining control at all times. Unlike the HIM unseal operation, CMS credentials are never revealed
to requesting services directly but are always held securely by the CMS. In essence, the CMS is a reference
monitor that mediates and provides access to secured data through a well-defined interface.

The CMS interface is comprised of management and service interfaces. Components use the manage-
ment interface to register component credentials with the CMS. To do so, theregister function takes
the credential as input and seals it to the underlying TPM. The interface also provides adiscard func-
tion which deletes the stored credential. The service interface provides access to the credentials through a
genericaccess function. We have designed this interface as an extensible plug-in interface; that is, the
exact nature of the interface depends on the nature of the stored credential and the type of functionality
needed. For example, if the stored credentials are cryptographic keys, we offer a plug-in service that pro-
vides encryption/decryption capabilities so that components can use the interface to encrypt/decrypt data
without seeing the actual key. Regardless of the functionality provided, the CMS uses the HIM to verify the
aggregate integrity prior to each access to the secret.

6.2 Virtual TPM Service

A natural extension to the CMS functionality would be to provide a miniature TPM interface to the various
platform components, as illustrated in Figure 6(b). This enables these components to have a standardized
interface as in [26] to prove their integrity and provides a strong identity for each component. Such an
approach has already been taken through TPM virtualization[4] which gives each VM a TPM interface im-
plemented by a virtual TPM service. However, it is not yet clear what the best mechanism is for establishing
a secure binding between a virtual TPM and its platform TCB.

13

Our framework could be used to bridge the gap between virtualTPM services and the platform TCB. For
example, a central trusted CMS service could be used as the single secure repository for virtual TPM keys.
Access to these keys would require verification of the complete HIM integrity chain, including verification
of the platform TCB. For example, to sign a quote request, a virtual TPM would use the CMS interface to
gain access to its signing key.

6.3 Virtual Network Service

Virtualization provides direct isolation of computing resources such as memory and CPU between guest
operating systems on a physical platform. However, the network remains a shared resource as all traffic
from guests will eventually end up on the same physical medium. Various mechanisms can be used to
provide network isolation between network domains, as described in [6]. In general, encryption must be
used for isolation when network traffic is delivered over an untrusted shared physical medium.

Using our framework in combination with the CMS, one could design a virtual network (vNET) service
which provides isolation through an encryption layer such as IPSEC. In this setting, the vNET service would
store its credentials (e.g., network encryption key) in theCMS, in combination with the expected CCR val-
ues of the service and any ancestor service it depends on (including any potential network configuration
information). Because the key is held by the CMS and not revealed to the vNET service, any change in the
integrity of the service or its ancestor components would result in the network link becoming unavailable for
the VM connected to this specific vNET. As a result, the capability of a VM to communicate with its peer
within a considered domain would implicitly prove its trustworthiness, which would provide continuous au-
thentication as opposed to relying only on an initial handshake as most network authentication mechanisms
do.

7 Implementation in Xen

In this section, we describe a prototype implementation of the integrity management framework and the
credential management service on the Xen virtual machine monitor [9]. The implementation features the
management and service interfaces of both. Note that although we present our implementation with Xen,
the framework could equally be implemented on an alternative virtualized or microkernel-based platform
(e.g., the L4/Fiasco [16] microkernel).

7.1 Infrastructure Overview

The various components of the integrity management framework are provided by one or more virtual ma-
chines, running on top of the Xen virtual machine monitor. The use of virtualization isolates the trusted plat-
form from a misbehaving guest operating system, and all communication with the trusted platform passes
through well-defined interfaces. Our implementation is based on Xen version 3.0.4, a VMM for the IA32
platform, with the VMs running a paravirtualized version ofLinux 2.6.18. For inter-domain communication,
we employ the light-weight communication library introduced in [2].

Figure 7 illustrates our implementation on Xen. In the present prototype, all framework components
and the CMS are implemented as libraries and services running in the Xen privileged management domain
Dom0. However, as we have defined interfaces between each of the components, it should be straightforward
to move towards a disaggregated approach as described in [19]. The framework components are arranged
in a layered stack. At the lowest layer is the basic management and security interface (BMSI) that provides
libraries for domain life-cycle management (libM), basic TPM access (libT), and integrity management
(libI). At the core services layer are the integrity managerservices BIM and HIM that provide basic and
hierarchical integrity management, respectively. Also inthis layer are the CMS and the domain management

14

BMSI

libI libMlibT

BIM HIM

CMS

vNET Service
vTPM Service

Xen VMM

TPMTPM

TPM
driver

Se
cu

rit
y s

erv
ice

s
Co

re
se

rvi
ce

s
Lib

rar
y

lay
er

Dr
ive

r
lay

er

Dom 0

DMS

Figure 7: Illustration of the prototype in a layered stack.

service (DMS). At the highest layer are the security services that use the framework for various purposes.
The platform TCB consists of the static components up to and including the SRTM (the BMSI libraries
and the integrity managers). However, for simplicity, we also include the CMS in the platform TCB. The
measurements of these components are reported to the underlying TPM. The application TCB consists of
the platform TCB plus the security services that run on top ofit. The measurements of the latter are reported
to the SRTM.

7.2 Component Design

In the present prototype, we have implemented the highlighted components depicted in Figure 7, namely
the BMSI libraries, BIM and HIM services, CMS, and DMS. In this section, we present the details of these
components including both the BIM and HIM; however, due to space constraints, we present an example
use case that uses only the HIM.

7.2.1 BMSI Libraries

The Basic Management and Security Interface (BMSI) provides a common and extensible interface to the
underlying hypervisor (i.e., Xen) and the TPM. The BMSI provides libraries for domain life-cycle manage-
ment (libM), basic TPM access (libT), and integrity management (libI).

libM This library provides hypervisor-agnostic management functions to upper layers. At its lowest level,
the library manages allocatable resources calledProtection Domains (PDs). A PD is an executable

15

component that receives an allocation of memory and CPU cycles, and is scheduled by the hypervisor.
On Xen platforms, a PD is equivalent to a Xen domain (virtual machine). In this prototype, we use
libM to implement the Domain Management Service (DMS). Thisservice manages the life-cycle of
PDs and uses the integrity managers to keep track of PD integrity. We refer the reader to [19] for
further details on the libM and DMS implementation.

libT This library provides the minimal functionality to access the integrity and protected storage interfaces
of the TPM. Security services (e.g., BIM and HIM) use this library to obtain a signed quotation of the
TCB measurements and to seal/unseal data to/from the TPM. Todo so, libT uses the TPM functions
TPM Quote(), TPM Seal(), andTPM Unseal() as described by the TPM specification [26].

libI This library stores and provides access to the integrity measurement and dependency tables. The
getMeasurement() function returns a measurement list that includes the integrity measurements
of the component and its ancestors. In the BIM case, a single value is returned. ThesetMeasurement()
function extends the value of the component register. TheresetMeasurement() function over-
writes the value of the dynamic register. TheaddComponent() function adds an entry to the
dependency table and sets its dependencies as specified. It also adds an entry to the measurements
table and records the initial measurements. ThedeleteComponent() function checks that the
specified component has no successors and removes it from thetable.

7.2.2 Component Interactions

The BIM and HIM services implement the interfaces presentedin Sections 4 and 5, respectively. Similarly,
the CMS service implements the interfaces presented in Section 6.1 and uses a cryptographic service as
a plug-in for block encryption and decryption. On a Xen platform, we use these services to manage the
integrity of VMs and applications running on these VMs.

VM integrity management is incorporated into VM life-cyclemanagement. To assist both, the DMS
uses the BMSI library libM and the HIM service. The VM start-up phase in Figure 8 depicts the interaction
among these components. During this phase, the DMS invokes libM, which prepares resources for the VM,
measures the VM image (comprising the kernel, an optional initial ramdisk and command-line parameters),
and stores the measurement in the CCR for that VM. This performs a function similar to a secure bootloader,
and it is the responsibility of the kernel to measure any components which it subsequently loads. The DMS
also registers the new VM with the HIM service, and configuresany dependencies between the new VM
and existing VMs. The HIM uses libI to store this informationin the measurement and dependency tables.
Following the successful completion of the above steps, theDMS starts the VM.

The HIM service additionally allows applications running in VMs to be registered with the framework.
The application start-up phase in Figure 8 depicts the case in which the VM that was started in the previous
phase loads and registers a DRM service with the HIM. In this case, the VM becomes an ancestor of the
service and provides its initial measurements. As a result,the cumulative integrity of the service now
includes the VM’s measurements as well as the platform TCB measurements.

The last phase in Figure 8 depicts a use case in which the DRM service that was started in the previous
phase attempts to decrypt encrypted media content using a key that is stored on the TPM on behalf of this
service. The DRM service invokes the CMS service interface to request access to this key. The CMS then
invokes HIM unseal to retrieve the key from the TPM. HIM unseals the key if and only if the underlying
policies regarding the key’s release are satisfied. In this case, the key is unsealed from the TPM and returned
to the CMS if the integrity of the platform TCB is intact. On receiving the key from the HIM, the CMS
performs further verification. It compares the expected CCRvalues of the DRM service and its ancestor
VM (unsealed along with the key) to the current CCR values. Ifthe measurements match, the CMS uses
its cryptographic service to decrypt the block, which is then returned to the DRM service. Note that any

16

DMS BMSI:libM

prepareVM()

runVM()

VM_STARTED

PD:VM

preparePD()

HIM

register()

CID

BMSI:libI

addComponent()

CID

startPD()

PD_STARTED

BMSI:libT

unseal()

TPM

TPM_unseal()

unsealed_blob

getMeasurements()

componentMeasurements

����������
	��
�����
���������

VM:DRMS

register()

CID

DRMS.run()

unseal()

addComponent()

CID

��������
�����

VM_READY

CMS CMS:Crypto

access()

decryptedContent

unsealed_blob

unsealed_blob

verify()

decrypt()

decrypted_blob

Figure 8: Sequence diagram of interactions between the framework services for a DRM application use
case.

subsequent access requests to the key will also follow a similar verification cycle, with the exception that
HIM (hence TPM) seal is omitted because the CMS caches the keyinternally.

8 Related Work

Bergeret al.[4] implemented a virtual TPM infrastructure in which each virtual machine is assigned its own
virtual TPM that provides multiplexed access to the underlying hardware TPM. In comparison to virtual
TPMs, our work uses a single integrity management frameworkthat encompasses all components in order
to explicitly represent trust dependencies between them. Our framework is complementary to virtual TPMs
in that we can use virtual TPMs to gather more granular run-time measurements for our components, and
can enhance virtual TPMs by providing a binding between themand the platform TCB through the use of
CMS.

Several systems have been previously described that use virtual machine monitors to isolate trusted and
untrusted components. Terra [11] is an architecture that uses a trusted virtual machine monitor (TVMM)
to bring the security advantages of “closed box” special-purpose platforms to general-purpose computing
hardware. The TVMM ensures security at the virtual machine level, isolating VMs from one another,
providing hardware memory protection, and providing cryptographic mechanisms for VMs to attest their
integrity to remote parties, even providing protection from tampering by the platform owner. Microsoft’s

17

proposed Next-Generation Secure Computing Base (NGSCB [10]) operates in a similar manner, partitioning
a platform into two parts running over a virtual machine monitor: an untrusted, unmodified legacy operating
system, and a trusted, high-assurance kernel called anexus. Our work builds on both to examine how
integrity measurements can be stored and maintained.

Saileret al.’s implementation of a TCG-based integrity measurement architecture [23] was one of the
earliest works to demonstrate the use of a TPM to verify the integrity of a system software stack. In [14],
Jansenet al. propose an architecture for protection, enforcement, and verification (PEV) of security policies
based on a tree structure containing integrity log data, where each node contains the data for one component
and its children contain the data for its subcomponents. PEVapproaches the problem of trust flexibility and
extensibility by defining a generalized attestation protocol. A verifier sends an attestation request containing
an XML descriptor that defines a projection function returning the subset of the integrity log of interest to
the verifier. Sadeghiet al. [21] extend the TCG notion of trust in a different direction by proposing attes-
tation that is not based directly on hardware/software hashes but on abstract platform properties. Rather
than checking a large list of permitted platform configurations, their system checks whether or not a given
platform possesses valid certificates attesting to the desired properties. Such property certificates are issued
by a trusted third party that associates concrete configurations with the properties they provide. Our system
differs from these in providing a more granular verificationof components such as individual virtual ma-
chines and applications within a platform, representing dependencies among them, and managing changes
to measured components.

Other orthogonal previous work has explored distributed trust and mandatory access control. Griffinet
al. investigated secure distributed services with Trusted Virtual Domains [12], which are intended to offload
security analysis and enforcement onto a distributed infrastructure. Bergeret al. use this abstraction in the
Trusted Virtual Datacenter (TVDc) [5], which shares hardware resources among virtual workloads while
providing isolation with a mandatory access control policyenforced by the sHype security architecture [22].

9 Conclusions

In this paper, we have introduced a novel integrity management framework that improves on the integrity
measurement and policy verification capabilities of present Trusted Computing solutions. In particular,
our framework is able to cope with the proliferation of measured components and dependencies between
them as well as dynamic changes to platform components. In essence, the framework implements a small,
software-based root of trust for measurement (SRTM) that provides a secure link to the core root of trust for
measurement (CRTM). We have implemented our framework on the Xen virtual machine monitor and pro-
posed several ways in which security services could take advantage of this architecture for policy verification
and access control.

We anticipate integrity and trust management to become especially useful for application and service
level components. We will therefore continue to investigate further potential uses for our framework by
user level applications. In the short term, we plan to implement CMS-aware services such as a virtual
network service based on [6] that uses the CMS to store encryption keys. The virtual TPM service is also
particularly interesting. In the long term, we plan to investigate various ways of exploiting our framework
to help enhance the security properties of virtual TPM services (e.g., their binding to the platform TCB).
Conversely, we plan to use virtual TPM services to help enhance the measurement capabilities of the HIM
framework and provide more granular run-time measurementscompared to a single CCR.

18

Acknowledgments

This work has been partially funded by the European Commission as part of the OpenTC project (www.
opentc.net). We thank Chris I. Dalton, Robert F. Squibbs (HP Labs), Carsten Weinhold (TU Dresden),
and our partners in OpenTC for valuable discussions and inputs.

References

[1] Microsoft security advisories archive.http://www.microsoft.com/technet/security/
advisory/archive.mspx.

[2] M. J. Anderson, M. Moffie, and C. I. Dalton. Towards trustworthy virtualisation environments: Xen
library OS security service infrastructure. Technical Report HPL-2007-69, Hewlett-Packard Develop-
ment Company, L.P., April 2007.

[3] W. A. Arbaugh, D. J. Farber, and J. M. Smith. A secure and reliable bootstrap architecture.Proceedings
of the 1997 IEEE Symposium on Security and Privacy, 1997.

[4] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn. vTPM: Virtualizing
the trusted platform module. InProceedings of the 15th USENIX Security Symposium, pages 21–21,
Berkeley, CA, USA, 2006. USENIX Association.

[5] S. Berger, R. Cáceres, D. Pendarakis, R. Sailer, E. Valdez, R. Perez, W. Schildhauer, and D. Srinivasan.
TVDc: Managing security in the Trusted Virtual Datacenter.ACM SIGOPS Operating Systems Review,
2008.

[6] S. Cabuk, C. I. Dalton, H.V. Ramasamy, and M. Schunter. Towards automated provisioning of secure
virtualized networks. InProceedings of the 14th ACM Conference on Computer and Communications
Security. ACM, 2007.

[7] P. M. Chen and B. D. Noble. When virtual is better than real. In Proceedings of the 8th Workshop on
Hot Topics in Operating Systems, page 133, Washington, DC, USA, 2001. IEEE Computer Society.

[8] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve. Secure virtual architecture: A safe execution en-
vironment for commodity operating systems. InSOSP ’07: Proceedings of twenty-first ACM SIGOPS
symposium on Operating systems principles, pages 351–366, New York, NY, USA, 2007. ACM.

[9] B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, I. Pratt, A. Warfield, P. Barham, and R. Neuge-
bauer. Xen and the art of virtualization. InProceedings of the ACM Symposium on Operating Systems
Principles, October 2003.

[10] P. England, B. Lampson, J. Manferdelli, and B. Willman.A trusted open platform. Computer,
36(7):55–62, 2003.

[11] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A virtual machine-based platform
for trusted computing. InProceedings of the 19th ACM Symposium on Operating Systems Principles,
pages 193–206. ACM Press New York, NY, USA, 2003.

[12] J. L. Griffin, T. Jaeger, R. Perez, R. Sailer, L. van Doorn, and R. Caceres. Trusted Virtual Domains:
Toward secure distributed services.Proc. of 1st IEEE Workshop on Hot Topics in System Dependability
(HotDep), 2005.

19

[13] M. Hohmuth, M. Peter, H. Härtig, and J. S. Shapiro. Reducing TCB size by using untrusted com-
ponents: Small kernels versus virtual-machine monitors. In Proceedings of the 11th ACM SIGOPS
European workshop: beyond the PC. ACM Press New York, NY, USA, 2004.

[14] B. Jansen, H. V. Ramasamy, and M. Schunter. Policy enforcement and compliance proofs for Xen
virtual machines.

[15] B. Kauer. OSLO: Improving the security of Trusted Computing. In Proceedings of the 16th USENIX
Security Symposium. USENIX Association, 2007.

[16] The Fiasco micro-kernel, 2004. Available fromhttp://os.inf.tu-dresden.de/fiasco/.

[17] J. Liedtke. Onµ-kernel construction. InProceedings of the 15th ACM Symposium on Operating
System Principles (SOSP), pages 237–250, Copper Mountain Resort, CO, December 1995.

[18] A. Marx. Outbreak response times: Putting AV to the test. http://www.avtest.org, 2004.

[19] D. G. Murray, G. Milos, and S. Hand. Improving Xen security through disaggregation. InProceedings
of the ACM conference on Virtual Execution Environments, March 2008.

[20] Qumranet. KVM: Kernel-based virtualization driver.http://kvm.qumranet.com, 2006.

[21] A. R. Sadeghi and C. Stüble. Property-based attestation for computing platforms: Caring about prop-
erties, not mechanisms.Proceedings of the 2004 workshop on New security paradigms, pages 67–77,
2004.

[22] R. Sailer, E. Valdez, T. Jaeger, R. Perez, L. van Doorn, J. L. Griffin, and S. Berger. sHype: Secure
hypervisor approach to trusted virtualized systems.IBM Research Report, 2005.

[23] R. Sailer, X. Zhang, and T. Jaeger. Design and implementation of a TCG-based integrity measurement
architecture.Proceedings of the 13th conference on USENIX Security Symposium-Volume 13 table of
contents, pages 16–16, 2004.

[24] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: A tiny hypervisor to provide lifetime kernel code
integrity for commodity OSes. InSOSP ’07: Proceedings of twenty-first ACM SIGOPS symposium on
Operating systems principles, pages 335–350, New York, NY, USA, 2007. ACM.

[25] J. Sugerman, G. Venkitachalam, and B-H Lim. Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. InProceedings of the General Track: 2002 USENIX Annual Technical
Conference, pages 1–14, Berkeley, CA, USA, 2001. USENIX Association.

[26] Trusted Computing Group. TCG Specification Architecture Overview. Trusted Computing Group:
https://www.trustedcomputinggroup.org/groups/TCG_1_3_Architecture_
Overview.pdf, March 2003. Specification Revision 1.3 28th March 2007.

20

