

WAM – The Weighted Average Method for Predicting the Performance of
Systems with Bursts of Customer Sessions

Diwakar Krishnamurthy, Jerry Rolia, Min Xu

HP Laboratories
HPL-2008-66

Keyword(s):
Heavy-tailed distributions, Monte Carlo simulation, Distributed applications, Operational
analysis, Queuing network models, Session-based systems

Abstract:
Predictive performance models are important tools that support system sizing, capacity planning,
and systems management exercises. We introduce the Weighted Average Method (WAM) to
improve the accuracy of analytic predictive performance models for systems with bursts of
concurrent customers. WAM considers the customer population distribution at a system to reflect
the impact of bursts. The WAM approach is robust with respect to distribution functions,
including heavy-tail-like distributions, for workload parameters. We demonstrate the
effectiveness of WAM using a case study involving a multi-tier TPC-W benchmark system. To
demonstrate the utility of WAM with multiple performance modeling approaches we developed
both Queuing Network Models and Layered Queuing Models for the system. Results indicate
that WAM improves prediction accuracy for bursty workloads for QNMs and LQMs by 10% and
12%, respectively, with respect to a Markov Chain approach reported in the literature.

External Posting Date: June 7, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: June 7, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

1

WAM – The Weighted Average Method for Predicting the Performance of
Systems with Bursts of Customer Sessions

Diwakar Krishnamurthy1, Jerry Rolia2, and Min Xu1

1University of Calgary, Calgary, AB, Canada
2HP Labs, Bristol, U.K.

{dkrishna@ucalgary.ca,jerry.rolia@hp.com,m.xu@ucalgary.ca}

Abstract -- Predictive performance models are important tools that support system sizing, capacity planning, and
systems management exercises. We introduce the Weighted Average Method (WAM) to improve the accuracy of analytic
predictive performance models for systems with bursts of concurrent customers. WAM considers the customer
population distribution at a system to reflect the impact of bursts. The WAM approach is robust with respect to
distribution functions, including heavy-tail-like distributions, for workload parameters. We demonstrate the effectiveness
of WAM using a case study involving a multi-tier TPC-W benchmark system. To demonstrate the utility of WAM with
multiple performance modeling approaches we developed both Queuing Network Models and Layered Queuing Models
for the system. Results indicate that WAM improves prediction accuracy for bursty workloads for QNMs and LQMs by
10% and 12%, respectively, with respect to a Markov Chain approach reported in the literature.

Index Terms –Heavy-tailed distributions, Monte Carlo simulation, Distributed applications, Operational analysis, Queuing
network models, Session-based systems

I. INTRODUCTION

The purpose of this work is to improve the accuracy of predictive performance modeling

techniques so that they may be more reliably applied in system sizing, capacity planning, and

systems management exercises. In particular, we focus on the impact of high variability and

heavy-tail distributions on the accuracy of predictions for system responsiveness.

The systems we consider are session-based systems, e.g., e-commerce and enterprise application

systems. A session is defined a sequence of related customer requests that accomplish some

business purpose. For example, in an e-commerce system, requests may be for a Home page or a

Buy transaction. The number of requests submitted by a session is defined as the session length.

We argue that for systems with bursts in the number of concurrent sessions, knowing the mean

or maximum number of concurrent customer sessions is not generally sufficient to enable

accurate performance predictions. It is necessary to consider the distribution of concurrent

customer sessions. We refer to this distribution as the session population distribution.

Several studies have indicated that multi-tier session-based systems experience bursty workloads

and that burstiness can adversely affect performance [18] [19]. Techniques have been proposed

to reflect the impact with heavy-tail distributions in performance models [3][9], but they are not

general enough for the problem we consider. Hybrid models that combine Markov-chain birth-

death processes with Queuing Network Models (QNM) have been proposed to reflect load

2

dependent behaviour on mean response times [28]. However, these techniques are not adequate

for capturing the impact of complex underlying workload parameter distributions that can

contribute to burstiness in population distribution.

In this paper we propose and evaluate a new approach to estimate population distribution called

the Weighted Average Method (WAM). WAM is motivated by the hybrid approach mentioned

previously but does not rely on a birth-death model. Instead it exploits a fast Monte Carlo

simulation to estimate population distribution. The primary advantage of the newly proposed

method is that it is more robust with respect to the distributions that contribute to bursty

behaviour. For example, it permits the study of arbitrary distribution functions for workload

parameters such as session inter-arrival time, think time, and session length in a straightforward

way.

We demonstrate the WAM technique in a study involving a multi-tier TPC-W [25] benchmark

system. The system was subjected to controlled workloads to explore its responsiveness when

subjected to bursty behaviour. We developed both QNMs and extended QNMs called Layered

Queuing Models (LQM) [7][8] for the system. The results indicate that modeling approaches

that only consider the mean number of concurrent sessions produce very poor estimates of mean

response time for systems with bursty workloads. The average prediction error for bursty

workloads is nearly 24% and 21% for the QNM, and the LQM, respectively. Furthermore, for

bursty workloads, using the QNM and LQM models in combination with a Markov birth-death

model does not improve prediction accuracy significantly. In contrast, the WAM approach

significantly improves the accuracy of mean response time predictions. For bursty workloads,

average prediction errors dropped by 12% and 10% for LQMs and QNMs, respectively, as

compared to the Markov birth-death approach. Moreover, the LQM-based WAM approach had

much lower average error and range of errors than the QNM-based WAM approach.

The remainder of the paper is organized as follows. Section II describes related work. Section III

describes the WAM approach in detail. A measurement study for the multi-tier TPC-W system

is presented in Section IV. The section provides insights into the impact of burstiness on

session-based systems. Section V presents a QNM and a LQM for the multi-tier system. Section

3

VI investigates the accuracy of WAM in predicting the mean response times for the experiments

described in Section IV. Summary and concluding remarks are offered in Section VII.

II. BACKGROUND AND RELATED WORK

Several studies have indicated that multi-tier session-based systems experience bursty workloads

and that burstiness can adversely affect performance. Menasce et al. [19] characterized the

workloads observed at an e-commerce system and an auction system. The authors found that

both systems were characterized by bursty arrivals of requests over several timescales. They

invoke the properties of the well-known ON-OFF process [20] to argue that the bursts observed

at fine timescales, i.e., several dozen seconds, were due to the heavy-tailed nature of the session

length distributions observed at the systems and the presence of think t imes in sessions.

Vallamsetty et al. also noticed similar burstiness in the arrival of requests at another real e-

commerce system [18]. The authors attribute this phenomenon to the highly variable service

times for requests at the backend tiers of the system, i.e., the application servers and the database

server. Krishnamurthy et al. [21] showed for a multi-tier system that distributions which cause

highly variable session lengths, think times, and request resource demands result in high

variability in the customer population distribution and hence burstiness in request arrivals at fine

timescales. This suggests that modeling customer population distribution may be helpful for

modeling the impact of burstiness. In addition to such fine timescale burstiness, burstiness has

also been observed at coarser timescales, e.g., hours, days, in real-session based systems [22].

Burstiness can have a big impact on how predictable or repeatable a system’s behaviour is in

response to similar workloads. Crovella and Lipsky showed that the steady-state values for

performance measures from multiple statistically identical simulation runs that use heavy-tailed

distributions can result in very different measures for each run [24]. Krishnamurthy et al. [21]

confirmed this for multi-tier software systems. For a TPC-W system servicing bursty workloads,

the authors found that multiple statistically identical measurement runs with the same mean

resource demands and same throughput resulted in significantly different mean response time

measurements. These results suggest the need for modeling approaches that characterize a range

of possible system behaviours under bursty workloads.

There are many examples of predictive performance models for systems. These include Markov

chains [4] and related models such as Stochastic Activity Networks (SAN) [5] and Petri-Nets [6],

4

QNMs [1][2][3], and extended-QNMs such as LQMs [7][8]. The Markov chain related

approaches enable very detailed models of systems. But in general, their solution efficiency does

not scale to support even modestly sized systems of the kind we consider. Mean value analysis

(MVA) for QNMs [2] offers a more restrictive modeling technique than Markov chains. Yet, it

is a much more efficient technique for obtaining exact, and approximate [10][11], solutions for

QNMs and as a result it can be used to study larger systems.

MVA and QNMs have been used to study computer system performance since the early 1970’s.

Several researchers have recently applied them directly to the study of multi-tier systems

[13][14]. LQMs are based on QNMs, and were developed starting in the 1980’s to consider the

performance impact of software interactions in multi-tier software systems, e.g., systems that

have contention for software resources such as threads. Tiwari et al. [15] report that layered

queuing networks were more appropriate for modeling a J2EE application than a Petri-Net based

approach [16] because they better addressed issues of scale. Balsamo et al. [17] conclude that

extended QNM-based approaches, such as LQMs, are the most appropriate modeling abstraction

for multi-tiered software environments.

MVA of QNMs and LQMs only consider the average customer population of a system. More

complex techniques exist which could potentially be used for modeling the impact of burstiness.

Classical queuing theory offers G/G/* queues [4] that can take into account the first and second

moments of any arbitrary request inter-arrival time distribution. However, exact solution

methods for mean response times do not exist for networks of such queues and reliable estimates

from approximate solutions are difficult to obtain [4]. Furthermore, heavy-tail-like distributions

require more than the first two moments for a proper characterization. Recently, Psounis et al.

[9] considered a single multi-server queue that is subjected to heavy-tail-like distributions.

However, the approach has not been extended to queuing networks.

Menasce and Almeida propose techniques that consider heavy-tailed distributions and bursty

request arrivals for Web server systems [3]. Specifically, they describe a QNM that reflects the

impact of a heavy-tailed file size distribution at Web servers serving static HTML pages. The

authors argue that a multi-class model where the classes represent requests for files belonging to

different file size ranges is more suited for capturing the impact of the heavy-tailed distribution

5

than a single class model. This technique is specific to systems that serve static files. It is not

intended for transaction-oriented, session-based systems of the kind considered in this work.

The authors also propose another heuristic technique that uses a QNM to reflect the impact of

burstiness in request arrivals. The technique splits a given HTTP request log into equal sized

time periods. It counts the number of time periods for which the average request arrival rate

exceeded the request arrival rate observed over the entire log. This count is used to compute a

burstiness factor which is in turn used to inflate the service demand of the bottleneck device in a

QNM [3]. However, the technique was not validated with respect to measurements and was not

proposed as a constructive technique that permits a performance analyst to assess the impact of

distributions that contribute to burstiness on mean response time behaviour.

Menasce and Bennani [26] used a hybrid model that combines a Markov chain birth-death model

with QNMs to capture the customer population distribution at multi-threaded servers. However,

the authors’ use of the population distribution was not for modeling the impact of burstiness.

Instead they focused on load dependent behaviour. This is an alternative approach to using the

threaded servers directly supported via residence time expressions in LQMs. The hybrid

technique has also been used to study the performance of systems that are characterized by both

open customer arrivals and closed customer circulations [28].

Figure 1: Hybrid Markov chain birth-death model for a session-based system

Z k

0 1 2 k

λs0 λs1
λs(k-1)

µsk µs2 µs1

LZR
kX

k
skk

)(
 s

+
==µ

Predictive Model

λs(N-1)

µsN

. . N

L

6

We apply the hybrid approach for a session-based system as shown in Figure 1. The hybrid

approach is treated as a baseline approach for modeling session population distribution in the

case study of Section VI. In Figure 1, the birth-death process has multiple states, Sk for k=0...N.

Each state k denotes the number of concurrent sessions in the session-based system. Sessions

arrive at the system from the outside world. Each session arrival causes the number of

concurrent sessions to increase by 1. The rates at which such transitions occur are given by the

state dependent session arrival rates •sk. A session submits L requests on an average, i.e., mean

number of visits, where L is the mean session length. Z denotes the mean think time between

successive requests in a session. Each session completion causes the number of concurrent

sessions to decrease by 1. The rates at which such transitions occur are given by the session

death rates •sk. At a given state k, k concurrent sessions are competing for the session-based

system’s resources. Consequently, as shown in (1) the death rate •sk can be calculated as the

session throughput Xsk obtained by solving a closed QNM or LQM with a session population of k

and mean think time of Z.

LZR
kX

k
skk

)(
 s

+
==µ (1)

In (1) Rk is the mean request response time obtained from the predictive model. Balance

equations involving the birth and death rates can be solved to obtain the probability Pk of

residing in each state k as follows:

∑∏
= =

−
+

= N

k

k

i si

is

X

P

1 1

)1(
 0

1

1
λ

 (2)

si

is
k

X

k

i
PP)1(

 0

1
 −

∏
=

=
λ (3)

The probabilities Pk, for k=0…N defines the population distribution. Equations (2) and (3) can be

written in terms of request arrival and completion rates. The request arrival rate •k is the session

arrival rate •sk multiplied by the mean session length L. Similarly, the request throughput Xsk is

the session throughput Xsk multiplied by the mean session length L. Using these relationships (2)

and (3) can be rewritten in terms of request-level rates as follows:

7

∑∏
= =

−
+

= N

k

k

i i

i

X

P

1 1

1
 0

1

1
λ

 (4)

i

i
k

X

k

i
PP 1

 0

1
 −

∏
=

=
λ (5)

The mean request response time for the system is estimated using Little’s law [27] as follows:

∑

∑

=

== N

i
ii

N

i
iii

mean

XP

RXP
R

1

1
 (6)

We note that the hybrid technique’s estimates of the population distribution are accurate only for

workloads that cause the distributions of time spent at each population level to be exponentially

distributed [4]. However, this is not expected to be the case for systems affected by burstiness.

The WAM approach that we present in this paper requires a trace of sessions to reflect the

distributions under study. We exploit the SWAT method [21][29] to create such traces. SWAT

permits the specification of a workload mix in terms of the ratio of different request types, e.g.,

Home, Browse, Buy, supported by the system under test. It also supports the specification of

arbitrary session inter-arrival time, request think time, and session length distributions. SWAT

uses a set of pre-existing and semantically correct sessions to create a workload for a test that

satisfies a desired specification. The workload is modeled as a trace file of sessions S. We

employ SWAT in Section IV to submit controlled workloads based on S to a TPC-W multi-tier

system to obtain measurement results. SWAT also provides traces of sessions for WAM’s

estimation process for session population distribution. The following section describes the WAM

approach.

III. WAM

This section describes WAM which is a method for improving the accuracy of performance

predictions for systems with bursts in the number of concurrent customer sessions. The method

is motivated by the approach in Figure 1 but uses a Monte Carlo simulation to quickly estimate

the population distribution, i.e., per population level probabilities Pk for k=0…N, rather than

relying on the closed formulae for the birth-death process from (4) and (5). The remainder of the

8

performance prediction method is similar to that shown in Figure 1. We now describe the

population distribution estimation process. The algorithm for the population distribution

estimator is summarized in Figure 2.

The WAM approach relies upon the following:

• A trace file of sessions S;

• A sequence R of mean request response time estimates Rk for k=0…N for the system –

one for each concurrent session population level k as obtained by solving a predictive

model with a mean customer think time of Z seconds; and,

• A sequence X of mean request throughputs Xk for k=0…N for the system – one for each

concurrent session population level k.

A trace file S can be based on a historical session log from a real system, or it can be

synthetically generated using a tool such as SWAT. Each session in the trace has an arrival time.

Each request has a session identifier, a start time and end time such that (end time – start time) is

the response time of the request, and a flag that indicates whether a request is the last request for

its session. For all but the last request in a session, we define a request’s think time as the time

between its end time and the start time of the next request in the session. The first request of a

session has a start time that is equal to its session’s arrival time. The sequence R of response

time estimates is obtained from a performance model for the system, e.g., a QNM or an LQM.

The sequence X of throughput estimates are obtained from the trace S using the method

described shortly.

The population distribution estimator operates as follows. When using a historical trace file S,

per request response times are known so the sequence R of response time estimates is not needed

to compute the population distribution. The population distribution estimator computes the Pk for

k=0...N values by traversing the trace of sessions S noting when the first request of each session

starts and the last completes. In this way it is able to keep track of and report the aggregate time

that the system has spent at each session population level. When normalized with respect to the

total simulated time this gives the population distribution Pk, k=0…N. Furthermore, as shown in

Figure 2 the population distribution estimator also tracks the aggregate number of request

completions observed at each session population level. Knowledge of these completions and the

aggregate time spent at each session population level allows us to compute estimates of Xk for

9

k=0…N. The simulations are very quick, essentially requiring the time to traverse the trace file

and are robust with respect to arbitrary workload parameter distributions.

When using a synthetically generated session trace file, the session arrival times, think times, and

session lengths are known from the trace. However, only the first request’s start time is known.

The request end times and hence response times are not known. As the population distribution

estimator traverses the session trace, each time it encounters a new request, it estimates the

request response time as the mean request response time given by R based on the current

estimate for the number of concurrent sessions. That is, if the current session population is k,

then Rk is used to estimate the end time for the request as start time + Rk. The request’s think

time is recorded in the trace and could be from any desired distribution. The next request has a

start time equal to the end time + think time from the previous request. We note that using the

mean response time from a model is an approximation of the response time for the request. The

effectiveness of this approximation is evaluated in Section VI. Finally, WAM computes the

overall estimate for mean response time in the same manner as (6).

WAM can also be used to explore the predictability of a system’s behaviour. By using different

seeds for random number generation, SWAT can be used to generate multiple session trace files

that match the desired workload parameters. Each trace may provide different estimates for the

population distribution and may result in a different estimate for mean system request response

time. As mentioned in Section II, this is expected for systems influenced by heavy-tailed

distributions. Each execution is an example of how the system may behave. A range of estimated

mean response times, from multiple simulations, provides information about how variable, i.e.,

un-predictable, we can expect a system’s behaviour to be.

10

1. Create a Future Event List (FEL). FEL stores events in chronological order.
2. Current_Population=0
3. State_Start_Time=0
4. State_End_Time=0
5. Initialize elements of Aggregate_State_Time array to 0. This array has Nmax elements where Nmax is the

maximum population.
6. Initialize elements of Aggregate_State_Completions array to 0. This array has Nmax elements.
7. Obtain Predictive_Model_Response_Time array by solving a predictive model. This array has Nmax

elements.
8. Create request submission events corresponding to first requests of all sessions in trace S. Store the events

in the FEL
9. While FEL is non-empty

Select earliest event in FEL
If event is submission of a request

 If request is first request in a session
 State_End_Time = start time of request
 Aggregate_State_Time[Current_Population]+=(State_End_Time-State_Start_Time)
 Completions=Request completions in the period (State_Start_Time, State_End_Time)
 Aggregate_State_Completions[Current_Population]+=Completions

State_Start_Time=State_End_Time
 Current_Population+=1
 End If
 If S is a historical trace
 Response_Time = Get actual response time of request
 End If
 If S is a synthetic trace
 Response_Time = Predictive_Model_Response_Time[Current_Population]
 End If
 Create a request completion event at (State_Start_Time+Response_Time)
 Update FEL with the event
 Continue

If event is completion of a request
 If request is last request in a session
 State_End_Time = end time of request
 Aggregate_State_Time[Current_Population]+=(State_End_Time-State_Start_Time)
 Completions=Request completions in the period (State_Start_Time, State_End_Time)
 Aggregate_State_Completions[Current_Population]+=Completions

State_Start_Time=State_End_Time
 Current_Population-=1
 Continue
 End If
 Think_Time = Get think time of request
 Create a request submission event at (State_Start_Time+Think_Time)

 Update FEL with the event
 Continue

 End While
10. Compute Total_Time as sum of elements of Aggregate_State_Time
11. Compute Pk values by dividing each element of Aggregate_State_Time by Total_Time
12. Compute Xk by dividing each element of Aggregate_State_Completions with the corresponding element of

Aggregate_State_Time
13. Use equation (6) to compute mean response time

Figure 2: Algorithm for the population distribution estimator and WAM

11

We note that the WAM algorithm of Figure 2 does not take into account embedded requests for

objects such as images and multimedia files. Such content is often hosted on external servers or

content delivery networks as was the case with the real systems studied in [23] and [18]. We

consider support for embedded requests as future work.

IV. MEASUREMENTS FOR A MULTI-TIER SYSTEM

This section applies the SWAT tool to perform controlled experiments on a multi-tier e-

commerce system executing the TPC-W bookstore application. We consider a subset of the

results of our earlier work [21] that was aimed at demonstrating the SWAT workload generator.

We augment those results with additional measurement scenarios. In particular, we consider

cases that cause greater disk demands and that have larger numbers of items in the TPC-W

database, respectively. The additional cases explore a greater range of system behaviours. The

measurements provide insights into the impact of burstiness on measured mean demands and

mean response times for the session based system. The measurements are also used to obtain

parameters for the predictive models in Section V and to assess the accuracy of WAM with

QNMs and LQMs in Section VI.

A. Experiment Setup

The experimental setup consists of a client node, a Web and application server node and a

database node connected together by a non-blocking Fast Ethernet switch, which provides

dedicated 100 Mbps connectivity to each node. The client node is dedicated exclusively to

execute an httperf Web request generator [30] that submits the synthetic workloads used in this

study. The Web/application server node executes the Web and application server tiers. It

implements the TPC-W application's business logic and communicates with the TPC-W

database. The database node executes the database server which manages the TPC-W database.

Finally, a performance monitoring utility is employed that collects a user-specifiable set of

performance measures from both server nodes at regular specified sampling intervals.

The TPC-W application is deployed on Web, application, and database servers that are part of a

commercial off-the-shelf software product. The name of the product has been withheld due to a

non-disclosure agreement with the vendor. The system is configured to not serve images. Image

requests were not submitted in any of our experiments. We note that that the experiments

12

presented in this study are not TPC-W benchmark runs. The TPC-W bookstore system merely

serves as an example system for the study.

All our experiments employ HTTP 1.1 over SSL. Configuration parameters related to HTTP 1.1,

e.g., persistent connection timeout, are chosen to force a single connection per session

irrespective of session duration or the load on the system. This ensures that two workloads with

the same number of sessions, mean session length, and mean think time impose the same

connection establishment and connection shutdown overheads on the Web server. Consequently,

any difference in performance between them is solely due to differences in the higher-level

workload characteristics, i.e., session length distribution, think time distribution, and workload

mix.

The number of server processes and the threading levels are set as follows. The number of Web

server threads is set to be 1000. This was much greater than the maximum number of concurrent

connections encountered in the experiments. The number of application server processes is fixed

at 16, an upper limit imposed by the application. The number of database server threads for the

database server was set to the upper limit of 32.

The primary performance metric of interest for the study is the user-perceived mean response

time (Rmean) for the requests at the TPC-W system. This metric is of interest for system sizing,

capacity planning, and service level management exercises. We define response time as the time

between initiating a TCP connection for a HTTP request and receiving the last byte of the

corresponding HTTP response. The measured response time is a good indicator of the delay

suffered by the request at the TPC-W system, provided the network and the client workload

generator node are not saturated.

B. Experiment Design

The following factors are considered for the experiments: a) session inter-arrival time

distribution; b) session length distribution; c) think time distribution; d) workload mix; and, e)

application settings.

For the session inter-arrival time distribution, we assume session arrivals are uncorrelated, which

is consistent with several previous studies, e.g., [31]. Consequently, an exponential distribution

13

is used to generate session inter-arrival times for all experiments. The mean session inter-arrival

time is chosen to achieve desired utilizations at the bottleneck resources. We note that a Poisson

arrival process for sessions does not imply a non-bursty arrival of requests. As mentioned in

Section II, the burstiness of the request arrival pattern depends on various attributes such as the

distributions of session length and think time.

For the session lengths and think times, we consider two different distributions: empirical and

bounded Pareto. We use these to represent the expected and worst cases for variability,

respectively. The empirical distributions are obtained from workload data collected from a large

e-commerce system [23]. Since that system did not serve requests for images embedded in Web

pages, we use the request inter-arrival times within a session as measured at the system as an

approximation of the think times within sessions. The bounded Pareto distribution [32], a

“heavy-tail-like” distribution, is used to study the impact of distributions that have a slightly

heavier tail relative to the empirical distribution. The distribution is characterized by three

parameters: •, the tail index, which governs the rate at which the tail of the distribution decays, k

the smallest possible observation and p the largest possible observation. These parameters are

deduced as follows. The parameter p is set to the maximum observation obtained from the

empirical distribution. We then choose k and • such that mean of the empirical distribution is

matched. The • values chosen in this manner are 1.16 for the session length distribution and 1.10

for the think time distribution. Table 1 shows the minimum, maximum, and mean of

observations obtained with the distributions for the synthetic workloads used in the study.

Table 1: Session length and think time statistics
 Empirical Bounded Pareto

Minimum 3 3
Maximum 120 120

Session length (Requests/session)

Mean 9.44 9.44
Minimum 0 12
Maximum 900 900

Think time (s)

Mean 46.54 46.54

We consider three workload mixes with different levels of variability in request resource

demands. Table 2 shows these mixes along with the mean “no-load” mean response times (Rmean)

measured for each of the 14 TPC-W request types. The Rmean values are obtained when the

number of concurrent sessions is set to one. Consequently, they reflect the end-to-end resource

demands across all resources for request types for the TPC-W system. The TPC-W Shopping

14

mix [25] is used as a high demand variation mix (Hi-Mix) in this study. We also define a

slightly different mix with slightly lower variation in demand (Med-Mix). To construct such a

mix, we reduce the proportions of requests belonging to the top two resource intensive request

types Buy request and Buy confirm and the non-resource intensive Home request type

and cause a corresponding increase to the proportion of requests belonging to the Product
detail request type, relative to the Hi-Mix. Finally, we also construct the Lo-Mix to reflect a

mix that has a slightly lower mean demand and lower variation in demand than both the Hi-Mix

and the Med-Mix. As shown in Table 2, this is achieved by eliminating certain resource intensive

request types such as Buy request followed by a concomitant increase to the less resource

intensive Home request type.
Table 2: Mean no-load response times of request types and workload mixes

 Rmean(s) Hi-Mix Med-Mix Lo-Mix
Home 0.09 16.00% 9.00% 23.46%
New products 0.18 5.00% 5.00% 5.00%
Best sellers 0.18 5.00% 5.00% 5.00%
Product detail 0.23 17.00% 27.80% 17.00%
Search request 0.07 20.00% 20.00% 20.00%
Search results 0.13 17.00% 17.00% 17.00%
Shopping cart 0.24 11.60% 11.60% 11.60%
Customer registration 0.21 3.00% 3.00% 0.00%
Buy request 0.63 2.60% 0.00% 0.00%
Buy confirm 0.25 1.20% 0.00% 0.00%
Order display 0.18 0.66% 0.66% 0.00%
Order inquiry 0.05 0.75% 0.75% 0.75%
Admin request 0.09 0.10% 0.10% 0.10%
Admin confirm 0.14 0.09% 0.09% 0.09%
Mean Rmean (s) 0.16 0.16 0.14
COV of request response time 0.62 0.41 0.39

Table 2 also shows the mean no-load response time and the coefficient of variation of no-load

request response time computed for the three mixes. These correspond closely to aggregate

resource demand usage. It can be seen that our design causes the Med-Mix to have a lower

coefficient of variation (COV) of request response time than the Hi-Mix while maintaining the

same no-load Rmean for both mixes. Finally, both the no-load Rmean and the COV of request

response time for the Lo-Mix are slightly lower than that for the other mixes.

To establish the robustness of our modeling technique, we conducted experiments with three

different application settings Base, HighDiskU and BigDB. The Base setting corresponded to

a TPC-W application configured with 1000 books in the database. For the workloads we studied

with this setting, the Web server node CPUs were found to be the bottleneck. The HighDiskU

setting differs from the Base setting in terms of database server configuration. Specifically, the

15

database server’s main memory cache settings were modified to cause more database node disk

I/Os for a given workload when compared to the Base setting. However, in spite of the

increased I/Os, the Web server node CPUs were still the bottleneck for all the workloads

explored for the HighDiskU setting. Finally, the BigDB setting corresponded to a TPC-W

application with 100,000 books in the database. This configuration allowed us to verify the

effectiveness of our approach when the bottleneck shifts from the Web server node CPUs to the

database server node CPU. The HighDiskU and BigDB cases did not appear in our earlier work

[21].

C. Experiment Methodology

Due to time constraints, we did not conduct a full-factorial investigation of the workload and

application factors discussed in the previous section. Instead we used SWAT to create carefully

controlled workloads designed to exhibit the performance impact of combinations of the factors

considered. Table 3 lists the workloads that were created by SWAT. Each workload is

described by four hyphen-separated tokens. The first token describes the session length and

think time distribution of the workload. For each workload, the choice of distribution type, i.e.,

empirical or bounded Pareto, is always chosen to be the same for session length and think time

distribution. BPSLZ indicates the use of the bounded Pareto distributions of Table 1 while

EMPSLZ indicates the use of the empirical distributions of Table 1. The subsequent tokens

describe the workload mix, the mean utilization of each processor in the Web/application server

node (UWebCPU) observed over the experiment duration, and the application settings, in that order.

From Table 3, eleven experiments are conducted for this study. Each experiment is designed to

study the impact of a given workload. As shown in Table 3, several statistically independent

replications are conducted for each experiment. To achieve this, SWAT is used with different

random number generator seeds to create several session traces that are statistically identical

with respect to the workload characteristics described in Section III.B. In each experiment

replication 10,000 sessions are submitted to the TPC-W system. The duration of a replication

varied from approximately 3 hours to 5 hours depending on the mean session inter-arrival time

used. Each replication yielded around 95,000 response time observations. From Table 3, in total

38 experiment replications were conducted for this study.

16

Table 3: Response time and resource demand measurements from the case study
Workload Rmean (s) Mean Rmean (s) DWeb,CPU (ms) DWeb,Disk (ms) DDB,CPU (ms) DDB,Disk (ms)

1.10 191.64 8.44 46.54 19.04
0.93 190.65 8.49 46.80 18.94

BPSLZ-HiMix-77-HighDiskU

1.30

1.11

194.33 8.25 46.51 17.65
2.02 189.53 8.95 110.76 6.67
2.06 190.35 8.85 110.88 6.66
1.63 189.54 9.38 111.42 7.08

BPSLZ-HiMix-71-BigDB

2.65

2.09

195.86 9.04 112.31 6.76
1.03 191.02 8.27 39.11 5.48
0.93 190.45 8.54 38.83 5.37

BPSLZ-HiMix-77-Base

1.22

1.06

193.57 8.13 38.95 5.36
0.85 189.45 8.42 39.57 5.86
0.90 191.58 8.71 39.47 5.39
0.97 191.15 8.43 39.60 5.76

EMPSLZ-HiMix-77-Base

1.02

0.94

190.45 9.07 39.49 5.44
0.75 188.39 9.24 34.08 5.49
0.75 191.57 8.52 36.80 5.60
0.76 188.79 8.43 34.18 5.47

EMPSLZ-MedMix-77-Base

0.74

0.75

186.59 8.41 34.20 5.49
0.92 189.99 8.32 32.94 5.35
0.86 190.17 8.14 33.97 5.52

BPSLZ-MedMix-77-Base

1.02

0.93

191.45 9.96 33.82 5.57
0.67 176.89 6.27 26.04 4.57
0.79 179.09 6.61 25.95 4.84
0.69 177.40 6.23 25.98 4.56

EMPSLZ-LoMix-77-Base

0.71

0.72

177.18 6.41 25.96 4.91
0.67 184.45 8.88 38.91 5.46
0.70 185.72 9.10 39.07 5.57
0.60 183.67 9.14 38.97 5.46

BPSLZ-HiMix-71-Base

0.78

0.69

186.19 9.35 39.05 5.55
0.56 183.09 9.33 36.26 5.32
0.55 183.38 9.88 33.18 5.52
0.57 183.89 8.97 33.99 5.44

EMPSLZ-MedMix-71-Base

0.53

0.55

183.20 9.31 34.04 5.52
0.49 171.55 6.70 25.98 4.79
0.52 172.11 6.84 25.94 4.96
0.54 174.75 7.15 25.96 4.75

EMPSLZ-LoMix-71-Base

0.52

0.52

173.59 8.10 26.06 4.72
0.43 178.09 10.97 34.06 5.70 EMPSLZ-MedMix-65-Base
0.44

0.44

178.75 10.36 34.06 5.69

The following observations were consistent across all experiments. httperf provided highly

reproducible results. When expected, multiple repetitions of an experiment replication yielded

almost the same mean response time measures. Furthermore, there was very little difference

between the achieved workload characteristics, as measured from httperf logs collected from

experiment replications, and the specified workload characteristics. This verifies that the client

node was not saturated in our study. The worst-case mean and peak network traffic during the

experiments was only 0.40 Mbps and 0.83 Mbps, respectively. This is because the CPU

intensive nature of HTTPS and application server processing limited request throughputs. The

low network traffic indicates that the response time measured by httperf is likely to be dominated

17

by the delay encountered at the TPC-W system. The disks at both server nodes were very lightly

utilized. Virtually no memory paging activity was observed at either server node. Finally, job

flow balance was achieved for all experiments with the number of request completions equaling

the number of request arrivals.

D. Overview of Results

Table 3 provides several sanity checks with regards to our experimentation. The table presents

the average per-request demands in milliseconds placed on the CPUs and disk of the

Web/Application server node, DWeb,CPU and DWeb,Disk, respectively, and the database server node,

DDB,CPU and DDB,Disk, respectively. It also provides the mean response time of requests that were

submitted in an experiment replication, Rmean, and the mean Rmean over all replications in an

experiment. The following observations can be made from Table 3.

The demand values for an experiment’s replications are always nearly identical. This confirms

that statistically identical replications place similar demands on the system and that burstiness

does not affect average demands.

For a given application setting, workloads with the same mix cause similar demands on system

resources. This can for example be verified by comparing the demand measurements for the

BPSLZ-HiMix-77-Base, EMPSLZ-HiMix-77-Base, and BPSLZ-HiMix-71-Base workloads.

The measurements show that the mixes chosen for the study behaved as intended. From Table 3,

for a given application setting the MedMix workloads impose almost the same average demands

on the system as the HiMix workloads (compare for example EMPSLZ-HiMix-77-Base and

EMPSLZ-MedMix-77-Base). As expected, the LoMix workloads place slightly lower demands

on the system than the HiMix and MedMix workloads.

The application settings explored also exhibited the intended behaviour. For example, the

BPSLZ-HiMix-77-HighDiskU workload exerts more demand on the database server’s CPU and

disk when compared to the BPSLZ-HiMix-77-Base workload. Similarly, the database server

CPU demand for the HTSLZ-HiMix-71-BigDB workload is significantly more than that of the

HTSLZ-HiMix-71-Base workload.

Results pertaining to the Base application setting along with a detailed discussion can be found

in our earlier publication [21]. We now briefly describe some of the salient findings of the

results from a performance modeling perspective. As mentioned previously, we also present

additional results pertaining to the other two new application settings.

18

Distributions that cause highly variable session lengths and think times can adversely

impact system performance – This observation can be made by comparing the BPSLZ-HiMix-

77-Base and EMPSLZ-HiMix-77-Base workloads in Table 3. These workloads only differ

with respect to their session length and think time distributions. From Table 3, they place almost

identical demands on the TPC-W system’s resources. The CPUs and disks in the systems have

similar utilizations for both workloads. However, from Table 3, the mean Rmean for the BPSLZ-

HiMix-77-Base workload is about 13% higher than that of the EMPSLZ-HiMix-77-Base

workload. Similarly, from Table 3, the mean Rmean for BPSLZ-MedMix-77-Base workload is

about 24% higher than that of the EMPSLZ-MedMix-77-Base workload. These results suggest

that the bounded Pareto session length and think time distributions are responsible for the

performance degradation.

As mentioned in Section II, high variability in session lengths and think times impact

performance since they can cause bursty request arrivals. Specifically, such distributions yield

large numbers of very small and very large session length and think time values. Consequently,

BPSLZ-like workloads will have larger numbers of very long duration and very short duration

sessions than EMPSLZ-like workloads. As a result, for any given mean session inter-arrival

time, the likelihood of observing very large and very small number of concurrent sessions is

more with a BPSLZ workload than with a EMPSLZ workload. This is illustrated in Figure 3

which shows the cumulative distribution function (CDF) of number of concurrent sessions for

BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base workloads 1 . Since the number of

requests that can arrive at the system is positively correlated with the number of concurrent

sessions, this phenomenon causes a more uneven or bursty arrival of requests. This increase in

burstiness can sometimes, as in our experiments, be significant enough to cause periods of

heightened contention for system resources during which requests incur very long response

times.

Mixes characterized by higher variability in request demands cause poorer performance –

This conclusion can be verified from Table 3 by comparing the EMPSLZ-HiMix-77-Base and

EMPSLZ-MedMix-77-Base workloads. Recalling from the previous sections, both these

1 The CDF for a workload was obtained by combining data from all its experiment replications.

19

Figure 3: CDFs of number of concurrent sessions for BPSLZ-
HiMix-77-Base and EMPSLZ-HiMix-77-Base

Figure 4: CDFs of number of concurrent sessions for EMPSLZ-HiMix-
77-Base and EMPSLZ-MedMix-77-Base

workloads are similar in all respects except their workload mix. From Table 2, both workloads

place the same mean aggregate demands on the system’s resources. However, the HiMix

workload is characterized by a slightly higher variability in request demands. Both workloads

cause nearly identical utilizations of the CPUs and disks in the system. However, the mean Rmean

for the EMPSLZ-HiMix-77-Base workload is about 25% higher than that of the EMPSLZ-

MedMix-77 workload. Figure 4 plots the CDFs of number of concurrent sessions for the

workloads. From Figure 4, it can be seen that the HiMix workload exhibits a slightly longer tail

than the MedMix workload. The reason for this behaviour is again due to the increased

variability of session durations; the larger proportions of resource intensive, e.g., Buy request,

and non resource intensive, e.g., Home, requests within sessions of the HiMix workload increases

the likelihood of very long duration and very short duration sessions. This leads to periods of

increased contention among sessions leading to a higher mean Rmean.

Bursty workloads exhibit high variability in Rmean – As mentioned in Section II, workloads

characterized by heavy-tailed distributions lead to unpredictability in system behaviour. This

phenomenon can be observed for the BPSLZ-HiMix-71-BigDB workload. Recalling from the

previous section, this workload caused the database server node CPU to be the bottleneck. The

mean database server node CPU utilization over the duration of each replication was 84%. From

Table 3, the highest Rmean value of 2.65 seconds for this workload is 64% higher than the lowest

Rmean value of 1.63 seconds. This is in spite of the fact that the experiment replications are

statistically identical, cause near identical demands and utilizations on the system’s resources,

20

and lasted for nearly 5 hours. Similar trends can be observed for the BPSLZ-HiMix-77-Base

and BPSLZ-MedMix-77-Base workloads.

The reason for the variation in Rmean can again be explained in terms of the population

distribution. Figure 5 plots the CDF of number of concurrent sessions for the four replications of

the BPSLZ-HiMix-71-BigDB workload. Figure 6 plots the Rmean values for these replications.

Figure 5 shows that the CDF is different for the different replications. In particular, replication

4’s CDF exhibits the longest tail and results in the highest Rmean while replication 3’s CDF has

the shortest tail and causes the lowest Rmean. WAM can help performance analysts estimate the

extent of variability in Rmean for bursty workloads by repeating the analysis multiple times with

different session traces.

Figure 5: CDFs of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB

Figure 6: Measured Rmean values for BPSLZ-HiMix-71-BigDB

21

Figure 7: Predictive performance models for the TPC-W system

V. PREDICTIVE PERFORMANCE MODELS FOR THE MULTI-TIER SYSTEM

This section describes the QNM and LQM performance models developed for the TPC-W

system described in Section IV. Section VI applies these models in combination with WAM to

predict mean request response time for the cases considered in Table 3.

Figure 7 shows the two performance models. Both models take as input the average demands

incurred by an HTTP request. Total per-request average CPU and disk demands are given in

Table 3.

Figure 7(a) illustrates the QNM. It only includes a think time delay centre and queues for

hardware resources, namely client node CPU, Web/application server node CPUs and disk,

database server node CPU, and database server node disk. The value 2 shown to the upper right

of the Web/App Node CPU indicates that the server has two CPUs. Other hardware resources

were very lightly loaded so they were not included in the model. The number of customers

corresponds to the number of concurrent sessions. Customers flow from queue to queue. After

visiting a CPU, a customer may have one or more alternative queues to visit. Routing choices do

not depend on the state of the system, are random, and have probabilities such that the desired

Client
Browser

Web
Server

Application
Server DB

ThinkCPU CPU CPU Disk

2

1000 16 32

Client node Web/App server node Database node

Legend

SW
Resource

Replications

Replications

Infinite server

Finite server

Synchronous

Synchronous,
2nd phase

*

Disk

CPU CPU Disk

2

DiskThink CPU

Client node Web/App server node Database node

(a) QNM

(b) LQM

22

ratio of demands is incurred at the resources. A customer that flows from the client node CPU

through to the database server node CPU and back to the client node CPU completes a HTTP

request.

Figure 7(b) shows the LQM for the TPC-W system. LQMs are extended QNMs that include

information about logical resources such as threading levels for application servers and software

request-reply relationships. The LQM for the TPC-W system includes the same think time delay

centre and hardware resources. The logical resources in the model are the client browsers, Web

server threads, application server threads and database server threads. Threading levels other

than one are shown by placing a value near the upper right hand side of an icon. In this model,

we have blocking requests between software resources and between software resources and

hardware resources.

From Figure 7(b), there is one client browser for each concurrent session using the system. A

customer using a client browser may visit its node’s CPU or may think. A HTTP request causes a

blocking call to the Web server. If a Web server thread is available then the request is accepted.

The thread uses some CPU resource from the Web /application server node CPUs and then

makes a request to the application server. If an application server thread is available then the

request is accepted. The application server thread uses some CPU resource from the Web

/application server node CPUs and then makes a request to the database server. If a database

server thread is available then the request is accepted. The thread uses some CPU and disk

resource from the database server node and releases the calling thread. The released calling

thread from the application server can then complete its first phase of work and release the

calling thread from the Web server.

From Figure 7(b), after finishing its first phase and releasing the calling thread from the Web

server the application server thread continues on to a second phase of service. The second phase

of service keeps the application server thread busy so that it cannot service another calling thread.

However at the same time the calling thread from the Web Server that was released after the first

phase of service can complete its work and release the calling thread from the client browser.

This completes an HTTP request. The reasons for modeling the request-reply relationship of the

application server in this manner are discussed shortly.

23

During an HTTP request, if a thread is not available when a server is called, the calling thread

blocks until a thread becomes available. Once a thread completes its work it is available to serve

another caller. Such threading can lead to software queuing delays in addition to any contention

for hardware resources that are incurred by active threads. The numbers of threads used for each

tier in the model reflect the application settings as described in Section IV.

To obtain resource demand values, for each experiment replication we measured the CPU

utilizations for the Web server threads, application server threads, and the database server

threads. We also measured the CPU and disk utilizations for the Web/application server node

and the database server node, the elapsed time of the run, and the number of request completions.

This enables us to compute the average resource demand per request for the Web server threads,

application server threads, database server threads, and for the Web/application server node and

database server node as a whole. The aggregate demand values used in the models are given in

Table 3. We note that there was a very small difference between the utilization of a node and the

sum of the utilizations of software processes running on that node. We modeled this as

background load in the LQM.

We note that the demand values per hardware resource are identical for the QNM and the LQM.

Moreover, both models handle the dual Web/application server node CPUs by making use of

residence time expressions developed for multiprocessor resources [8]. The only difference in

the models relate to whether software interactions, i.e., threading and two phase processing, are

reflected in the model or not.

Finally, we observed from measurement runs with one concurrent session that mean response

times were often lower than the aggregate demand upon the hardware resources. This is an

indication of two phases of processing at a server. We reflected this in the LQM by placing 25%

of the application server thread demands in a second phase of service [7][8]. This modeling

choice was found to produce good model predictions. For the application settings considered,

the per session population level mean response time predictions from the LQM closely matched

the corresponding per session population level mean response times observed from the

measurements in Section IV.

24

VI. RESULTS OF QNMs AND LQMs WITH WAM

This section applies the QNM and LQM models of Section V with WAM to predict the mean

response times for the experiments of Section IV. These results are further compared with the

straightforward application of QNMs and LQMs and the hybrid Markov chain birth-death

approach of Section II for session based systems.

Table 4 shows the four different modeling approaches that are explored for both QNMs and

LQMs. The “MEAN” approaches ignore the distribution of number of concurrent sessions. They

solve a predictive model for only one customer population, namely, the mean number of

concurrent sessions observed during an experiment replication. The “MBD” methods use the

Markov birth-death approach to estimate the population distribution and Rmean. The birth-death

model used a constant, state-independent birth rate2 that equals the mean session arrival rate

observed during a measurement experiment replication. The “WAMEMP” methods predict Rmean

for an experiment replication by using WAM in conjunction with the empirical population

distribution as measured during the replication. It does not use the population distribution

estimation technique illustrated in Figure 2. The “WAMMC” method uses the SWAT trace

corresponding to an experiment replication and Monte Carlo simulation as per the algorithm in

Figure 2 to estimate the measured population distribution. The estimated population distribution

is used to compute Rmean.

In general all the methods yielded good throughput estimates. The absolute errors for throughput

were within 2% for the WAMMC methods and the MBD methods. The accuracy of the MEAN

methods was slightly poorer. The throughput estimates of the MEAN-LQM and MEAN-QNM

methods were within 3.5% and 4.0% of measured values, respectively.

However, there are significant differences in prediction accuracy for Rmean across the different

methods. Three different error metrics are used to characterize the Rmean prediction accuracy of

the modeling approaches. The mean absolute error (ABS_ERROR) is defined as

2 Models with state-dependent birth rates were also tried but their accuracy was poorer than the state-independent approach.

25

 * 100 ABS_ERROR
∑

∑
=

i
i

i
i

y

e
 where ei is the difference between the measured and predicted

mean response time and yi is the measured response time for the ith replication in a set of

replications. The maximum of the absolute e values, expressed as a percentage, calculated for a

set of replications is denoted as the maximum absolute error (MAX_ERROR). The trend error

(TRND_ERROR) is an indicator of the range of errors obtained with a modeling approach. It is

defined as the difference between the largest e value and the smallest e value, expressed as a

percentage, for a set of replications. Table 4 shows the error measures for models pertaining to

the entire set of thirty nine replications described in Table 3. The table gives results for the MEAN,

MBD, WAMEMP, and WAMMC cases.
Table 4: Accuracy of modeling approaches for predicting Rmean over all workloads

Modeling Approach ABS_ERROR (%) MAX_ ERROR (%) TRND_ERROR (%)
MEAN-LQM 15.20 32.37 42.50
MEAN-QNM 17.22 42.56 63.75
MBD-LQM 13.67 32.56 45.09
MBD-QNM 16.71 42.68 66.01
WAMEMP-LQM 5.79 15.50 28.23
WAMEMP-QNM 9.77 26.10 44.94
WAMMC-LQM 7.18 18.44 33.17
WAMMC-QNM 12.14 30.69 57.30

First we consider the MEAN cases. These are the only cases that do not take population

distribution into account. From Table 4, the ABS_ERROR is lower for the MEAN-LQM approach

than the MEAN-QNM approach. The MEAN-LQM approach also does better in terms of

MAX_ERROR and TRND_ERR. The improved prediction accuracy is due to the LQM taking

into account the performance impacts of finite server thread pools and two phases of application

server processing. However, the ABS_ERROR of about 15% and the MAX_ERROR of about

32% are still quite large for the MEAN-LQM approach. These errors are large despite individual

per session population level Rmean predictions from the LQM agreeing well with the

corresponding measured values. This suggests there will be benefits from considering the

population distribution.

We now consider the Markov Chain birth-death approach MBD. From Table 4, results show only

slight improvements in ABS_ERROR. For example, the technique when used in conjunction

with the LQM (MBD-LQM) achieves a reduction in ABS_ERROR of only about 1.5% when

compared to MEAN-LQM.

26

WAM with the empirical population distribution from a historical trace with measured response

times, WAMEMP, improves accuracy a great deal. From Table 4, the ABS_ERROR drops by

nearly 10% with WAMEMP-LQM when compared to MEAN-LQM. Moreover, MAX_ERROR and

TRND_ERROR drop by about 17% and 14%, respectively when compared to MEAN-LQM.

Similar improvements are noticed when comparing WAMEMP-QNM and MEAN_QNM. This

confirms the importance of population distribution.

Finally, we consider WAM with a population distribution estimated using the algorithm of

Figure 2, WAMMC. The results from Table 4 show the effectiveness of the approach. The WAMMC

methods performed nearly as well as their corresponding WAMEMP methods. For example, from

Table 4 the error metrics for WAMMC-LQM are very similar to that of WAMEMP-LQM. However,

WAMMC has an advantage over WAMEMP. It allows the WAM method to be applied in a

constructive manner to predict the performance of systems when varying workload parameters

and when a historical trace with measured response times is simply not available.

The WAMMC results validate the population distribution estimator’s use of the Rmean prediction

from a predictive model for the current population level as an approximation of the response

time of an individual request. We suggest that the approach works well for these cases because

the think times encountered in the synthetic workloads used for the study are much longer, on the

order of tens of seconds, than the response times which are on the order of hundreds of

milliseconds or seconds. As a result the population distribution is governed more by the session

length, think time, and session inter-arrival time distributions than the response time distribution

for each population level. We note than an analysis of the empirical think time distribution of

Table 1 indicates that the assumption of think times being much longer than response times is

likely to be valid for real session-based workloads.
Table 5: Accuracy of modeling approaches for predicting Rmean for bursty workloads

Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MEAN-LQM 21.20 32.37 28.03
MEAN-QNM 23.88 42.56 45.11
MBD-LQM 19.24 32.56 30.06
MBD-QNM 22.55 42.68 46.79
WAMEMP-LQM 4.93 13.80 25.53
WAMEMP-QNM 9.03 18.84 29.40
WAMMC-LQM 7.06 18.44 31.17
WAMMC-QNM 12.43 30.69 41.57

We now consider several subsets of the results in more detail. Results are discussed for the

following cases: bursty workloads; higher and lower contention for the bottleneck; higher and

27

medium coefficients of variation for request resource demands; non-bursty workloads; and,

workloads with heavy-tail-like distributions. Finally, a case is presented that demonstrates the

constructive capability of WAMMC.

The WAM approach is particularly effective for bursty workloads - Table 5 summarizes the

error measures for only those seventeen experiment replications that employed the bounded

Pareto session length and think time distributions of Table 1. For bursty workloads using just the

mean population provides very poor Rmean estimates. From Table 4, the ABS_ERROR is nearly

21% for the MEAN-LQM approach. From Table 4 and Table 5, the MEAN-LQM approach applied

to these workloads results in 6% greater ABS_ERROR than overall for all workloads. For these

workloads the WAM method results in a greater reduction in ABS_ERROR than overall for all

workloads. For example, from Table 4 the ABS_ERROR for WAMEMP-LQM is about 16% lower

than that for MEAN-LQM. This represents about 6% more reduction in error than when

considering all the workloads. A similar trend can be noticed with WAMEMP-QNM. The

WAMMC-LQM and WAMMC-QNM methods result in slightly increased ABS_ERROR when

compared to their counterparts that use the empirically measured population distribution.

However, the errors are still significantly less than those obtained with the MEAN and MBD

methods.
Table 6: Comparison of gains from WAM for two different bottleneck device utilizations

BPSLZ-HiMix-77
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MBD-LQM 21.59 27.99 13.91
WAMEMP-LQM 5.80 10.59 8.47
WAMMC-LQM 5.90 9.90 10.48

BPSLZ-HiMix-71
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MBD-LQM 12.94 21.24 18.73
WAMEMP-LQM 6.48 11.74 16.61
WAMMC-LQM 6.97 12.72 17.73

The gains from WAM are significant when there is higher contention for the bottleneck

resource - To illustrate this effect Table 6 compares the error metrics for the BPSLZ-HiMix-77

and BPSLZ-HiMix-71 replications. For the sake of clarity results are shown only for the MBD-
LQM, WAMEMP-LQM, and WAMMC-LQM methods. From the table, when UWeb,CPU is 71% WAM

results in an improvement of about 6%, 9%, and 1% in ABS_ERROR, MAX_ERROR, and

TRND_ERROR, respectively. These numbers increase to 15.5%, 18%, and 3.5% when UWeb,CPU

is 77%. Previous studies have shown that the burstiness induced by heavy-tails becomes more

pronounced at higher utilizations [33]. Consequently, the BPSLZ-HiMix-77 workload is more

28

bursty than the BPSLZ-HiMix-71 workload. The increased gain in accuracy for the BPSLZ-

HiMix-77 workload provides further evidence that WAM is very effective for predicting the

behaviour of bursty workloads.

WAM is particularly effective for mixes characterized by higher variability in request

resource demands -Table 7 compares the MBD-LQM and WAM methods for the BPSLZ-HiMix-

77 and BPSLZ-MedMix-77 workloads. Recall from section IV that the HiMix workload

exhibits more variability in demands than the MedMix workload since it has a greater percentage

of resource intensive and resource non-intensive requests. From Table 7, the MBD-LQM

method results in an ABS_ERROR of 13.55% and a MAX_ERROR of 17.33% for the MedMix

workload. The method performs even poorer for the HiMix workload with the ABS_ERROR and

MAX_ERROR increasing to 21.59% and 27.99%, respectively. From Table 7, the WAM methods

are significantly more accurate than MBD-LQM for both workloads. The gains in ABS_ERROR

while using the WAMMC-LQM method over the MBD-LQM method are nearly 11.5% for the

MedMix workload and 15.5% for the HiMix workload.
Table 7: Comparison of gains from WAM for HiMix and MedMix workloads

BPSLZ-HiMix-77
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MBD-LQM 21.59 27.99 13.91
WAMEMP-LQM 5.80 10.59 8.47
WAMMC-LQM 5.90 9.90 10.48

BPSLZ-MedMix-77
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MBD-LQM 13.55 17.33 8.54
WAMEMP-LQM 1.98 3.49 4.33
WAMMC-LQM 1.90 3.48 5.31

WAM is effective for cases with non-bursty workloads -Table 8 summarizes the error

measures for those experiment replications that did not use the bounded Pareto session length

and think time distributions. From Table 8 and Table 4, the MEAN-LQM and MBD-LQM

approaches have a much lower ABS_ERROR for these workloads than overall for all workloads.

The ABS_ERROR for WAMEMP-LQM is comparable to those of MEAN-LQM and MBD-LQM.

However, WAMEMP-LQM method results in a smaller range of errors when compared to the other

two approaches. For example, the MAX_ERROR and TRND_ERROR for WAMEMP-LQM are

about 9.5% and 7.5% lower, respectively than those of MEAN-LQM. Furthermore, the WAMMC

methods result in almost similar errors to those of their counterpart WAMEMP methods. These

results show that the WAM technique can provide more robust performance estimates than the

other approaches and is suitable for both bursty as well as non-bursty workloads.

29

Table 8: Accuracy of modeling approaches for predicting Rmean for non-bursty workloads
Modeling Approach ABS_ERROR (%) MAX_ERROR (%) TRND_ERROR (%)
MEAN-LQM 6.91 24.92 35.05
MEAN-QNM 8.03 22.32 43.51
MBD-LQM 5.99 23.17 35.70
MBD-QNM 8.66 23.32 44.34
WAMEMP-LQM 6.98 15.50 28.23
WAMEMP-QNM 10.78 26.10 38.73
WAMMC-LQM 7.33 15.79 30.52
WAMMC-QNM 11.75 26.61 40.73

WAM captures the complex effects of heavy-tail-like distributions - Figures 8 to 11 show the

probability distribution function (PDF) of number of concurrent sessions for the BPSLZ-HiMix-

71-BigDB experiment replications estimated using WAMMC-LQM and MBD-LQM. Figure 12

compares the measured Rmean values for this workload with those predicted using WAMMC-LQM

and MBD-LQM. As discussed in Section IV, the Rmean values measured for this case varied by up

to a factor of 1.63 even though the measured demands and device utilizations were nearly

identical for all the replications.

Figures 8 to 11 reveal that the MBD-LQM method does not capture the differences in measured

PDFs among the replications. The PDFs estimated by MBD-LQM are nearly identical for all the

replications. In contrast, WAMMC-LQM closely tracks the changes in PDFs. The PDFs estimated

through simulation are very close to their counterpart measured PDFs. Consequently, from

Figure 12 the Rmean values predicted by MBD-LQM are nearly the same for all the replications. In

contrast, the Rmean values predicted by WAMMC-LQM closely track the measured Rmean values.

From Figure 12, MEAN-LQM also suffers from the same limitation as MBD-LQM and predicts

almost the same Rmean for all the replications. We note that for non-bursty workloads there is less

concentration of probability mass towards very large and very small populations. As a result the

accuracy obtained with the other methods starts to approach that obtained with WAM.

30

Figure 8: PDF of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB-1

Figure 9: PDF of number of concurrent sessions for
BPSLZ-HiMix-71-BigDB-2

Figure 10: PDF of number of concurrent sessions for BPSLZ-HiMix-71-
BigDB-3

Figure 11: PDF of number of concurrent sessions for
BPSLZ-HiMix-71-BigDB-4

Figure 12: Predicted and measured Rmean values for BPSLZ-HiMix-71-
BigDB

Figure 13: Predicted and measured mean Rmean values for
BPSLZ-HiMix-77-Base and EMPSLZ-HiMix-77-Base

31

Another consequence of the ability to accurately estimate the population distribution is that

WAM can assess the predictability of performance. As shown in Figure 12, WAM is the only

method able to capture the variation in measured Rmean values for the statistically identical

replications of the BPSLZ-HiMix-71-BigDB workload. The results are similar for the other

bursty cases, though less pronounced.

Finally, we show that WAM is better suited for predicting the impact on system performance of

changes in workload characteristics than the other methods. Figure 13 plots the mean of

measured Rmean values over all replications for both the BPSLZ-HiMix-77 and EMPSLZ-HiMix-

77 workloads. It also shows the mean of the predicted Rmean values over all replications for both

workloads while employing the MEAN-LQM, MBD-LQM, WAMEMP-LQM, and WAMMC-LQM

methods. From the figure, WAM is able to capture the increase in the measured mean Rmean that

is caused by increased heavy-tail behaviour for session lengths and think times in the BPSLZ-

HiMix-77 workload. While the measured increase is approximately 125 ms the increase

predicted by WAMMC-LQM is about 110 ms. In contrast, the MEAN-LQM and MBD-LQM

methods do not reflect the impact of the changes and offer almost identical results for both

workloads.

VII SUMMARY AND CONCLUSIONS

In this paper, we introduce a new technique called the Weighted Average Method (WAM) for

improving the accuracy of predictive models for systems with bursty customer populations. The

technique is appropriate for session-based systems such as e-commerce systems and enterprise

application systems. Others have shown that real session based systems exhibit such bursty

behaviours so sizing, capacity planning, and on-going management exercises should benefit from

WAM.

The technique was motivated by the well-known hybrid method that combines a Markov birth-

death process and QNMs. We apply the general approach but replace the closed expression for

estimating population distribution with a fast Monte Carlo simulation technique that lets us take

into account arbitrary distributions that affect burstiness for request arrivals. Furthermore, we

consider both QNMs and LQMs. A measurement based study for a TPC-W system permits us to

compare the effectiveness of all these methods at predicting the mean request response time for

32

the TPC-W system. The system is subjected to both bursty and non-bursty workloads including

workloads with heavy-tail-like distributions.

The results indicate that modeling approaches that only consider the mean number of concurrent

customers produce very poor estimates of mean response time for systems with bursty workloads.

The average prediction error for bursty workloads is nearly 24% and 21% for the QNM, and the

LQM, respectively. Furthermore, for bursty workloads, using the QNM and LQM models in

combination with a Markov birth-death model does not improve prediction accuracy

significantly. In contrast, the WAM approach significantly improves the accuracy of mean

response time predictions. For bursty workloads, prediction accuracy improved by 12% and

10% for LQMs and QNMs, respectively, as compared to the Markov birth-death approach.

Moreover, the LQM-based WAM approach had much lower average error and range of errors

than the QNM-based WAM approach. Furthermore, WAM also enabled the prediction of very

different mean response times reported by multiple statistically identical runs for cases that

include heavy-tail-like distributions. In effect, WAM can be used to assess whether a system has

unpredictable behaviour by reporting a range of possible behaviours.

Others using MVA based techniques for modeling multi-tier session based systems [12][13][14]

have not been considering burstiness that is inherent in these systems [18] [19]. To the best of

our knowledge these are the first results that accurately predict mean request response times for

such complex systems with bursty behaviour in such a straightforward way. The accuracy of

WAM’s predictions for the system studied is due both to WAM’s approach for estimating

customer session population distribution and the benefits obtained from using LQMs rather than

QNMs.

The results we present likely benefit from the relatively large think times between requests. The

think times were on the order of 46 seconds with response times typically less than a second.

However, the think times chosen were realistic since they were based on empirical measurements

from a large e-commerce site [23].

Our future work includes extending the technique to consider multi-class models, load dependent

service rates, and embedded requests for images. We also intend to apply WAM for studying a

time varying customer session arrival process and “flash crowd” scenarios. Techniques will be

33

developed to ensure the efficiency of WAM, in particular for multi-class models. Future work

will apply and validate these techniques for other multi-tier software systems, including

enterprise application systems.

References

[1] J.P. Buzen, “Computation algorithms for closed queuing networks with exponential servers,” Communications

of the ACM, vol. 16, no. 9, pp. 527-531, September 1973.
[2] M. Reiser, “A queuing network analysis of computer communication networks with window flow control,”

IEEE Transactions on Communications, vol. 27, no. 8, pp. 1201-1209, August 1979.
[3] D. Menasce and V. Almeida, “Capacity planning for Web services: metrics, models and methods,” Prentice

Hall Inc., September 2001.
[4] L. Kleinrock, “Queuing systems volume 1: theory,” John Wiley & Sons Inc., 1975.
[5] W. H. Sanders, W. D. Oball II , M. A. Qureshi , and F. K. Widjanarko, “The UltraSAN modeling environment,”

Performance Evaluation, vol. 24, no.1-2, pp.89-115, November 1995.
[6] M. K. Molloy, "Performance analysis using stochastic Petri nets," IEEE Transactions on Computers, vol. 31, no.

9, pp. 913-917, 1982.
[7] M. Woodside, J. E. Nielsen, D. C. Petriu, and S. Majumdar, “The stochastic rendezvous network model for

performance of synchronous client-server-like distributed software,” IEEE Transactions on Computers, vol. 44,
no. 1, pp, 20-34, January 1995.

[8] J.A. Rolia and K.C. Sevcik, “The method of layers,” IEEE Transactions on Software Engineering, vol. 21, no.
8, pp. 689-700, August 1995.

[9] K. Psounis , P. Molinero-Fernández, B. Prabhakar, and F. Papadopoulos, “Systems with multiple servers under
heavy-tailed workloads,” Performance Evaluation, vol. 62, no. 1-4, pp, 456-474, October 2005.

[10] K.M. Chandy and D. Nuese, “Linearizer: A heuristic algorithm for queuing network models of computer
systems,” Communications of the ACM, vol. 25, no. 2, pp. 126-133, February 1982.

[11] G. Casale, “An efficient algorithm for the exact analysis of multiclass queuing networks with large population
sizes,” Proceedings of Joint ACM SIGMETRICS/Performance Conference, pp. 169-180, 2006.

[12] B. Urgaonkar, G. Pacifici, P. Shenoy, M. Spreitzer, and A. Tantawi, “Analytic modeling of multitier Internet
applications,” ACM Transactions on the Web, vol. 1, no. 1, article 2, May 2007.

[13] Y. Chen, S. Iyer, X. Liu, D. Milojicic, and A. Sahai, “SLA Decomposition: Translating service level objectives
to system level thresholds,” Hewlett Packard Labs Technical Report, 2007.

[14] Q. Zhang, L. Cherkasova, and E. Smirni, “A regression-based analytic model for dynamic resource provisioning
of multi-tier applications,” 4th International Conference on Autonomic Computing, pp. 27-27, June 2007.

[15] N. Tiwari and P. Mynampati, “Experiences of using LQN and QPN tools for performance modeling of a J2EE
application,” International Computer Measurement Group (CMG) Conference, pp. 537-548, 2006.

[16] S. Kounev and A. Buchmann, “Performance modeling of distributed e-business applications using queuing Petri
Nets”, IEEE International Symposium on Performance Analysis of Systems and Software, pp. 145-153, March
2003.

[17] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni, “Model-based performance prediction in software
development: A survey,” IEEE Transactions on Software Engineering, vol. 30, no. 5, pp, 295-310, May 2004.

[18] U. Vallamsetty, K. Kant, and P. Mohapatra, “Characterization of e-commerce traffic,” Electronic Commerce
Research, vol. 3, no. 1-2, pp. 167-192, 2003.

[19] D. Menasce, V. Almeida, R. Reidi, F. Pelegrinelli, R. Fonesca, and W. Meira Jr., "In search of invariants in e-
business workloads," ACM Conference on Electronic Commerce, pp. 56-65, October 2000.

[20] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, "On the self-similar nature of Ethernet traffic (extended
version),” IEEE/ACM Transactions on Networking, vol. 2, no. 1, pp. 1-15, 1995.

[21] D. Krishnamurthy, J. Rolia, and S. Majumdar, “A synthetic workload generation technique for stress testing
session-based systems,” IEEE Transactions on Software Engineering, vol. 32, no. 11, November 2006.

[22] V. Almeida, M. Arlitt, and J. Rolia, “Analyzing a web-based system’s performance measures at multiple time
scales,” ACM SIGMETRICS Performance Evaluation Review, vol. 30, no. 2, pp. 3-9, September 2002.

[23] M. Arlitt, D. Krishnamurthy, and J. Rolia, “Characterizing the scalability of a large web-based shopping
system,” ACM Transactions on Internet Technology, vol. 1, no. 1, pp. 44-69, 2001.

[24] M. E. Crovella and L. Lipsky, “Long-lasting transient conditions in simulations with heavy-tailed workloads,”

34

Proceedings of the Winter Simulation Conference, pp.1005 – 1012, 1997.
[25] TPC-W benchmark, http://www.tpc.org/tpcw/default.asp
[26] D. Menasce and M. Bennani, “Analytic performance models for single class and multiple class multithreaded

software servers,” Proceedings of the International Computer Measurement Group (CMG) Conference, pp.
475-482, 2006.

[27] R. Jain, “The art of computer systems performance analysis: Techniques for experimental design, measurement,
simulation, and modeling,” John Wiley & Sons Inc., April 1991.

[28] D. Menasce and V. Almeida, “Capacity planning and performance modeling: From mainframes to client-server
systems,” Prentice Hall, 1994.

[29] D. Krishnamurthy, “Synthetic workload generation for stress testing session-based systems,” PhD thesis,
Department of Systems and Computer Engineering, Carleton University, Ottawa, Canada, January 2004.

[30] D. Mosberger and T. Jin, “httperf - a tool for measuring Web server performance,” Workshop on Internet Server
Performance, pp. 59-67, 1998.

[31] V.Paxon and S. Floyd, "Wide area traffic: The failure of Poisson modeling," IEEE/ACM Transactions on
Networking, vol. 3, no. 3, pp. 226-244, 1995.

[32] M. Harchol-Balter, M. Crovella, and C. Murta. "On choosing a task assignment policy for a distributed server
system,” Journal of Parallel and Distributed Computing, vol. 59, no. 2, pp. 204-228, November 1999.

[33] K. Park, G.T. Kim, and M. Crovella, “On the relationship between file sizes, transport protocols, and self-
similar network traffic,” Proceedings of the International Conference of Network Protocols, pp. 171-180,
October 1996.

