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Verifiable trust is a desirable property for computing platforms — a user has a fundamental
interest in knowing whether a computing platform about to be used behaves as expected. Current
systems provide verifiable trust by taking immutable snapshots of a platform which digest the
complex set of platform components and dependencies into relatively few measurements.
Moreover, any change to the platform is deemed malicious, and it is only possible to revert to the
previous state by restarting the computer. In this paper, we introduce a novel extensible integrity
management framework that addresses these problems. Our framework makes two key
contributions: To improve integrity management, we explicitly represent the dependency relation
between platform components, which provides the user with more information about the state of
the platform. To enable change management, we distinguish reversible changes to measured
components from the established irreversible changes. We have implemented a prototype of this
framework, based on the Xen virtual machine monitor. In addition, we demonstrate the use of
our framework for policy enforcement by implementing a credential management service on top
of it.
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Abstract

Verifiable trust is a desirable property for computing matfis — a user has a fundamental interest in
knowing whether a computing platform about to be used behasexpected. Current systems provide
verifiable trust by taking immutable snapshots of a platferhich digest the complex set of platform
components and dependencies into relatively few measuntsmdoreover, any change to the platformis
deemed malicious, and it is only possible to revert to theiptes state by restarting the computer. In this
paper, we introduce a novel extensible integrity managéfmamework that addresses these problems.
Our framework makes two key contributions: To improve imiggnanagement, we explicitly represent
the dependency relation between platform components hagriavides the user with more information
about the state of the platform. To enable change managemerdistinguish reversible changes to
measured components from the established irreversiblegelsa We have implemented a prototype of
this framework, based on the Xen virtual machine monitoraddition, we demonstrate the use of our
framework for policy enforcement by implementing a cre@s@mhanagement service on top of it.

1 Introduction

Trusted Computing has been proposed as a means of providiifgable trust in a computing platform.
However, as virtualization becomes more popular and platfchanges (such as security patches) occur
more frequently, the established model for Trusted Compus insufficient to cope in real-world scenarios.
We therefore introduce an extensible integrity managerframbiework that is better suited to deal with
complicated trust dependencies and change management.

The goal of Trusted Computing is to enable third parties toately attest and verify the configuration
of a computing platform in a secure manner. Existingted platformgypically contain a component that
is at least logically protected from subversion. The implicrusted components of a trusted platform —in
particular, the hardware Trusted Platform Module (TPM) rloa used to store integrity measurements, and
subsequently report these to users (or remote entitiek)anityptographic guarantee of their veracity. Users
can then compare the reported measurements with known ectxpvalues, and thereby infer whether the
platform is operating as expected (e.g., it is running theeeted software with the expected configuration
while enforcing the expected policies).

Present implementations of Trusted Computing technol@gytake immutable snapshots of a whole
platform, which can then be used as proof of trustworthir[@8s 11, 14, 10]. They do not, however,
provide more granular verifications of platform componenush as individual virtual machines (VMs) and
applications. The platform is treated as a whole, and whiig possible to store integrity measurements
of VMs and applications, the limited amount of storage in #MTifeans that it is not possible to represent
individual components and the dependencies between thamthefmore, it is not possible to manage



changes to measured components. The current scheme atl/byathe Trusted Computing Group (TCG)
deems all such changes to be malicious [26]. This is ceytaimpractical for modern server environments,
which undergo a constant bombardment of security patch@palicy changes. In 2007 alone, Microsoft
released 11 security related patches for the Windows dpgraystem [1], while a typical enterprise anti-
virus application will undergo two to five updates in an ageraveek [18].

In this paper, we introduce an extensible integrity managenframework that addresses these two
shortcomings. To improve integrity management, we explicepresent integrity dependencies between
platform components by giving individual registers to eacimponent to store their integrity measure-
ments, and chaining these components together in a depsngdeaph. To improve change management,
we introduce a new distinction between reversible and éngible changes to measured components. A
reversible change is one that can be undone and is guaramdeamhave any permanent effects. The intro-
duction of reversible changes allows the platform intggiotbe modified temporarily, for example when a
device is hot-plugged and then removed. Although the plaitfmay no longer be considered trustworthy
during the time that the change holds, its integrity can lielywaestored after the change is undone.

Our resulting framework gives a better understanding off@im’s security properties, which can be
used in policy verification. Like existing Trusted Compgtiimplementations, our services can be used to
grant access to protected resources (such as encryptedestanly when the policy is satisfied; however,
unlike existing implementations, these policies can beenime-grained, dynamic, and flexible. Our pro-
totype implementation, built on the Xen virtual machine 1ib@n[9], includes the integrity management
framework and a credential manager service, which dernaisstithe use of enhanced policy checks to
control access to security credentials.

The remainder of this paper is organized as follows. Se&iprovides background on Trusted Comput-
ing and virtualization. Section 3 outlines the motivatiodigh-level design for our integrity management
framework. Section 4 presents the basic framework, whiclriges integrity services to individual com-
ponents; Section 5 extends this into reversible integritgnges and an explicit dependency graph, and
provides use cases for this model. Section 6 presents scanepées of security services that could make
use of our framework. Section 7 describes our prototypeamphtation of the framework and the creden-
tial management service on Xen. Finally, in Section 8 weudisaelated work, and in Section 9 we draw
conclusions.

2 Background

Virtualization and Trusted Computing have gained promieein the past ten years as commercial interests
have led to consolidating multiple virtual machines on glgrphysical host. Virtualization enables simple
consolidation and isolation while Trusted Computing preesiincreased security guarantees. In this section,
we introduce Trusted Computing technology in Section 2d\artualization in Section 2.2.

2.1 Trusted Computing

Trusted Computing technology aims to provide a cryptogapgharantee of the integrity of a computing
platform. Arbaughet al. developed AEGIS [3], the architecture on which most subsetjlirusted Com-
puting systems are based. AEGIS is responsible for intiadutwo fundamental concepts: the use of
cryptographic hashes (integrity measurements) of platioode to demonstrate integrity, and ttein of
trust

A piece of code has integrity if it has not been changed in authorized manner during a defined
period of time. Any change, however small, to the code woedtilt in a complete change in the hash value:
the hash is therefore a concise means of representing tlee ddu integrity of an entire platform can be



captured by starting the boot process witbage root of trust for measurement (CRT,M)hich might be a
BIOS boot block, for example. The CRTM loads the next compobirethe boot process, measures (hashes)
it, and stores that measurement in a secure location. Thap@weent then carries out whatever processing
is necessary before loading and measuring the next compa@mehchaining the measurement to the secure
log. This process repeats until all trusted componentsaadeld. The integrity of the whole platform can
then be proved by induction over the log of integrity measwamsts.

AEGIS inspired the most common Trusted Computing architectwhich is defined by the Trusted
Computing Group [26]. In this architecture, every comput@ntains a secure co-processor, known as a
Trusted Platform Module (TPM), which enables the enforagneésecurity policies by controlling access to
cryptographic material and primitives. It also provideswse storage in the form of Platform Configuration
Registers (PCRs), which may only be resetrtended Extension is used to represent an entire chain of
trust in a single register, and we discuss this further irtiSed. A secure bootloader, such as OSLO [15], is
required to ensure that the initial state of the TPM refldusfirst component that is loaded. Thereafter, all
subsequent platform components, including the operatiagem kernel and device drivers, can be securely
loaded by the preceding component.

A further consideration is the Trusted Computing Base (T.AB)s term is used inconsistently in the
literature, and we prefer the definition from Hohmthal, who refer to “the set of components on which
a subsystem S depends as @B of S’ [13] Therefore a single platform could contain multipl€Bs,
depending on the set of applications that runs on it. In thiskwwe refer to theplatform TCBas the
set of components on which all other platform componentedépand thepplication TCBas the set of
components on which a particular application depends. distinction can be illustrated by considering
the following scenario. A web browser depends on an HTML esadfor correct execution: therefore
the renderer is in the application TCB of the browser. How¢assuming a sensible implementation), the
renderer could not compromise the entire platform: theeeitds not in the platform TCB.

2.2 Machine Virtualization

Virtualization makes it possible to partition the resogrog a computer platform — such as memory, CPU,
storage, and network connections — among sewéntalal machines (VMs)which provide an interface that
resembles physical hardware.vitual machine monitor (VMMjuns beneath the VMs and is responsible
for securely (and fairly) multiplexing access to the phgbkiesources. In addition, to preserve isolation
between the VMs, the VMM executes privileged instructiomsbehalf of the guest VMs. In our work,
we consider an architecture whereby the VMM is the only cddd tuns at the highest privilege level;
alternative approaches place the VMM inside a host opgraystem kernel [20, 25]. In particular, we
consider the Xen VMM [9].

VMMs are increasingly used in the development of secure coimgp systems [7, 24, 8]. The typical
argument for using a VMM is that the amount of code is reldigenall by comparison to a full operating
system: the Xen VMM comprises approximatélj0, 000 lines of code, while a recent version of the Linux
kernel comprises approximately ovemillion lines of code. The compactness of a VMM therefore gsak
it more trustworthy than a monolithic kernel. It can therefbe argued that it is feasible to include a VMM
inside a minimal TCB. Note that security flawgthin a VM are not solved by a standard VMM (although
specialized VMMs, such as SecVisor, do address this prof2di. However, the isolation properties of
a VMM ensure that the compromise of one VM cannot affect agrotfiM. Therefore, virtualization can
be used to host applications from mutually distrusting pizstions on the same physical machine, or to
provide a sand-box for executing untrusted code.

Trusted virtualization extends the concepts from Trustech@uting, such as chains of trust, into virtual
machines. These can be used to attest the state of a VM talgptinity [11], or to provide the illusion of a
physical TPM to applications running within a VM [4].



3 Design Overview

The typical design for a trusted platform comprises a hardWi@M and software integrity management
services. These services measure platform componernsjstegrity measurements as immutable logs and
attest these measurements to third parties. The serviedbei3 PM to provide a link with the CRTM. In a
non-virtualized platform, with relatively few componemtsbe measured, this model is sufficient. However,
it does not scale to complex virtualized platforms that hayglethora of components and dependencies
between these components. In this section, we first disbeskmitations of the existing model. We then
present the high-level design goals that motivate our iittemanagement framework.

3.1 Hardware Limitations

Current integrity management systems typically employTtR& as the sole repository for integrity mea-
surements (see Section 8). Unfortunately, such schemésrmtamentally limited by the hardware capabil-
ities of a TPM:

1. A TPM contains a small, limited amount of memory (PCRs)e TCG specification recommends
that a TPM has at least 16 PCRs [26]. Therefore, for portgpite cannot assume that a TPM will
have any more than 16 PCRs. Hence, it is not feasible to stdreidual measurements for a large
number of virtualized platform components.

2. The limited number of PCRs is typically addressed by agffirg measurements in the same register.
Where two components are independent, this introducesa f@pendency between them. Further-
more, the definition of thext end function introduces an artificial dependency on the ordertiich
they are aggregated.

3. Itis not possible to reverse the inclusion of a measurémenTPM register. Therefore, it is impossi-
ble for a platform component to report a change to its intedé.g. by the dynamic loading of some
code, or the connection of a new device) and revert backr (afleading/disconnection).

To illustrate these limitations, consider the followingaexple. A server platform hosts tens of small
VMs, each of which runs a particular service. To keep tracthefplatform integrity on a traditional TPM-
based system, the measurements must be aggregated, ibesesee more VMs than PCRs. For example,
it might be necessary to store measurements for a virtualanktswitch and a virtual storage manager in
the same PCR, which creates a false integrity dependenagbetthese two VMs. If a malicious change is
made to the virtual network switch, and this change is regbtd the appropriate PCR, the integrity of the
storage manager also appears to be compromised. The san figrtall other VMs whose measurements
are aggregated in that PCR.

It would be possible to extend the set of PCRs by giving a &irfftPM to each platform component [4].
However, by allocating independent virtual PCRs to eachpmrant, it is no longer possible to represent
real dependencies between comportenBurthermore, since the virtual TPMs emulate the behaviar o
hardware TPM, it remains impossible to revert changes.

3.2 High-level Design

It is clear that software measurement support is requireditivess the limitations of hardware capabilities.
We refer to the set of software components that comprisentiegiity framework as theoftware root of

1Some virtual TPM designs share a fixed number of PCRs betwiadrtaal TPMs and the hardware TPM, and these could be
used to express dependencies. However, the reliance oarthedre TPM leads to the same limitations as a single-TPMreeh
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Figure 1: The position of the SRTM within the overall intdgnmanagement framework.

trust for measurement (SRTM)hese components are part of the platform TCB, and shoukblaed from
other components; for example, by virtualization. Dynagomponents outside the platform TCB rely on
the SRTM to store measurements on their behalf, rather tlenrderlying TPM. Figure 1 illustrates the
position of the SRTM within the overall integrity managem&amework.

Our framework has the following design objectives:

Unlimited measurement storage The framework should allow the storage of individual intggmeasure-
ments for an arbitrary number of components.

Explicit dependency representation The framework should allow the explicit and unambiguousasen-
tation of an arbitrary number of dependencies betweengptaticomponents. There should be no
false or artificial dependencies introduced by aggregation

Static integrity management The framework should provide a superset of the functionalita traditional
TPM, with respect to static integrity.

Dynamic integrity management The framework should enable the integrity state of a platfoomponent
to revert to a previous trusted state in a controlled andiabte manner.

Link to hardware TPM The software framework should be linked in a chain of trush&hardware TPM.
This can be achieved by storing the measurements for the SiRi\ther static components in the
platform TCB (such as the hypervisor and any physical desiioeers) in the TPM. As this set of
components is small and non-changing, the limitations ardware TPM do not come into effect.

Minimal TCB In order to improve the trustworthiness of the frameworlk, #RTM and other components
in the TCB should have a minimal amount of code and size offante. This paper does not focus on
minimizing the TCB, but a possible approach would involvengglisaggregation [19].

Platform independence The framework should not be limited to a single hypervischtelogy. Although
the implementation (see Section 7) was carried out using iXehould be possible to use alternative
technologies, such as VMware [25] or an L4 microkernel [17].

4 Basic Integrity Management

In this section, we present a basic design for the SRTM sentiat we introduced earlier. This platform-

independent service provides the minimal functionalitgdexl to manage the integrity of dynamic (non-
TCB) platform components, which will be extended furtherSection 5. Section 4.1 sets out the basic
measurement model, while Section 4.2 describes the comdsp service architecture and interfaces.
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Figure 2: Basic integrity management components.

4.1 Measurement Model

The Basic Integrity Management (BIM) service stores sfategrity measurements of dynamic components
that are arranged in a flat hierarchy, such as the one showigimeF3. Each component has a single
Component Configuration Register (CCR) associated withrAitCCR is analogous to a PCR and holds
integrity measurements for that component. The measuitsnaea held together in a global CCR table
similar to the one depicted in Figure 2(a).

4.1.1 Static Measurements

The BIM measurement model mimics TPM measurement capabiliut stores integrity measurements in
software rather than hardware. Each registered dynami@aoent is assigned a BIM CCR to which its
measurements are reported. This is achieved lyxdrend operation, which stores a new measurement in
a CCR by hashing it together with the current value of the CD¥#hamic components use this operation
to report ongoing measurements when their contents ch&mgeexample, a firewall service would extend
its CCR if its rule-set was about to be changed. The specifiesghen/how measurements are taken is
component-dependent, but the logic that performs thisigctnust be trusted to report changes faithfully.
This behavior is assured by the initial measurement of tingpoment by the component that starts it. In the
BIM model, this can only be a static (platform TCB) component

This measurement model provides better scalability thadelsadhat use the TPM as the sole repository
for measurements. By using software registers, the BIM tae 8 virtually unlimited number of individual
measurements. Hence, no aggregation is needed. Howesandhsurements are still accumulated and
the CCRs are irreversible. That is, recording a measuremgntfollowed by a changed measurement
Mo, followed by M, again, results in a different value than the original recaydof M, alone. Hence,
components are not allowed to change in any way without peemtaloss of integrity. Even if a change
is later undone, the component cannot return to its previaust state. In Section 5, we will address this
problem by employing dynamic registers for reversible meaments.

4.1.2 Simple Trust Dependency

The BIM service implements a flat hierarchy to capture thegrity dependencies between platform compo-
nents. In this model, the integrity of dynamic componentslgaepends on the integrity of the underlying
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platform TCB. We show an example flat hierarchy in Figure 3e Tbmponents labelazhe two, andthree
are virtual machines running directly on the trusted platfo Componenterois the platform TCB that
includes the SRTM (in this case, the BIM service). Each VMal&js only on the platform TCB under-
neath. If the integrity of the TCB (componerngérg is compromised, then the integrity of all of the VMs
is compromised as well. However, the VMs are independentnefanother and therefore do not have a
trust dependency. As an example, if the integrity of V& compromised, the integrity of ViMand VM3
remains intact.

In what follows, we depict the integrity relationships betm components using a dependency graph,
and represent it using a dependency table. Figure 3 showspdesgraph and its dependency table equiva-
lent. For example, the second row in the dependency takiesdtaat the integrity of the child component
one(VM) depends on the integrity of the parent comporzsmd (TCB).

In the simple BIM model, there is always a single trusted congmt (the platform TCB) on which all
other components depend. This yields the “flat hierarchyeteency graph and table in Figure 3. The flat
hierarchy arises, because a dynamic component (such as aafvinly be started by a trusted component.
Since the TCB is static and platform-wide, it is not possiblea dynamic component to start — and hence
become a parent of — another dynamic component. Therefer8itii cannot manage, for example, the
integrity of an application started within a VM. HoweveretBIM serves as a basis to build the hierarchical
model which addresses this limitation, which is introduge8ection 5.

4.2 The BIM Architecture

As shown in Figure 2(b), BIM services are grouped under thmezfaces:

Integrity interface This interface provides functions to report and quote integneasurements of dy-
namic (i.e., non-TCB) components. Components use thisfatie to extend their register values
when they detect significant changes to their measured mofecomponent is only allowed to alter
its own register, while an integrity quote can be requestedry entity. Using the underlying TPM
interface, the latter operation returns a signed integligest that contains the measurements of the
dynamic component and the platform TCB. Using this digeshira party can verify the complete
integrity chain.

Protected storage interface This interface provides functions to store and reveal seae behalf of dy-
namic components. These secrets are bound to the integtitye @ CB and the owner component,
i.e., they are revealed if and only if the integrity of the gament and its ancestors (in the BIM case,
the platform TCB) is intact. The BIM uses the underlying TPMerface for sealing and unsealing
data to and from the TPM, which automatically implies a veaifion check on the TCB. Verification
of the component’s integrity can be done either by the BIMaledated to a third-party verifier. Our
prototype implements the former case in which the BIM needstdare the expected measurements
for comparison. We use the TPM sealing operation itself tsaland use the CCR values at the time



Integrity Description

ext end Takes a hash value as an argument and irreversibly exteadsothponent
CCR with that hash.
quot e Takes arbitrary external data (i.e., nonce) and returngtatjon of the current

TCB measurements, the nonce, and the component CCR valedsity a
TPM attestation identity key (AIK).

Protected Storage | Description

seal Takes data to be protected, seals it to the TPM binding it toectt TCB and
CCR measurements, and returns the sealed (encrypted) blob.

unseal Takes the sealed blob and unseals and returns the data ifftédggity of the
TCB and the component are verified as intact.

Management Description

register Takes the initial measurement, adds the component to thendepcy table
and fills the CCR with the initial measurement.

del ete Deletes the component and all its sealed data.

Table 1: BIM integrity, protected storage, and managenméetfaces.

of sealing as the future expected values. We concatenate Hadues to the secret and seal the whole
blob. The unsealing operation at a later time returns not @ sealed secret but also the expected
set of measurements that we compare to the CCR values aintieat t

Management interface This interface provides functions to register dynamic congmts to the frame-
work so that their integrity can be tracked by the BIM. The Bid/a passive service, and so only
registered components are tracked. As discussed in théopsesections, the initial measurement
of the component is provided from outside by a trusted corapbthat measures and initiates the
component. The interface also allows the deletion of coraptsiand their sealed data.

Table 1 details the individual functions provided by eaderiface. As shown in Figure 2(b), the BIM,
in turn, makes use of the Basic Management and Securityfdoste(BMSI), which provides a platform-
agnostic interface to the underlying hypervisor and hardWwd@M. In particular, the BMSI provides func-
tions that enable the BIM to access the TPM and establistkadithe hardware root of trust. The imple-
mentation of the BMSI is discussed in more detail in Section 7

5 Hierarchical Integrity Management

In this section, we present an enhanced design for the SRTWtedhat we introduced in Section 3. This
platform-independent service features dynamic measuresnand a component hierarchy that we use to
manage the integrity of dynamic (non-TCB) platform compugrenore effectively. We describe the security
model for measurements in Section 5.1. We describe theceeavchitecture and interfaces in Section 5.2.

5.1 Measurement Model

The Hierarchical Integrity Management (HIM) service storetegrity measurements in a CCR table as
illustrated in Figure 2(a). To overcome the shortcomingheBIM model (e.g., irreversible measurements),
we have extended it by introducing two new concepts: dynamg@asurements and hierarchical trust.
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5.1.1 Dynamic Measurements

The HIM measurement model enhances the BIM model in two wiiyst, HIM allows multiple registers to
be assigned to a single dynamic component. This way, conmpomeasurements can be tracked with better
granularity. Second, HIM supports dynamic measuremeitscin be reported to a resettable register. This
increases flexibility and allows a component to revert back trustworthy configuration if permitted by its
change policy.

Change types. We distinguish two types of component changes. More spelijficAn irreversible
changeis one that requires the component to be restarted befonetdéfgrity can be re-established. Such
a change is one made to the integrity-critical part of the poment; that is, to the code or other data of
the component that has a potential impact on the futuretgbilithe component to implement its intended
functionality correctly. An example of an irreversible diga is a kernel loading an untrusted device driver
as the driver may make a change to kernel memory that wiligiexgen after it is unloaded.

A reversible changés one in which the component is permitted to re-establisbgrity without being
completely reinitialized. Such a change is one made to acnitinal part of the component; that is, to code
or other data of the component that has no direct or potantighct on the component’s future security. A
component still loses its integrity if a change is made tddibwever, depending on the exact nature of the
change, we may permit the component to regain integrity {hacefore trust) by undoing the change and
returning to its previous state. For example, changes tgiomation parameters are often reversible — e.g.
changing the identity certificate that a component uses.ifthgrity management system will need to note
such a change in order to fully report the state of the platfdout the certificate may be safely changed
back without causing security implications. Another exémpight be loading a trusted kernel module that
is known not to leave any side effects after being unloaded.

The categorization of a change as reversible or irrevarsgotomponent-dependent and will be set by
each component’s own change-type policy. For example, iaypsiating that all changes are irreversible
reduces to the static measurement model. A component thaitpeeversible changes is referred to as a
dynamic componer{tdynamic” because its integrity state may change multijpless).

Measurement reporting. Recording dynamic measurements requires two measuremgstars, a
static registerand adynamic registerrather than the single register used in the static measmemodel.
Irreversible changes are reported to the static registéreisame way as in the static measurement model;
that is, theext end operation is used to combine the new measurement with tisérexiregister value to
obtain the new register value.



extend(R, M) = hash(R||M)

whereR is the value of the register and is the measurement.
By contrast, reversible changes are reported to the dynamister byreplacingthe previous value held
in that register, using theeset operation.

reset(R, M) = M

We can see that attempting to reverse an irreversible chdmegenot return the static register to its initial
state:

Ryinal = extend(extend(Rinitial, M2), M1) = hash(hash(Rinitiar || M2)||M1) # Rinitial
However, reversing a reversible chardgesreturn the dynamic register to its initial state:

Rpinal = reset(reset(Rinitiar, M2), M1) = reset(Ma, My) = My = Ripitial

The exact nature of the reporting activity and the corredpan change-type policy is component-
dependent. However, the logic that performs this activitystrbe a part of the initial measurements so
that we can trust the component to report the changes to thectoegister.

Integrity states. Depending on the measurement values stored in its statichamaimic registers, a
dynamic component can be in one of three local integrityestaintact, non-critical, and critical. The
component is in théntact stateif and only if the values in the static and dynamic registees @nsistent
with the expected measurement values. The component ig moth-critical stateif and only if the value
in the static register is consistent with the expected nreasent value but the value in the dynamic register
is not. In all other cases, the component is in tngical state As shown in Figure 4, the foregoing
arrangement enables a dynamic component that has only bejetsto non-critical changes to be restored
to the intact state. A component that is in the critical stagnot be restored to any other state unless
re-initiated with an expected configuration (during whidttbregisters are reset).

Security states.Depending on the integrity state, a component can be in geegrity states: trustwor-
thy, secure, and insecure. A componentrisstworthyif and only if it is in intact state. A component is
securdf and only if it is in intact or non-critical states. In alltwgr cases, the component is deerimsgcure

Example use case for dynamic registers.Digital Rights Management (DRM) services control the
distribution of media content onto computing platforms.slpossible that a DRM service will not push
video content to a computing accessory if, for example, &ereal recording device is plugged to it. In this
case, software that detects and installs the plug-andepslagrs for the recording device must be part of the
static measurements. However, the state in which a regpddivice is detected in the system can be reported
dynamically. In fact, this can be reflected in the dynamidsteg for a secure DRM player application. As
long as the recording device is connected, no content is ldagad. Once the user unplugs the device, the
dynamic register is reset and content can be pushed to thierphdthout requiring the application to be
restarted.

5.1.2 Hierarchical Trust Dependency

We enhance the BIM dependency model by introducing a hieyaw€trust dependencies that we represent
as a directed acyclic graph. In such a graph, the edges iaditst dependencies where the integrity of the
component at the origin depends on the integrity of the caorapbat the destination. If the integrity of the
destination component is compromised, then the integfithe@origin component is always compromised
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Figure 5: Hierarchical integrity use cases.

as well. However, the reverse is not true. To illustrate éh@sre complex trust relationships, consider the
following use cases.

In Figure 3, we see the simple flat hierarchy as previouslgriteesd in Section 4. The components
labeledong two, andthreeare virtual machines running directly on the trusted platfoComponentero
is the platform TCB that includes the SRTM (in this case, thklldervice). Each VM depends only on the
platform TCB underneath. If the integrity of the TCB (compatizerg is compromised, then the integrity
of all of the VMs is compromised as well. However, the VMs arédpendent of one another and therefore
do not have a trust dependency. As an example, if the inyegfri¥M {is compromised, the integrity of VM
and VM3 remains intact.

Figure 5(a) shows a more complex multi-level dependencyng@mentoneis a service that manages
the life-cycle of componentswvo, three andfour. All components are virtual machines. The latter VMs
are independent of one another, as before, but their ityedgpends on that of the domain manager, whose
integrity in turn depends on the TCB.

In Figure 5(b), we see a nested dependency relationship pGoemtsoneandtwo are virtual machines,
which themselves contain further virtual machines: congmbthree which is a Java virtual machine, and
componenfive which is a VMware hypervisor. These nested virtual machsgport guest components:
componenfour, a Java application, and componei¥, a VMware guest. Within componenhe a tradi-
tional linear chain-of-trust applies: Java applicatiopel®s on Java virtual machine depends on operating
system. A similar chain can be found within the VMware conmgmin However, these two chains of trust
are independent of one another, and both depend ultimatelysounderlying platform TCB.

Figure 6 illustrates more complicated use cases. In Fig{ae @e see a multiple dependency relation-
ship. Componentiveis a virtual machine that uses services from componenéstwo, andfour. These
components are small virtual machines that provide virtWworking, virtual storage, and virtual TPM
services, respectively. Further, the integrity of theualtTPM depends on the integrity of the virtual TPM
manager domain (compondiiree.
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Figure 6: More complicated use cases. Dashed lines dengpteiindependency.

Figure 6(b) shows a similar VM grouping example which we mot¢o explore further in future work.

In this example, we use miniature virtual TPM services tasasd enhance the integrity measurement
capabilities of the framework. In this design we bind a singirtual TPM to a component (application
or VM) and delegate component measurements to this virtéd.TThe virtual TPM then replaces the
component CCRs to provide more granular run-time measurenfier the component it is attached to. The
measurements for the virtual TPM service itself is stillchiey its own CCRs. As an example, the integrity
of componentwo now depends on the integrity of componemie (its attached virtual TPM) and the run-
time measurements taken by this virtual TPM (e.g., durirthenticated VM bootstrap). We refer to this
measurement set as de. The same holds for the application comporfargand its attached virtual TPM
service componeriour. The present HIM implementation does not yet support ViffiRM attachment.

5.2 The HIM Architecture

The HIM service implements the same integrity, protectedagfe, and management interfaces as the BIM
service as presented in Section 4, but with the followinga@ckments.

The HIM integrity interface provides aext end function that alters the value of the static CCR in
the same way as the BIM equivalent. To support dynamic measents, the interface also provides a
r eset function that is used to report to the dynamic register arahwrite its value. In addition, to support
hierarchical integrity dependency, thaot e function is modified. This function now returns the aggredat
integrity measurements of the component in question. Spakty, the signed quote now contains the TCB
integrity measurements plus the measurements of the ca@npamd all its ancestors hashed in a single
value.

In the HIM protected storage interface, theal andunseal functions are enhanced to support com-
ponent dependency and dynamic measurements. s€aé function now binds the stored secret to the
integrity of all the trust chains that reach the componerjuastion from the TCB; that is, the subgraph
of all paths from that component to the root TCB. Hence thegrity state of components not on a path
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between that component and the TCB is ignored. For exammptaginested use case in Figure 5(b), an in-
tegrity compromise in the VMware compartment will not afféte ability of the Java application to unseal
previously sealed information, as long as the Java comgattremains intact.

Lastly, the HIM management interface providesgi st er anddel et e functions. Thedel et e
function is the same as in the BIM. However, thegi st er function now takes a dependency list as a
parameter that specifies additional ancestor componeatsdimponent depends on besides the one that
registers the component.

6 Policy Verification for Security Services

In this section, we introduce example security servicesldwerage the HIM framework for policy verifi-
cation and access control. Our examples include a cretiemtisagement service (Section 6.1), a virtual
TPM service (Section 6.2), and a virtual network servicec(iga 6.3).

6.1 Credential Management Service

Protected storage services provide secure access tosse@aeare sealed to the underlying TPM on behalf
of their owners. Itis expected that these services retaitraloover these secrets and enforce the associated
access control policies at all times. By contrast, mosagtiservices such as [23] and the HIM provide one-
time verification, and are therefore susceptible to a tifaeheck to time-of-use vulnerability. This occurs
because these services release the stored secret to testneguromponent once they verify the necessary
policies (e.g., HIM unseal successfully verifies the aggredntegrity). Once the secret is revealed, these
services can no longer restrict access to it if the compomedié¢rgoes a malicious change.

To enable ongoing policy verification and enforcement, wagteed and implemented a credential man-
agement service (CMS) that uses the integrity managememiefvork to provide secure access to secrets
while maintaining control at all times. Unlike the HIM unsegeration, CMS credentials are never revealed
to requesting services directly but are always held seglmethe CMS. In essence, the CMS is a reference
monitor that mediates and provides access to secured datgtha well-defined interface.

The CMS interface is comprised of management and serviegfages. Components use the manage-
ment interface to register component credentials with tMSCTo do so, the egi st er function takes
the credential as input and seals it to the underlying TPM: ifiterface also providesd scar d func-
tion which deletes the stored credential. The service fexterprovides access to the credentials through a
genericaccess function. We have designed this interface as an extenslblgip interface; that is, the
exact nature of the interface depends on the nature of thedstwedential and the type of functionality
needed. For example, if the stored credentials are cryapbigr keys, we offer a plug-in service that pro-
vides encryption/decryption capabilities so that compbmean use the interface to encrypt/decrypt data
without seeing the actual key. Regardless of the functitynatovided, the CMS uses the HIM to verify the
aggregate integrity prior to each access to the secret.

6.2 Virtual TPM Service

A natural extension to the CMS functionality would be to pdava miniature TPM interface to the various
platform components, as illustrated in Figure 6(b). Thial#es these components to have a standardized
interface as in [26] to prove their integrity and providestr@rsy identity for each component. Such an
approach has already been taken through TPM virtualiz@dipwhich gives each VM a TPM interface im-
plemented by a virtual TPM service. However, it is not yeachkrhat the best mechanism is for establishing
a secure binding between a virtual TPM and its platform TCB.
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Our framework could be used to bridge the gap between vilitBM services and the platform TCB. For
example, a central trusted CMS service could be used asrbie siecure repository for virtual TPM keys.
Access to these keys would require verification of the cotedM integrity chain, including verification
of the platform TCB. For example, to sign a quote requestrtaali TPM would use the CMS interface to
gain access to its signing key.

6.3 Virtual Network Service

Virtualization provides direct isolation of computing oesces such as memory and CPU between guest
operating systems on a physical platform. However, the otwemains a shared resource as all traffic
from guests will eventually end up on the same physical mmedilarious mechanisms can be used to
provide network isolation between network domains, asritest in [6]. In general, encryption must be
used for isolation when network traffic is delivered over atrusted shared physical medium.

Using our framework in combination with the CMS, one couldiga a virtual network (vVNET) service
which provides isolation through an encryption layer sutsHPSEC. In this setting, the vNET service would
store its credentials (e.g., network encryption key) in@\S, in combination with the expected CCR val-
ues of the service and any ancestor service it depends dadjing any potential network configuration
information). Because the key is held by the CMS and not tedea the vNET service, any change in the
integrity of the service or its ancestor components wousdltén the network link becoming unavailable for
the VM connected to this specific VNET. As a result, the cdjpahif a VM to communicate with its peer
within a considered domain would implicitly prove its trasirthiness, which would provide continuous au-
thentication as opposed to relying only on an initial haadtehas most network authentication mechanisms
do.

7 Implementation in Xen

In this section, we describe a prototype implementationhefihtegrity management framework and the
credential management service on the Xen virtual machingitorg9]. The implementation features the
management and service interfaces of both. Note that gthawe present our implementation with Xen,
the framework could equally be implemented on an alteraativtualized or microkernel-based platform
(e.g., the L4/Fiasco [16] microkernel).

7.1 Infrastructure Overview

The various components of the integrity management frameas® provided by one or more virtual ma-
chines, running on top of the Xen virtual machine monitore Tise of virtualization isolates the trusted plat-
form from a misbehaving guest operating system, and all conication with the trusted platform passes
through well-defined interfaces. Our implementation iseblasn Xen version 3.0.4, a VMM for the 1A32

platform, with the VMs running a paravirtualized versiorLaifux 2.6.18. For inter-domain communication,
we employ the light-weight communication library introguaicin [2].

Figure 7 illustrates our implementation on Xen. In the pnég®ototype, all framework components
and the CMS are implemented as libraries and services rgrimithe Xen privileged management domain
Dom0. However, as we have defined interfaces between edol cbimponents, it should be straightforward
to move towards a disaggregated approach as described]inTti® framework components are arranged
in a layered stack. At the lowest layer is the basic manageamhsecurity interface (BMSI) that provides
libraries for domain life-cycle management (libM), basiPM access (libT), and integrity management
(libl). At the core services layer are the integrity managenvices BIM and HIM that provide basic and
hierarchical integrity management, respectively. Alsthia layer are the CMS and the domain management
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Figure 7: lllustration of the prototype in a layered stack.

service (DMS). At the highest layer are the security ses/itat use the framework for various purposes.
The platform TCB consists of the static components up to aotliding the SRTM (the BMSI libraries
and the integrity managers). However, for simplicity, weoainclude the CMS in the platform TCB. The
measurements of these components are reported to theyingdeFPM. The application TCB consists of
the platform TCB plus the security services that run on toip dfthe measurements of the latter are reported
to the SRTM.

7.2 Component Design

In the present prototype, we have implemented the highdijlsbomponents depicted in Figure 7, namely
the BMSI libraries, BIM and HIM services, CMS, and DMS. Indlsection, we present the details of these
components including both the BIM and HIM; however, due tacgpconstraints, we present an example
use case that uses only the HIM.

7.2.1 BMSI Libraries

The Basic Management and Security Interface (BMSI) prav@leommon and extensible interface to the
underlying hypervisor (i.e., Xen) and the TPM. The BMSI pd®s libraries for domain life-cycle manage-
ment (libM), basic TPM access (libT), and integrity managetr(libl).

libM This library provides hypervisor-agnostic managementtions to upper layers. At its lowest level,
the library manages allocatable resources cadfemtection Domains (PDs)A PD is an executable
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component that receives an allocation of memory and CPWsyahd is scheduled by the hypervisor.
On Xen platforms, a PD is equivalent to a Xen domain (virtuathine). In this prototype, we use
libM to implement the Domain Management Service (DMS). T¥asvice manages the life-cycle of
PDs and uses the integrity managers to keep track of PD itytede refer the reader to [19] for
further details on the libM and DMS implementation.

libT This library provides the minimal functionality to acceks integrity and protected storage interfaces
of the TPM. Security services (e.g., BIM and HIM) use thisdity to obtain a signed quotation of the
TCB measurements and to seal/unseal data to/from the TPMlo §o, libT uses the TPM functions
TPMCQuot e(), TPMSeal (),andTPMUnseal () as described by the TPM specification [26].

libl This library stores and provides access to the integrity smeement and dependency tables. The
get Measur enment () function returns a measurement list that includes the iityegneasurements
of the component and its ancestors. Inthe BIM case, a simflevs returned. Theet Measur enrent ()
function extends the value of the component register. riégeet Measur enent () function over-
writes the value of the dynamic register. TaddConponent () function adds an entry to the
dependency table and sets its dependencies as specifiddo #dals an entry to the measurements
table and records the initial measurements. dbéet eConponent () function checks that the
specified component has no successors and removes it fraabiee

7.2.2 Component Interactions

The BIM and HIM services implement the interfaces presemesections 4 and 5, respectively. Similarly,
the CMS service implements the interfaces presented irdde6il and uses a cryptographic service as
a plug-in for block encryption and decryption. On a Xen pati, we use these services to manage the
integrity of VMs and applications running on these VMs.

VM integrity management is incorporated into VM life-cyaleanagement. To assist both, the DMS
uses the BMSI library libM and the HIM service. The VM stapg4phase in Figure 8 depicts the interaction
among these components. During this phase, the DMS invidMds Which prepares resources for the VM,
measures the VM image (comprising the kernel, an optionhlimamdisk and command-line parameters),
and stores the measurement in the CCR for that VM. This pegarfunction similar to a secure bootloader,
and it is the responsibility of the kernel to measure any camepts which it subsequently loads. The DMS
also registers the new VM with the HIM service, and configuarg dependencies between the new VM
and existing VMs. The HIM uses libl to store this informationthe measurement and dependency tables.
Following the successful completion of the above stepsDM& starts the VM.

The HIM service additionally allows applications runnimg\iMs to be registered with the framework.
The application start-up phase in Figure 8 depicts the cagdich the VM that was started in the previous
phase loads and registers a DRM service with the HIM. In thsecthe VM becomes an ancestor of the
service and provides its initial measurements. As a regiudt,cumulative integrity of the service now
includes the VM’s measurements as well as the platform TCBsmements.

The last phase in Figure 8 depicts a use case in which the DRNtedhat was started in the previous
phase attempts to decrypt encrypted media content using th&kis stored on the TPM on behalf of this
service. The DRM service invokes the CMS service interfaceetiuest access to this key. The CMS then
invokes HIM unseal to retrieve the key from the TPM. HIM ursdhe key if and only if the underlying
policies regarding the key's release are satisfied. In tigg cthe key is unsealed from the TPM and returned
to the CMS if the integrity of the platform TCB is intact. Orcesving the key from the HIM, the CMS
performs further verification. It compares the expected G&Res of the DRM service and its ancestor
VM (unsealed along with the key) to the current CCR valueghdf measurements match, the CMS uses
its cryptographic service to decrypt the block, which isntheturned to the DRM service. Note that any
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Figure 8: Sequence diagram of interactions between theeframk services for a DRM application use
case.

subsequent access requests to the key will also follow dasiverification cycle, with the exception that
HIM (hence TPM) seal is omitted because the CMS caches thanterypally.

8 Related Work

Bergeret al.[4] implemented a virtual TPM infrastructure in which eaéhual machine is assigned its own
virtual TPM that provides multiplexed access to the undegyhardware TPM. In comparison to virtual
TPMs, our work uses a single integrity management framewwmkencompasses all components in order
to explicitly represent trust dependencies between theun framework is complementary to virtual TPMs
in that we can use virtual TPMs to gather more granular mmetmeasurements for our components, and
can enhance virtual TPMs by providing a binding between thachthe platform TCB through the use of
CMS.

Several systems have been previously described that usalvitachine monitors to isolate trusted and
untrusted components. Terra [11] is an architecture thed astrusted virtual machine monitor (TVMM)
to bring the security advantages of “closed box” speciappse platforms to general-purpose computing
hardware. The TVMM ensures security at the virtual machewel| isolating VMs from one another,
providing hardware memory protection, and providing cogpaphic mechanisms for VMs to attest their
integrity to remote parties, even providing protectiomireampering by the platform owner. Microsoft’s

17



proposed Next-Generation Secure Computing Base (NGSJRBdférates in a similar manner, partitioning

a platform into two parts running over a virtual machine ntenian untrusted, unmodified legacy operating
system, and a trusted, high-assurance kernel calleexas Our work builds on both to examine how

integrity measurements can be stored and maintained.

Saileret al’s implementation of a TCG-based integrity measuremeniti@cture [23] was one of the
earliest works to demonstrate the use of a TPM to verify thegiity of a system software stack. In [14],
Janseret al. propose an architecture for protection, enforcement, anification (PEV) of security policies
based on a tree structure containing integrity log datarevbach node contains the data for one component
and its children contain the data for its subcomponents. &gpfoaches the problem of trust flexibility and
extensibility by defining a generalized attestation protoé verifier sends an attestation request containing
an XML descriptor that defines a projection function retagnthe subset of the integrity log of interest to
the verifier. Sadegtet al.[21] extend the TCG notion of trust in a different direction ffroposing attes-
tation that is not based directly on hardware/software émdiut on abstract platform properties. Rather
than checking a large list of permitted platform configuwmasi, their system checks whether or not a given
platform possesses valid certificates attesting to theatbproperties. Such property certificates are issued
by a trusted third party that associates concrete configusatvith the properties they provide. Our system
differs from these in providing a more granular verificatmincomponents such as individual virtual ma-
chines and applications within a platform, representingetielencies among them, and managing changes
to measured components.

Other orthogonal previous work has explored distributedttand mandatory access control. Griin
al. investigated secure distributed services with TrustetusirDomains [12], which are intended to offload
security analysis and enforcement onto a distributed stfnature. Bergeet al. use this abstraction in the
Trusted Virtual Datacenter (TVDc) [5], which shares harteveesources among virtual workloads while
providing isolation with a mandatory access control poéiajorced by the sHype security architecture [22].

9 Conclusions

In this paper, we have introduced a novel integrity managerframework that improves on the integrity
measurement and policy verification capabilities of preSensted Computing solutions. In particular,
our framework is able to cope with the proliferation of measlcomponents and dependencies between
them as well as dynamic changes to platform components.sknes, the framework implements a small,
software-based root of trust for measurement (SRTM) thatiges a secure link to the core root of trust for
measurement (CRTM). We have implemented our framework @X#n virtual machine monitor and pro-
posed several ways in which security services could takargdge of this architecture for policy verification
and access control.

We anticipate integrity and trust management to becomecesdlyeuseful for application and service
level components. We will therefore continue to inveseghirther potential uses for our framework by
user level applications. In the short term, we plan to im@etmCMS-aware services such as a virtual
network service based on [6] that uses the CMS to store etionykeys. The virtual TPM service is also
particularly interesting. In the long term, we plan to invgste various ways of exploiting our framework
to help enhance the security properties of virtual TPM sewi(e.g., their binding to the platform TCB).
Conversely, we plan to use virtual TPM services to help eochdne measurement capabilities of the HIM
framework and provide more granular run-time measurenwnmtgared to a single CCR.
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