

Distributed Lucene : A distributed free text index for Hadoop

Mark H. Butler and James Rutherford
HP Laboratories
HPL-2008-64

Keyword(s):
distributed, high availability, free text, parallel, search

Abstract:
This technical report described a parallel, distributed free text index written at HP Labs called
Distributed Lucene. Distributed Lucene is based on two Apache open source projects, Lucene
and Hadoop. It was written to gain a better understanding of the Apache Hadoop architecture,
which is derived from work at Google on creating large distributed, high availability systems
from commodity components.

External Posting Date: June 7, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: June 7, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Distributed Lucene : A distributed free text

index for Hadoop

Mark H. Butler
Enterprise Informatics Laboratory

James Rutherford
Web Services and Systems Laboratory

May 27, 2008

Abstract

This technical report described a parallel, distributed free text index
written at HP Labs called Distributed Lucene. Distributed Lucene is
based on two Apache open source projects, Lucene and Hadoop. It was
written to gain a better understanding of the Apache Hadoop architecture,
which is derived from work at Google on creating large distributed, high
availability systems from commodity components.

Keywords: distributed, high availability, free text, parallel, search

1 Introduction

Hadoop is an open source Apache Software Foundation project, sponsored by
Yahoo![had] and led by Doug Cutting. It attempts to replicate the proprietary
software infrastructure that Google have developed to support applications re-
quiring high scalability such as web search. It provides components to support
MapReduce parallel processing [DG], a distributed file system called HDFS in-
spired by the Google File System [GGL03], and a distributed database called
HBase based on a Google database called BigTable [CDG+06].

Given the origins of Hadoop, it is very natural it should be used as the basis
of web search engines. It is currently used in Apache Nutch [nut], an open source
web crawler that creates the data set for a search engine. Nutch is often used
with Apache Lucene, which provides a free text index [luc]. Doug Cutting is
lead on all three projects. Despite the link between Hadoop and Lucene, at the
time of writing there is no easy, off the shelf way to use Hadoop to implement
a parallel search engine with a similar architecture to the Google search engine
[BDH03]. However in 2006, Doug Cutting came up with an initial design for
creating a distributed free-text index using Hadoop and Lucene [Cut]. This
technical report describes work at HP Labs to implement a distributed free
text index based on this design. This work was undertaken in order to better
understand the architectural style used in Hadoop. Since this work commenced,
two other external open source projects have started work on the same problem.
Katta [kat] is a distributed free text index using Hadoop, with contributions
from 101tec. Bailey [bai] does not use Hadoop, but this project is being led
by Doug Cutting so clearly it is influenced by Hadoop, with contributions from
Yahoo and IBM.

1

1.1 Hadoop architectural style

A good starting point for understanding some important aspects of the archi-
tectural design used in Hadoop is the Hadoop Distributed File System, HDFS
[Bor08]. A HDFS cluster consists of a name node, and one or more racks of
data nodes. HDFS is designed to store very large files by splitting them into
a sequence of blocks, typically 64 MB in size. The blocks will be distributed
across the cluster and replicated for fault tolerance. Typically a replication
factor of three is used, with replicas distributed between two racks in order to
guard against rack failure as well as data node failure. HDFS was also designed
to target a specific type of application, that writes data once but read it many
times at streaming speeds.

The data nodes store HDFS blocks in files in their local file systems. Each
data node has no knowledge about HDFS files, as this information is held on the
name node. When a data node starts up, it scans through its local file system
and generates a list of all HDFS data blocks that correspond to each of these
local files. This information is called a BlockReport.

The name node has an in-memory data structure called FsImage that con-
tains the entire file system namespace and maps the files on to blocks. It also
keeps a log file called EditLog on disc that records all the transactions since the
FsImage was updated on disc. At startup, changes from EditLog are incorpo-
rated into FsImage and the updated version is written back to disc. The name
node also makes all decisions regarding replication of blocks. The name node
tracks which blocks need to be replicated and initiates replication whenever
necessary. HDFS is designed in such a way that user data never flows through
the name node, by using a client library that caches metadata from the master,
and then performs as much computation as possible on the client.

The data nodes send regular heartbeats to the name node so the name node
can detect data node failure. If the name node does not receive heartbeats from
data nodes for a predetermined period, it marks them as dead and does not
forward any new read, write or replication requests to them. The heartbeat
message includes the BlockReport from the data node. By design, the name
node never initiates any remote procedure calls (RPCs). Instead, it only re-
sponds to RPC requests issued by data nodes or clients. It replies to heartbeats
with replication requests for the specific data node.

Hadoop uses its own RPC protocol that requires custom serialization and
deserialization code to be written for objects. This approach allows the serial-
ization format to be very efficient in comparison to standard Java serialization.

1.2 Distributed Lucene

Although the code for distributed Lucene is heavily influence by HDFS and was
written by examining the HDFS code, it does not use HDFS directly. It does
reuse the Hadoop IPC layer and some code to model network topology. There
are four reasons for this decision not to use HDFS: First, in HDFS it is not
possible for multiple clients to write to the same index. Here it is desirable
for multiple clients to be able to access the same index, in order to parallelize
index creation. Second, Lucene indexes generally contain a number of different
files, some of which may be smaller than the 64MB block size for HDFS, so
storing them in HDFS may not be efficient. Third, creating an implementation

2

specifically for Lucene gives the author a better understanding of the Hadoop
architectural style. Fourth, in the future it might be desirable to have an ab-
stract layer in Hadoop, that can be used to implement different storage and
parallel processing services. By implementing distributed Lucene separately
from HDFS, it is possible start to understand what this might look like and
what software components could be shared by these services. Also, on first ex-
amination, the fact that HDFS is write once read many times would appear to
be a problem as any modifications to an index require a new copy of the index.
However, because the design specified by Doug Cutting [Cut] uses a versioning
mechanism that requires a new version of an index to be made when changes
are applied, it would be possible to implement this design on a write-only index.

One of the design goals of distributed Lucene was to avoid storing metadata
on the name node. In HDFS, the name node stores FSImage and EditLog. This
means when the name node fails, switching over to another namenode is more
complicated because the other name node requires these files. Here, the aim
is to keep primary metadata on data nodes, not the name node, so that name
node metadata can be recovered automatically from data nodes.

1.2.1 Basic design

Each data node contains information about all the versions of an index it stores.
These versions are represented by an identifier known as an IndexVersion which
consists of an index name and a version number. Because there may be several
replicas of a specific IndexVersion, there is another identifier known as an In-
dexLocation that also contains the socket address of the data node that stores
the replica and indicates the state of index i.e. if it is uncommitted, replicating
or live.

To understand the design, we will start with the basic client API. In order
to simplify implementation, this API does not implement sharding. Instead
this is done by a higher level client API, and the mechanism for this will be
explained later. As shown in Figure 1, a client can call the name node to get
metadata about the cluster or to get an identifier for a random data node. A
client can call a data node as shown in Figure 2 to create new indexes, add or
remove documents from indexes, commit indexes, search indexes, add one index
to another, and determine the number of documents in an index. When a client
adds documents to or removes documents from an index, this creates a new
uncommitted IndexVersion which needs to be explicitly committed in order to
be searched. Only one uncommitted IndexVersion can be open for any index at
once. When a new index version is created, or a data node fails, this changes
the replication state of the cluster. This will be detected by the name node at
the next heartbeat, and it will schedule replication tasks in order to maintain
the required level of replication.

At startup, all the data nodes send heartbeats to the name node. The heart-
beat contains information about the status of the data node, the IndexLocations
of all the indexes it holds, and any leases it holds. The name node stores this
information in order to manage the cluster.

Lucene makes it easy to compare two different versions of the same index and
determine what has changed, because it adds files to an index to store changes.
This means when indexes are replicated, if the receiving node has an older copy
of the index it is not necessary to transmit the entire index between data nodes,

3

/∗∗ In te r face between c l i e n t and namenode . ∗/
public interface ClientToNameNodeProtocol extends Vers ionedProtoco l {

/∗∗ The vers ion of the pro toco l . ∗/
long VERSION ID = 1L ;

/∗∗
∗ Get the loca t ion of a l l indexes tha t can be searched .
∗
∗ @return Al l searchab le indexes managed by t h i s namenode .
∗/

IndexLocat ion [] ge tSearchab l e Indexes () ;

/∗∗
∗ @return Get a new datanode at random .
∗/

St r ing getDataNode () ;
}

Figure 1: ClientToNameNodeProtocol

because it just needs the changes that have happened since the latest version it
has of the index.

1.2.2 Leases

In order for multiple clients to update a file concurrently, it is important that
all changes go to a single replica. [GGL03] describes a mechanism called leases
used in the Google File System to solve this problem. When a client contacts
a data node to update an index, the data node tries to acquire a lease from the
name node. If it fails, then it returns an error message indicating it can not
obtain the lease. The client will then need to try other replicas until it finds
the one with the lease. However if it succeeds, then the client can modify the
index, because the data node has the lease. Data nodes have to apply for lease
extensions as part of heartbeating. This is so if a data node fails, the lease
will become available again for other nodes. Consequently any data that was
written to the index prior to the failure will be lost, so the client needs to take
responsibility for uncommitted data.

Unfortunately, because the name node holds the leases, this breaks the design
goal of not having any state on the name node, making name node failover more
difficult. However, on closer examination, there is a simple solution. The new
name node can simply wait for all leases to expire, which causes all currently
running transactions to fail, so clients would need to recover any metadata. As
clients need to guard against failed transactions anyway, this is not a significant
problem.

Katta [kat] uses a framework developed at Yahoo called Zookeeper [zoo]
rather than a home-grown approaches to leases. Zookeeper is inspired by work
at Google on a system called Chubby that acts as a lock server and shared
namespace [Bur06, CGR07].

1.2.3 Data nodes and name nodes

Next, we will consider the API used by data nodes and name nodes. As already
noted, name nodes never initiate RPC communication, so there is an API for
data nodes to call data nodes, and for data nodes to call name nodes. There

4

/∗∗ In te r face between c l i e n t and datanode . ∗/
public interface ClientToDataNodeProtocol extends Vers ionedProtoco l {

/∗∗ The vers ion of the pro toco l . ∗/
long VERSION ID = 1L ;

/∗∗
∗ Add a document to a par t i cu l a r index .
∗
∗ @param index The index .
∗ @param doc The document .
∗ @throws IOException
∗/

void addDocument (St r ing index , WDocument doc) throws IOException ;

/∗∗
∗ Remove documents tha t match a s p e c i f i c term from an index .
∗
∗ @param index The index .
∗ @param term The term .
∗ @return The number of documents removed .
∗ @throws IOException
∗/

int removeDocuments (S t r ing index , WTerm term) throws IOException ;

/∗∗
∗ Commit a s p e c i f i c index .
∗
∗ @param index The index .
∗ @return The IndexVersion of the committed index .
∗ @throws IOException
∗/

IndexVers ion commitVersion (St r ing index) throws IOException ;

/∗∗
∗ Create a new index .
∗
∗ @param index The index .
∗ @return the IndexVersion of the new index .
∗ @throws IOException
∗/

IndexVers ion create Index (St r ing index) throws IOException ;

/∗∗
∗ Add the contents of an index to another index .
∗
∗ @param index The index .
∗ @param indexToAdd The loca t ion of the index to add .
∗ @throws IOException
∗/

void addIndex (St r ing index , IndexLocat ion indexToAdd)
throws IOException ;

/∗∗
∗ Search a s p e c i f i c index returning the top n h i t s ordered by
∗ sor t .
∗
∗ @param i The index to search .
∗ @param query The query .
∗ @param sor t The sor t to apply to r e s u l t s .
∗ @param n The maximum number of h i t s to return .
∗ @return The r e s u l t s .
∗ @throws IOException
∗/

SearchResu l t s search (IndexVers ion i , WQuery query , WSort sort , int n)
throws IOException ;

/∗∗
∗ The number of documents in an index .
∗
∗ @param index The index .
∗ @return the s i z
∗ @throws IOException
∗/

int s i z e (S t r ing index) throws IOException ;
}

Figure 2: ClientToDataNodeProtocol
5

/∗∗ datanode to namenode protoco l . ∗/
public interface DataNodeToNameNodeProtocol extends Vers ionedProtoco l {

/∗∗ The vers ion of the pro toco l . ∗/
long VERSION ID = 1L ;

/∗∗
∗ Send a heartbeat message to the namenode .
∗
∗ @param s ta tu s The s ta tu s of the datanode .
∗ @param searchab leIndexes The indexes on the datanode .
∗ @param lea se s The l ea s e s owned by the datanode .
∗ @return the indexes to r e p l i c a t e
∗ @throws IOExceptiuon
∗/

HeartbeatResponse heartbeat (DataNodeStatus status ,
IndexLocat ion [] s earchab le Indexes , Lease [] l e a s e s)

throws IOException ;

/∗∗
∗ Get a l ease to be the primary r ep l i c a for a s p e c i f i c index .
∗
∗ @param index The index requ i r ing the l ea se .
∗ @return the l ea se .
∗ @throws LeaseException
∗/

Lease getLease (IndexLocat ion index) throws IOException ;

/∗∗
∗ Rel inquish a l ease .
∗
∗ @param lease the l ea se .
∗ @return was operation succe s s f u l
∗/

public boolean r e l i n qu i s hLea s e (Lease l e a s e) throws IOException ;
}

Figure 3: DataNodeToNameNodeProtocol

are three methods that data nodes can use to call name nodes, as shown in
Figure 3: heartbeating, requests for leases, and requests to relinquish leases
when transactions complete. The data node to data node API has two methods
as shown in Figure 4, one to find out what files are associated with a partic-
ular IndexVersion, and the other to retrieve a specific file associated with an
IndexVersion. These methods support replication.

Data nodes have three types of threads: one to service requests, one to
send heartbeats to the master to inform it that the worker is alive, and one to
process replication tasks. Name nodes have two types of threads: one to service
requests, the other to perform failure detection and compute a replication plan.
A subset of this plan is then sent back to each data node in response to their
heartbeat.

1.2.4 Sharding

Like leases, on first examination sharding seems to require metadata to be stored
on the name node, hence making name node failover more complicated. How-
ever, to avoid this, the decision was taken to perform sharding in the client
library. This is done by adopting a simple naming convention for shards. When
an index is sharded, a hyphen and a number is appended to the name, so for
example the index myindex might have the following shards:

6

/∗∗ Datanode to datanode protoco l . ∗/
public interface DataNodeToDataNodeProtocol extends Vers ionedProtoco l {

/∗∗ The vers ion of the pro toco l . ∗/
long VERSION ID = 1L ;

/∗∗
∗ Get the l i s t o f f i l e s used by t h i s index .
∗
∗ @param indexVersion The index vers ion of the index .
∗ @return A l i s t of f i l e s used in tha t index .
∗ @throws IOException
∗/

St r ing [] g e tF i l e S e t (IndexVers ion indexVers ion) throws IOException ;

/∗∗
∗ Get a par t i cu l a r f i l e used in a Lucene index .
∗
∗ @param indexVersion The index .
∗ @param f i l e The f i l e .
∗ @return The f i l e content .
∗ @throws IOException
∗/

byte [] ge tF i l eContent (IndexVers ion indexVers ion , S t r ing f i l e)
throws IOException ;

}

Figure 4: DataNodeToDataNodeProtocol

myindex-1
myindex-2
myindex-3

This way the cluster knows nothing about sharding as it is all done by
the client library, which hides the underlying sharding from users. This way
a sharded index looks like a single index to the user, although they have to
add shards to an index manually. Performing sharding in the client library
considerably simplifies implementation. In order to better understand how this
works, it is useful to look at the Cached Client API. CachedClient, shown in
Figure 5, has four methods: one to create an index, and indicate if it is sharded.
More shards can be added to an index by calling create multiple times. There
are also methods to get an IndexUpdater to modify an index, to determine the
number of documents in an index, to query an index and to get a list of all
indexes available on the cluster. Then IndexUpdater API is shown in Figure 6
and has methods to add documents, remove documents or commit an update.

1.2.5 Details

The distributed Lucene client library needs to use threading to query shards as
querying each shard individually would be very slow. Luckily org.apache.hadoop.ipc.RPC
provides a special method that provides a threaded parallel call to nodes as
shown in Figure 7. This has the following arguments: the method you want to
call, then calling parameters as an array, the socket addresses as an array, and
the Hadoop configuration. This method is very useful and simplified the client
library considerably.

7

public interface ICachedCl ient {

/∗∗
∗ Create an index or add a new shard to an index .
∗
∗ @param index The index name.
∗ @param sharded Is the index sharded .
∗ @throws IOException
∗/

public void c reate Index (St r ing index , boolean sharded)
throws IOException ;

/∗∗
∗ Get an IndexWriter to wri te to indexes .
∗
∗ @param index The index name.
∗ @return An IndexUpdated ob j ec t .
∗/

public IIndexUpdater getIndexUpdater (S t r ing index) ;

/∗∗
∗ Get the s i z e of an index .
∗
∗ @param index The index name.
∗ @return The s i z e of the index .
∗ @throws IOException
∗/

public int s i z e (S t r ing index) throws IOException ;

/∗∗
∗ Search an index .
∗
∗ @param index The index .
∗ @param query The query .
∗ @param sor t The order of r e s u l t s .
∗ @param n Number of r e s u l t s .
∗ @return The r e s u l t s of the query .
∗ @throws IOException
∗/

public SearchResu l t s search (St r ing index , Query query , Sort sort ,
int n) throws IOException ;

/∗∗
∗ @return Al l the index names .
∗/

public St r ing [] ge t Indexes () ;

}

Figure 5: CachedClient

8

public interface IIndexUpdater {

/∗∗
∗ Add a document to an index .
∗
∗ @param doc the document
∗ @return the shard name
∗ @throws IOException
∗/

public void addDocument (Document doc) throws IOException ;

/∗∗
∗ Remove documents from an index .
∗
∗ @param term the search term
∗ @return the number of documents removed
∗ @throws IOException
∗/

public int removeDocuments (Term term) throws IOException ;

/∗∗
∗ Commit changes to an index .
∗
∗ @throws IOException
∗/

public void commit () throws IOException ;

}

Figure 6: IndexUpdater

/∗∗ Expert : Make mult ip le , p a r a l l e l c a l l s to a se t of servers . ∗/
public stat ic Object [] c a l l (

Method method ,
Object [] [] params ,
InetSocketAddress [] addrs ,
Conf igurat ion conf)

Figure 7: Call method in org.apache.hadoop.ipc.RPC

9

1.2.6 Current limitations

Currently the code for distributed Lucene is alpha quality and at the time of
writing there are currently a number of items of missing functionality:

• First, sorting does not work on sharded indexes, as the client library should
sort the results obtained from the data nodes. As each result set from a
datanode will be sorted, n-way merge sort would be an efficient algorithm.

• Second, there is no thread that deletes old versions of indexes. This should
be done after a predetermined time, as in HDFS.

• Third, although the code can use Lucene’s RAM based indexes for testing,
this is useless for a real cluster as the indexes are no longer persistant.
Clearly it would be useful to cache often queried indexes in RAM.

• Fourth, HDFS provides a “throttler” to avoid a single client using all
available bandwidth. There is no equivalent of a throttler in distributed
Lucene.

• Fifth, although replication will use older index versions to reduce repli-
cation data transfer, the replication assignment algorithm should make
use of this, by scheduling replicas on nodes that already have some of the
index data. Currently it is purely random.

• Sixth, there are no benchmarks on index performance.

• Finally, HDFS uses a chained approach to data replication. When a client
wants to write a block, it retrieves a list of data nodes from the name
node that will host a replica of that block. The client then sends the data
block to the first data node. This data node saves the data, and forwards
it to the second replica. The same pipelining is used for the third replica.
Distributed Lucene does not use pipelining.

1.2.7 Comparison with other projects

Bailey [bai] is an open source project creating a scalable, distributed document
database led by Doug Cutting. The design seems to be strongly influenced by
Amazon Dynamo [Vog],[dyn]. Here they calculate a hash of each document,
and map it onto a document identifier hash space that is arranged as a ring.
To achieve three way replication, the document is also stored on the node after
and the node before. That way if the node fails, or if a new node is added, the
document is still available. Replication then occurs to balance the location of
documents in the cluster. Like distributed Lucene, it performs replication using
differences to minimize network traffic.

Katta [kat] is an open source project created to provide a distributed Lucene
index by 101tec. At the time of writing, this project currently seems to be the
most mature project of the three, but unlike distributed Lucene or Bailey, it
does not yet allow on-line updates to the underlying Lucene indexes. In contrast
to distributed Lucene, it stores the Lucene indexes in HDFS and uses Zookeeper
[zoo] to perform locking and also to distribute metadata about the cluster, rather
than using a heartbeating mechanism.

However, it must be noted that all these projects are at a very early stage
of development, and are likely to change substantially in the future.

10

1.2.8 Conclusions

This report describes work implementing a free text index using Hadoop and
Lucene. There is still work to be done in order to have production level quality
code. In addition, there are two other open source projects working on the
same problem. This shows that clearly there is interest in this area, although
it is the authors belief that splitting community effort between three different
projects is undesirable, so one goal should be to see if there are any possibilities
for collaboration between these projects.

References

[bai] Bailey. http://www.sourceforge.net/projects/bailey.

[BDH03] L. A. Barroso, Jeffrey Dean, and U. Hölzle. Web search for a planet:
The Google cluster architecture. IEEE Micro, pages 22–28, March-
April 2003.

[Bor08] Dhruba Borthakur. The Hadoop Distributed File System: Architec-
ture and design. Document on Hadoop Wiki, 2008.

[Bur06] Mike Burrows. The chubby lock service for loosely-coupled dis-
tributed systems. In USENIX’06: Proceedings of the 7th conference
on USENIX Symposium on Operating Systems Design and Imple-
mentation, pages 24–24, Berkeley, CA, USA, 2006. USENIX Associ-
ation.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deb-
orah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes,
and Robert E. Gruber. Bigtable: a distributed storage system for
structured data. In OSDI ’06: Proceedings of the 7th symposium
on Operating systems design and implementation, pages 205–218,
Berkeley, CA, USA, 2006. USENIX Association.

[CGR07] Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos
made live: an engineering perspective. In PODC ’07: Proceedings of
the twenty-sixth annual ACM symposium on Principles of distributed
computing, pages 398–407, New York, NY, USA, 2007. ACM Press.

[Cut] Doug Cutting. Proposal: index server project. Email message on
Lucene-General email list.

[DG] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. pages 137–150.

[dyn] Amazon Dynamo. http://www.allthingsdistributed.com/2007/10/amazons dynamo.html.

[GGL03] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The
Google file system. In SOSP ’03: Proceedings of the nineteenth ACM
symposium on Operating systems principles, pages 29–43, New York,
NY, USA, 2003. ACM Press.

[had] Hadoop. http://hadoop.apache.org/core/.

11

[kat] Katta. http://www.sourceforge.net/projects/katta/.

[luc] Lucene. http://lucene.apache.org/java/docs/index.html.

[nut] Nutch. http://lucene.apache.org/nutch/.

[Vog] Werner Vogel. Eventually Consistent.
http://www.allthingsdistributed.com/2007/12/eventually consistent.html.

[zoo] Zookeeeper. http://www.sourceforge.net/projects/zookeeper/.

12

