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ABSTRACT

Secure and efficient network virtualization is a key build-
ing block for virtualized environments such as data centers
or enterprise networks. While machine virtualization alone
provides immediate isolation of computing resources such as
memory and CPU between guest domains, the network re-
mains to be a shared resource as all traffic from guests even-
tually pass through a shared network resource and end up
on the shared physical medium. As a result, we need mech-
anisms to (1) control the information flow between virtual
machines (e.g., who can communicate with whom), (2) con-
figure virtual and physical network resources, and (3) sep-
arate network resources used by each networking domain.
Within HP Labs we have successfully developed and de-
ployed technologies that enable secure networking within
virtualized infrastructures. In this report, we present the
findings of a comparative study that we conducted to eval-
uate the security, performance, and manageability of these
approaches. We further report our experiences with proto-
type implementations on Xen platforms.

1. OUTLINE
This report is organized as follows: In Section 2, we list

the functional and security requirements for secure network
virtualization in data centers. In Section 3, we present three
networking designs that are currently under development
in HP Labs. We present the findings of our comparative
study in Section 4. In Section 5, we report our experiences
with two prototype implementations on Xen platforms. We
present related work in Section 6 and conclude in Section 7.

2. AIMS AND REQUIREMENTS
Secure network virtualization allows parties to define vir-

tual topologies on top of physical infrastructure in a secure
manner. In this section, we list the networking, security, and
performance requirements for enabling and securing network
virtualization on virtualized data centers.

2.1 Networking Aims
Machine virtualization allows a single physical machine

to run several (perhaps different) operating systems concur-
rently creating the illusion of multiple machines each run-
ning their own operating system. In a similar fashion, net-
work virtualization allows groups of related virtual machines
running on separate physical machines to be connected to-
gether as though they were on their own separate network
fabric. Virtual network extensions further enable the cre-
ation of arbitrary virtual network topologies in virtualized
infrastructures independent of the underlying physical net-
work topology. As an example, Figure 1 illustrates how a

simple computer infrastructure consisting of two machines
connected together via a single physical LAN segment can be
mapped to virtual machines and a virtual LAN segment. In
this setting, physical machine A hosts two virtual machines.
One of them (A2) is connected into virtual LAN segment 1.
Physical machine B also hosts two virtual machines. One
of them (B1) is also connected into virtual LAN segment
1. Virtual machine A2 and Virtual machine B1 appear as
though they are connected together via a single LAN seg-
ment even though in reality the physical network connecting
them consists of multiple LAN segments interconnected via
routers.

Virtual machines C2 and D1 are also connected together
via virtual LAN segment 2. Traffic is isolated between vir-
tual LAN segments so machines C2 and D1 cannot see the
traffic passing between A2 and B1 even though they are
sharing the underlying physical network infrastructure. Fig-
ure 2 shows a more sophisticated topology, this time con-
sisting of two LAN segments interconnected by a routing
device. It also shows a possible instantiation of this using
virtual network extensions.

In some circumstances, it may be that the virtual topol-
ogy is much simpler than the physical topology. This is
the case in the first example where two machines appear
as though they are connected directly together on the same
LAN segment even though in reality they may be separated
by many networking components, including potentially be-
ing at opposite ends of a Wide Area Network (WAN) link.
On the other hand, as in the second example, it may be
desirable that a particular virtual topology is more compli-
cated than the underlying physical topology. For example,
network segmentation (such as a DMZ arrangement) is often
used for reasons of security to protect services running on
machines connected to that network. It should be possible
to offer those same kind of security properties and protec-
tions to the services hosted on virtual machines by the use
of segmented virtual networks, irrespective of the underlying
physical network arrangement.

Of course, isolated virtual networks just linking virtual
machines with each other are of limited use. We also want
to allow interaction with traditional non-virtualized entities
anywhere on the Internet, for example, to offer third-party
hosts occasionally to be connected to the datacenter envi-
ronment. Therefore, virtual network extensions must also
allow for bridging between the virtual and the physical net-
work.

2.2 Security Requirements
We describe the security objectives for network virtualiza-

tion through security policies that define confidentiality, in-
tegrity, information flow control, and isolation requirements.
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Figure 1: Virtual to Physical network mapping.

Figure 2: Physical mapping of router connected vir-
tual LAN segments.

In our work, we treat each virtual LAN segment as a secu-
rity domain with necessary mechanisms in place that enforce
the aforementioned security policies within domains (intra-
domain policies) as well as between domains (inter-domain
policies). In particular, the confidentiality requirement is
geared towards the separation of traffic that originates from
different virtual LAN segments. This separation is essential
because in most cases the physical infrastructure is shared
among various virtual LAN segments. In cases where the
physical infrastructure is trusted (e.g., in a controlled data-
center) no additonal scheme is required. In other cases (e.g.,
on a WAN link) appropriate measures need to be taken to
ensure the confidentiality inline with each domain policy.

In addition to the confidentiality requirement, a security
domain must be able to enforce intra-domain policies that
determine the conditions domain entities need to adhere to
prior to being admitted as members. In virtual networking
speak, all entities that request membership to the particu-
lar virtual LAN segment should behave as expected – i.e.,
as defined by the segment policy. A straightforward way to
ensure this is to verify the hardware and software configu-
ration of the prospective members either statically prior to
joining or dynamically in an ongoing fashion.

The traffic flow between security domains may also be sub-
ject to strict controls as defined by inter-domain policies.
These bidirectional flow control policies determine which
hosts belonging to different security domains are allowed
to communicate and under what conditions. These policies
are usually enforced at the security domain perimeter by
trusted entities with hardened configurations. One exam-
ple is a trusted dual-homed host that connects two security
domains while enforcing traffic flow control policies (e.g.,
firewall rules that determine the traffic types that are al-

DOMAIN A DOMAIN B

Figure 3: An example dual-homed host with two
NICs for inter-domain flow control between two se-
curity domains.

lowed to be forwarded). As we illustrate in Figure 3, this
host uses two physical NICs (one for each domain) and en-
forces the inter-domain flow policy for the information that
flows between the NICs.

Another inter-domain requirement is the isolation of vir-
tual resources used by each security domain. In particular,
isolation refers to the requirement that resources used by
two security domains are logically separated and there is
no unintended direct information flow using such logical re-
sources1. Note that resource-based flow control is different
from the aforementioned traffic-based flow control between
security domains. The former flow control type prevents the
misuse of shared resources to leak information (e.g., listen-
ing to virtual NICs of other virtual machines on a physical
host) whereas the latter controls the network traffic between
domains.

2.3 Performance Requirements
Virtual networking is central to virtualized data center

operations. Hence, the added network virtualization logic
should match the required operational levels of the datacen-
ter. Poorly performing virtualized networking components
can potentially affect all datacenter operations ranging from
VM deployment to inter-VM communications. Additionally,
the logic should be scalable to support the sheer number of
VMs in a virtualized data center. Certain availability lev-
els should be guaranteed for virtual networking components
(e.g., virtual switches) lack of which can potentially jeop-
ardize data center operations and lead to Denial of Service
(DOS) attacks. Lastly, it is important to isolate and localize
performance requirements to each security domain. With
such guarantees in place, each domain can operate inde-
pendently in concordance with the Service Level Agreement
(SLAs) as required by the domain owner (i.e., a data center
customer). These SLAs may define availability requirements
for the underlying virtualized network infrastructure, but
may also include network bandwidth guarantees or limita-
tions, so that data center customers that require high band-
width communication can be charged more than customers
that are running low bandwidth applications. Virtual net-
work extensions need to provide mechanisms to control vir-
tual network performance in a secure and reliable fashion.

Eventually, it is desired that entities of different security
domains should be allowed to talk to each other. In this

1Indirect communication flows such as covert channels are
outside the scope of this paper.
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case the solution ideally has to take into account the per-
formance requirements of all involved domains. Also, it is
important that inter-domain communication does not create
any bottlenecks in the infrastructure – which is a challenge
when using an entity that becomes a single point of control
for cross-domain communication (e.g., the dual-homed host
illustrated in Figure 3). Overall, it is important that an
analysis of performance requirements considers the actual
usage model of the system. However, one can argue that in
many scenarios most network traffic will be within a single
domain rather than across domain boundaries, and in these
cases a slight decrease in inter-domain performance might
be acceptable to ensure better security and manageability
of the solution.

Added network virtualization logic imposes a certain level
of overhead on datacenter operations. In this paper, we
empirically assess the overhead of each network virtualiza-
tion technology in comparison to each other and to the non-
virtualized equivalent. We additionally investigate the avail-
ability, scalability, and isolation (in relation to performance)
properties that can be guaranteed by each technology.

3. NETWORK VIRTUALIZATION
Network virtualization abstracts away the underlying net-

work infrastructure and topology. In this section, we present
various schemes we have designed that enable this abstrac-
tion in a security preserving way. In Sections 3.1 and 3.2, we
introduce the virtual switch approach that employs EtherIP
and VLAN tagging, respectively. In Section 3.3, we present
MAC rewriting that follows a different virtualization ap-
proach from the former two. We highlight the differences
between the three approaches in Section 4.

3.1 Virtual Switch and EtherIP
One option for virtual networking is to virtualize at the IP

level. However, to avoid problems with supporting non-IP
protocols and IP support services such as ARP that sit di-
rectly on top of the Ethernet protocol, we chose to virtualize
at the Ethernet level. Figure 4 shows the main abstraction
of our virtual network extensions in which we divide a vir-
tual network into virtual LAN segments. For our purposes,
a LAN segment is considered to be an Ethernet broadcast
domain.

3.1.1 Networking Design

Each virtual LAN segment is represented by a virtual
switch. A virtual machine appears on a particular virtual
LAN if one of its (virtual) network interface devices is “plugged”
into one of the switch ports on the virtual switch forming
that segment. The virtual switch behaves like a normal
physical switch. Ethernet broadcast traffic generated by a
virtual machine connected to the switch is passed to all vir-
tual machines connected to that switch. The virtual switch
builds up a forwarding table based on observed traffic so
that non-broadcast Ethernet traffic can be delivered in a
point-to-point fashion, as in a real switch.

The virtual switch is designed to operate in a distributed
fashion. The privileged domain (or host OS, depending on
the virtualization technology in use) on each physical ma-
chine managing a VM connected to a particular virtual LAN
segment, runs part of the virtual switch forming that virtual
LAN segment. A component of the privileged domain cap-
tures the Ethernet frames coming out of a VM virtual net-

Figure 4: Abstract view of the Virtual Network Ex-
tensions.

work device. This component is configured to know which
particular virtual switch the VM is supposed to be connected
to.

EtherIP encapsulation. The VM Ethernet frames are
encapsulated in IP packets using EtherIP. EtherIP is a stan-
dard protocol for tunneling Ethernet and 802.3 packets via
IP datagrams and can be employed to expand a LAN over
a Wide or Metropolitan Area Network [12]. In this setting,
each tunnel endpoint uses a special network device provided
by the operating system that encapsulates outgoing Eth-
ernet/802.3 packets in new IP packets. We insert virtual
LAN membership information (i.e., the virtual LAN identi-
fier, which is unique for each virtual LAN segment within
a virtual network) into the EtherIP header of each encap-
sulated packet. The encapsulated packets are then trans-
mitted to the other side of the tunnel where the embedded
Ethernet/802.3 packets are extracted and transmitted to the
destination host that belongs to the same virtual LAN seg-
ment.

Address mapping. The virtual switch component on a
VMM maps the Ethernet address of the encapsulated Eth-
ernet frame to an appropriate IP address. This way, the
encapsulated Ethernet frame can be transmitted over the
underlying physical network to physical machines hosting
other VMs connected to the same LAN segment that would
have seen that Ethernet traffic had the VMs actually been
on a real LAN together. The IP address chosen to route
the encapsulated Ethernet frames over the underlying phys-
ical network depends upon whether the encapsulated Eth-
ernet frame is an Ethernet broadcast frame or not and also
whether the virtual switch has built up a table of the lo-
cations of the physical machines hosting other VMs on a
particular LAN segment based on observing traffic on that
LAN.

Broadcast / multicast mapping. IP packets encapsu-
lating broadcast and multicast Ethernet frames are given a
multicast IP address and sent out over the physical network.
Each virtual LAN segment has an IP multicast address as-
sociated with it. All the physical machines hosting VMs on
a particular virtual LAN segment are members of the mul-
ticast group for that virtual LAN segment. This mechanism
ensures that all VMs on a particular virtual LAN segment
receive all broadcast Ethernet frames from other VMs on
that segment.
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Non-broadcast mapping. Encapsulated Ethernet frames
that contain a directed Ethernet address destination are ei-
ther flooded to all the VMs on a particular LAN segment
(using the IP multicast address as in the broadcast case) or
sent to a specific physical machine IP address. This depends
upon whether the virtual switch component on the encapsu-
lating VM has learned the location of the physical machine
hosting the VM with the given Ethernet destination address
based on traffic observation through the virtual switch.

3.1.2 Requirements Revisited

Layering over arbitrary physical networks. The de-
cision to encapsulate Ethernet frames from VMs within IP
packets allows us to connect different VMs to the same vir-
tual LAN segment as long as the physical machines hosting
those VMs have some form of IP based connectivity between
them. This also enables the connection of virtual network
segments over a WAN link, even though that requires some
form of tunnelling and appropriate multicast support - which
is not always a given. In general there are no restrictions on
the topology of the underlying physical network, meaning it
could be a fully switched network or have any kind of routed
configuration.

Routing within virtual networks. Currently, a router
within a virtual network is provided by the use of virtual
machine with multiple virtual network interface cards. The
interface cards are plugged into ports on the different vir-
tual switches that it is required to route between. Standard
routing software is then configured and run on the virtual
machine to provide the desired routing services between the
connected LAN segments.

Gatewaying to non-virtualized systems. To allow for
communication with systems that live in the non-virtualized
world we provide a gateway. The gateway is simply a virtual
machine with two virtual network interface cards. One of the
cards is plugged into a port on a virtual switch. The other
virtual network card is bridged directly on to the physical
network. The gateway has two main roles. First, it adver-
tises routing information about the virtual network behind
it so that hosts in the non-virtualized world can locate the
virtual machines residing on a virtual network. Second, the
gateway converts packets to and from the encapsulated for-
mat required of our virtual networks.

3.2 Virtual Switch and VLAN Tagging
VLAN Tagging is a well-established network virtualiza-

tion standard for isolation on physical network equipment.
The standard is described in IEEE 802.1Q and uses tag-
ging of Ethernet packets for isolation between networks [11].
VLAN tagging is used in non-virtualized environments where,
e.g., a host in the VLAN 42 uses a special network device
provided by the operating system to apply a VLAN tag,
which contains the VLAN ID 42, to outgoing packets and
remove the tag from incoming packets before they are pro-
cessed by the upper network stack. VLAN-capable physi-
cal switches ensure that by default packets only flow within
VLANs.

3.2.1 Networking Design

We employ VLAN tagging as an alternative to EtherIP
encapsulation for efficiency purposes. As an example, in a
controlled data center environment where WAN connectiv-
ity may not be required, the use of efficient VLAN-enabled

switches that provide sufficient isolation on the wire yields
performance gains over EtherIP encapsulation as we report
in Section 5. In this case, VMs are assigned to one or more
VLAN(s), and each VLAN segment employs its own VLAN-
capable virtual switch module to tag Ethernet frames. This
module resides within the host OS or privileged domain that
facilitates the networking capabilities, captures packets com-
ing from VMs and tags those with the ID of the VM’s VLAN
before sending them onto the physical wire. On the receiv-
ing side, the module removes the VLAN tag and passes the
packets untagged into the destination VM(s). Packets are
only tagged when they have to be transmitted over the phys-
ical network. VMs are unaware of the VLAN tagging and
send/receive packets without any VLAN information.

To handle VLAN tagged packets, the physical network
equipment needs to support IEEE 802.1Q and be config-
ured accordingly. As an example, if a machine hosts a
VM that is part of VLAN 42, then the switch port that is
used by that machine needs to be assigned to that specific
VLAN 42. Of course, a machine might host multiple VMs
which can be in different VLANs, and therefore a switch
port might be assigned to multiple VLANs (which creates a
VLAN trunk between the host and the switch port). When-
ever a host deploys a new VM or removes a VM, the switch
port might need to be reconfigured. Ideally, this can be
done in a dynamic and automated fashion, e.g., through
network management protocols such as, for example, the
GARP VLAN Registration Protocol (GVRP). As the phys-
ical switches only pass packets between machines within the
same VLAN, those provide an additional isolation mecha-
nism to our VLAN-capable virtual switch that is deployed
on all of the hosts.

Address mapping. In contrast to both the encapsu-
lation and the MAC Rewriting approach, the VLAN tag-
ging solution does not require any address mapping mech-
anism. VMs discover address information of other VMs by
using standard discovery protocols in the same way as in
a non-virtualized environment. However, the virtual switch
module that runs on each physical machine learns Ethernet
addresses attached to the virtual switch ports by inspecting
packets (in the same way as physical switches do) and builds
up lookup tables (one table per virtual switch / VLAN) that
store information about the location of VMs based on their
Ethernet addresses. The virtual switch uses this table to
decide if a packet has to be passed to a local VM or onto
the physical network to be delivered to a remote machine.

Broadcast / multicast mapping. There is no explicit
mapping of broadcast / multicast addresses as in the case of
EtherIP encapsulation or MAC Rewriting. Instead, physi-
cal switches that manage the underlying network infrastruc-
ture ensure that broadcast and multicast traffic never cross
VLAN boundaries. Broadcast and multicast packets that
are tagged with a VLAN ID are passed to all switch ports
that are associated with that particular VLAN, but no other
ports. When those packets enter the physical machine that
runs our virtual switch module, the packets are only passed
into VMs that are attached to virtual switch ports that are
assigned to the VLAN matching the ID in the packets.

3.2.2 Requirements Revisited

Layering over arbitrary physical networks. The
VLAN tagging solution can be used over arbitrary layer 3
networks. However, in contrast to the encapsulation ap-
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proach, a solution based on pure VLAN tagging is limited
to a LAN environment and cannot be deployed over WAN
links. VLAN tagging is highly dependent on support from
the physical network equipment that is managing the un-
derlying infrastructure. E.g., switches need to support the
VLAN tagging standard that we use when tagging our pack-
ets in our virtual switch module (IEEE 802.1Q) and need to
be configured to handle tagged packets in order to provide
appropriate isolation between VLANs.

Routing within virtual networks. A VLAN is a log-
ical network segment and by default network traffic such
as broadcast messages or ARP communication is limited to
a single VLAN. However, it is also possible to allow com-
munication between (virtual) machines of different VLANs
through Inter-VLAN routing. There are multiple well-known
and standardized solutions to allow this. For example, most
of today’s network switches facilitate fast layer 3 routing
between multiple VLANs. This solution offers high perfor-
mance, but requires that routing policies can be configured
on the physical network devices – ideally in an automated
fashion. As an alternative, we can also deploy specific VMs
that have multiple network interfaces in multiple VLANs
and route packets between those – as in the EtherIP encap-
sulation approach.

Gatewaying to non-virtualized systems. In VLAN
tagging, communication with non-virtualized systems is straight-
forward. This is because VLAN tagging is a widely used
standard that is deployed within infrastructures where phys-
ical machines do not run any (network) virtualization soft-
ware. There is no need for a gateway VM as in the EtherIP
encapsulation approach. Instead, physical switches can be
configured to remove VLAN tags from packets when trans-
mitting on a port where the connected endpoint is not VLAN-
capable, and add tags whenever packets are received on that
specific port. In that case those endpoints are completely
unaware of VLANs, and receive and transmit packets with-
out any VLAN information.

3.3 MAC Rewriting
The MAC Rewriting approach focuses on a closed data

center environment. It allows the grouping of virtual ma-
chines into isolated virtual network segments and enforces
policies to control network packet flow between and inside
these groups. The underlying physical network is a com-
pletely switched network and assumed to be a “constrained
world” hosted by a single owner who controls the infrastruc-
ture. However, certain virtual machines may be allowed to
communicate with external systems through a NAT gate-
way.

3.3.1 Networking Design

In contrast to both VLAN Tagging and EtherIP encap-
sulation that virtualize the network at layer 2, the MAC
Rewriting approach virtualizes the network based on layer
3 network-level information and provides the abstraction of
farms which consist of several subnets. For example the IP
address space is segmented by assigning IP addresses of the
format 10. < FARM > . < SUBNET > . < HOST > to
virtual machines. By default, VMs inside a subnet can com-
municate with each other without any restrictions. However,
communication between VMs of different subnets has to be
explicitly allowed by the farm owner. Communication across
two different farms is only permitted if both sides have mu-

Figure 5: Farms, subnets and virtual gateways.

tually agreed on such a communication. At the core of the
farm network is a notional gateway connecting all of the sub-
nets within the farm. The gateway mediates inter-subnet
communications within the farm and inter-farm communi-
cation across multiple farms. However, the gateway does not
exist; we only provide the illusion of it to virtual machines.
In fact its actual functionality is distributed amongst all the
physical machines hosting VMs within the farm. Figure 5
visualizes this architecture.

MAC rewriting. As in the virtual switch approach, each
host OS of the virtualized infrastructure runs a component
that intercepts packets emitted by virtual machines. This
component takes care of eventually rewriting Ethernet ad-
dresses of packets. Addresses are rewritten to (1) provide
the illusion of a gateway, (2) not allow VM MAC addresses
on the physical wire, and (3) map broadcast and multicast
packets into farm- or subnet-specific multicast traffic.

To provide the illusion of a gateway, if the sending and re-
ceiving VM are located on different subnets, then the gate-
way’s MAC address is set as source MAC address inside the
packet before it is passed into the destination VM. There-
fore VMs never see MAC addresses of VMs that are hosted
on a different subnet.

To prevent MAC addresses from appearing on the wire, if
a packet has to go on the wire to a VM that is hosted on a
remote system, then the virtual source Ethernet addresses
in the packet header is replaced by the Ethernet address of
the sending physical machine. Further, the virtual destina-
tion Ethernet address is replaced by the Ethernet address of
the physical machine that is hosting the destination VM. On
the destination host, the physical MAC addresses are sub-
stituted by the virtual MAC addresses before the packet is
passed into the destination VM. This means that no virtual
MAC addresses will ever be seen on the wire, and VMs never
see MAC addresses of physical machines. Figure 6 illustrates
how a packet is typically processed under this scheme.

Lastly, to do the mapping, when a VM emits broadcast
or multicast packets, MAC addresses have to be rewritten
to preserve isolation.

Address mapping. Each host OS manages a lookup
table that maps a virtual IP address to a virtual MAC ad-
dress. It also stores the physical MAC address of the ma-
chine hosting that particular virtual IP. For this purpose an
ARP solicitation engine runs on each physical machine to
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Figure 6: MAC Rewriting process.

quickly discover the location of virtual machine IP addresses.
Additionally it takes care of keeping involved machines up-
to-date when IP addresses move between VMs or when a
VM is relocated to a another host within the infrastructure.
When a packet arrives on a destination machine, it might
happen that this host does not have a virtual MAC address
binding for the packet’s virtual source IP address, because
virtual MAC addresses get lost through the MAC Rewriting
processes when a packet has to go out on the physical wire.
However, the destination host can quickly find out about
the unknown binding by sending a ”backwards” unicast re-
quest to the machine on which the sending VM is located.
This machine is identified by the packet’s source Ethernet
address.

Broadcast / multicast mapping. Broadcast IP pack-
ets have to be delivered to all VMs in the same subnet, so
they possibly have to be passed to multiple physical ma-
chines. We use Ethernet multicast addresses for that pur-
pose - each subnet is represented by a multicast group, and
physical machines that host VMs on that subnet have to reg-
ister to that particular multicast address. Whenever a VM
emits a broadcast packet, the host OS makes use of MAC
Rewriting and replaces the broadcast destination MAC ad-
dress with the subnet’s multicast address before letting the
packet on the wire. The same is applicable for farms, and
packets that have to be delivered to a whole farm are sent
to the multicast group of that particular farm. IP multicast
traffic coming from virtual machines is either mapped into
a subnet multicast address and delivered only subnet-wide,
or handled as a farm-wide multicast distribution. This de-
pends on whether the IP packet is allowed to pass subnet
boundaries - which is determined from its TTL value.

Packet filtering. Network packet flow policies are man-
aged by a packet filtering component that is distributed
amongst all physical machines. Packet filtering is enforced
within the host OS and therefore cannot be bypassed by any
VM. We use packet filtering to control and restrict inter-
subnet or inter-farm communication. Additionally, through
this a farm owner can specify more sophisticated network
policies on a per-VM basis.

3.3.2 Requirements Revisited

Layering over arbitrary physical networks. Cur-
rently we rely on having a flat layer 2 network as under-
lying physical infrastructure and do not support any other

network topologies. This is mainly because the solicitation
mechanism is based on ARP and therefore does not cross
subnet boundaries.

Routing within virtual networks. Communication
between different subnets is possible if this path has been
permitted by the farm owner. There is no need for a routing
VM as in the VLAN Tagging or EtherIP encapsulation ap-
proach, because we provide the illusion of that intermediate
hop through MAC Rewriting. VMs of two different farms
may also communicate with each other - if both farm owners
have mutually agreed on such a communication. Through
the MAC Rewriting process packets appear to a VM as if
they have traversed a gateway, but in reality packets are
passed between VMs with just a single network hop. Sub-
net and farm boundaries are enforced by a packet filtering
engine that runs on each host and controls packet flow for
virtual machines.

Gatewaying to non-virtualized systems. Virtual ma-
chines can communicate with non-virtualized systems that
do not run our network virtualization technology (assuming
that this communication is not restricted through packet fil-
tering). The ARP engine takes care of discovering locations
of any kind of machine within the infrastructure. Packets
coming from these non-virtualized systems are processed us-
ing MAC Rewriting in the same way as explained before,
there is no special treatment necessary.

4. COMPARATIVE STUDY
In this section, we assess the advantages and disadvan-

tages of each approach in different usage scenarios. In Sec-
tion 4.1, we discuss the networking features provided by each
approach. In Section 4.2, we compare the approaches with
respect to their ability to support network isolation. In Sec-
tion 4.3, we present a number of scenarios that each tech-
nology can be best targeted for. We argue that, in many
ways, our approaches are complementary and can be incor-
porated into one solution that provides a secure and efficient
LAN / WAN virtual networking service. We report a sum-
mary of the advantages and disadvantages of the different
approaches in Table 1.

4.1 Networking Features And Limitations
All three approaches enable network virtualization; to do

so, however, they use different mechanisms that require dif-
ferent assumptions and dependencies.

4.1.1 Support From Physical Infrastructure

Our network virtualization approaches are mostly software-
based; however, the VLAN tagging approach requires the
use of hardware devices for network separation. In particu-
lar, VLAN tagging requires support from physical network
switches to isolate virtual machine network traffic. Thus,
hardware switches need to be able to understand the VLAN
information and process tagged packets accordingly. The
switches need to be (re-)configured with VLAN information
whenever VMs are deployed, removed or migrated – which
can happen frequently within dynamic and flexible infras-
tructures. It is thus a challenge to manage and alter the
configuration of physical switches in an automated manner.
Another issue with VLAN tagging is that modern NICs sup-
port VLAN offloading to accelarate network packet process-
ing. As a result, they can potentially strip the tags from
packets on reception. This feature needs to be disabled on
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all hosts because it interferes with our technology as we ex-
plain in Section 5. In contrast, both EtherIP encapsulation
and MAC Rewriting are purely software-based and do not
require any specific configuration of physical network devices
or NIC drivers.

Each approach can be deployed on a restricted set of net-
work types. Network virtualization based on MAC Rewrit-
ing or EtherIP encapsulation relies on having an IP network
deployed between physical machines of the virtualized in-
frastructure. The MAC Rewriting approach further needs
to run on a flat layer 2 network within a LAN environment
and VMs have to be given IP addresses of a predefined for-
mat. The EtherIP encapsulation approach in contrast can
transmit packets over any arbitrary physical network topol-
ogy that supports multicast. The VLAN tagging technology
can be deployed within IP and non-IP networks, but is lim-
ited to a LAN infrastructure. Note that multiple approaches
can be deployed on a data-center in a complimentary fash-
ion, e.g., to enable fast LAN connectivity using VLAN tag-
ging and a relatively slow WAN connectivity using EtherIP.

Lastly, the approaches differ in the way they handle vir-
tual machine MAC addresses. In VLAN tagging, MAC ad-
dresses of virtual machines are allowed to appear on the
physical network which increases the amount of entries within
network switch tables when deploying large numbers of VMs.
This problem is eliminated in networks that use the MAC
Rewriting or the EtherIP encapsulation approach.

4.1.2 Networking Support for Virtual Machines

Each approach supports a restricted set of network proto-
cols. In particular, MAC Rewriting only supports IP-based
networking for VMs. Further, it currently requires that all
VMs have IP addresses of a defined format, for example,
we currently assign addresses of the form 10. < FARM >

. < SUBNET > . < HOST > to virtual machines. While
we do require some addressing structure that does not allow
completely arbitrary user-selectable IP addresses, we do not
impose any restrictions on the prefixes or address ranges to
use. For example, if a customer provides us with his or her
own class B network, then we can use those addresses in-
stead of a 10. < FARM > . < SUBNET > . < HOST >

scheme. EtherIP and VLAN tagging do not pose any re-
strictions on layer 3 networking protocols; they can be used
when virtual machines want to run non-IP based services.

The particular advantage with the MAC Rewriting ap-
proach is that every communication path between two vir-
tual machines only ever involves a single network hop. For
example, if two communicating VMs are located on different
subnets (or even on different farms), network traffic does not
have to pass a router (or a routing VM) as in the EtherIP
approach. This yields better network performance and addi-
tionally decreases the management effort for deploying and
configuring routing entities. Similarly, in VLAN tagging we
can avoid the deployment and management of routing VMs
since the physical network switches are configured to per-
form fast inter-VLAN routing.

Lastly, MAC Rewriting does not require any form of packet
encapsulation and therefore allows VMs to use full MTU
sized packets that can potentially yield higher network through-
put. EtherIP significantly reduces the MTU of virtual ma-
chine network packets: when encapsulating an Ethernet frame
within an IP packet it reduces the MTU available to VMs
by 38 bytes per packet. In an ideal setup, VLAN tagging

does not reduce the MTU of packets at all, because the
IEEE 802.1Q VLAN tagging standard allows the addition
of 4 bytes per VLAN header to the normal MTU. In gen-
eral, most of today’s network switches support much higher
MTUs, and so in many cases the problems stated here can
eliminated2.

4.1.3 Manageability

Unlike MAC rewriting, both EtherIP and VLAN tagging
need external network entities to be managed accordingly.
The EtherIP approach requires that routing VMs are set up
within the infrastructure. These need to be deployed just
like other virtual machines, but also need to run specific
routing software which needs to be programmed and con-
trolled. One drawback of this is that a routing VM can only
interconnect as many VNETs as the virtualization software
allows a VM to have virtual network interfaces, e.g. when
using Xen this limit is 3 vNICs per guest and when using
VMWare the limit is 4 (Server 1.0 and ESX version). The
VLAN tagging approach does not necessarily require routing
VMs, but instead relies on physical switches to be configured
with VLAN support. Hence setting up a new virtual net-
work always involves deploying new switch configurations
within the physical infrastructure. To enable automated de-
ployment of virtual networks this means that management
software needs to be able to communicate with hardware
switches (of possibly different manufacturers) and VNET
components on host machines.

Configuring new virtual networks when using the MAC
Rewriting approach does not involve configuration of net-
work devices or setting up of routing VMs. However, IP
addresses of virtual machines need to be managed and allo-
cated in a global and secure manner to ensure that virtual
network boundaries and packet flow restrictions can be en-
forced properly - which is only possible in a very restricted
and highly controlled data center environment. However,
binding VMs to use IP addresses of a specifically defined
format significantly reduces this management effort.

4.1.4 Scalability

All three approaches pose scalability limitations due to
their particular designs. In the MAC Rewriting approach,
VMs are assigned to a farm/subnet combination through
their IP addresses which have the form 10. < FARM >

. < SUBNET > . < HOST >. Because the IP address
is only a four-byte value, the number of farms and subnets
that we can encode in an IP address is limited, and this
defines the number of farms and subnets that we can host
on a single network. The current design provides up to 14k
subnets to customers. Additionally, it is possible to connect
multiple physical networks together in a federated manner at
the expense of additional hops in the network path which can
have a significant impact on the performance. Extending the
MAC Rewriting approach to an IPv6 solution will break the
current limits of 32-bit IP addresses, and hence will provide
a much larger number of farms and subnets within a single
network.

We currently use the 802.1Q standard ([11]) when de-
ploying our VLAN tagging solution. 802.1Q defines a four-
byte header that is placed on Ethernet frames. Within this

2In addition to support from the physical network infras-
tructure, the network cards on all systems also need to be
able to handle larger MTU sizes.
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header there is a 12-bit field for the VLAN identifier. This
means that a solution that is based on VLAN tagging can
only provide up to 4096 VLANs (or VNETs) within a sin-
gle local network. A possible option to overcome this limit
would be to stack multiple VLAN tags in order to expand
the VLAN space - this is supported by some hardware de-
vices (mainly Cisco) through the IEEE 802.1q-in-q (QinQ
or stackable VLANs) technology.

The EtherIP approach poses a similar scalability limita-
tion in terms of the number of VLANs that can be sup-
ported. EtherIP uses the standard in [12] that adds a 16-bit
header to an Ethernet or 802.3 frame. This header includes a
four-bit field that specifies the EtherIP version number, and
leaves 12 bits reserved which we use to encode the VNET
identifier. This implies that the EtherIP network virtual-
ization approach is limited to 4096 VLANs within a single
administrative domain. Another scalability issue of this ap-
proach is the use of routing VMs. Routing VMs interconnect
virtual networks by having multiple network interfaces (one
per VLAN) and routing traffic between those. The num-
ber of network interfaces that a routing VMs can have is
limited by the virtualization technology in use (e.g., Xen or
VMware). Additionally, a routing VM represents a single
point of failure and can potentially become a bottleneck for
inter-VNET communication because all traffic has to tra-
verse that VM. Therefore, in a large-scale virtualized infras-
tructure it is critical that traffic is efficiently load-balanced
across various routing VMs.

4.2 Security Analysis
Machine virtualization alone provides immediate isolation

of computing resources such as memory and CPU between
guest domains. However, the network remains to be a shared
resource as all traffic from guests eventually pass through a
shared network resource (e.g., a virtual switch) and end up
on the shared physical medium. As a result, we need mech-
anisms to (1) control the information flow between virtual
machines (e.g., who can communicate with whom), (2) con-
figure virtual and physical network resources, and (3) sep-
arate network resources used by each networking domain.
In this section, we revisit the security requirements outlined
in Section 2 and compare each approach in terms of their
capability to enforce and support domain policies. In par-
ticular, we describe how each approach reinforces network
separation and isolation within and across network domains.

Our solutions mostly rely on VLAN separation and ad-
dress mapping techniques to control the information flow
within and across networking domains. The approaches dif-
fer in ways the address mapping and packet forwarding de-
cisions are taken. In particular, EtherIP and VLAN tagging
use a single virtual switch per VLAN segment that forwards
and accepts traffic to and from member hosts. MAC rewrit-
ing implements a distributed virtual gateway to (re)direct
traffic within and between networking domains.

Within a networking domain (i.e., a VLAN segment or a
subnet), EtherIP uses a single (distributed) virtual switch
to decide on which network packet to forward and accept.
Similarly, MAC rewriting uses a single (distributed) virtual
gateway to do same. In contrast, in VLAN tagging a phys-
ical switch is additionally involved in the decision process.
Thus, the former two have an advantage over the latter be-
cause the decision is taken on an end-to-end basis and no
intermediate node (e.g., the physical switch) is involved. In-

volving the physical switch, however, can provide better net-
work separation as compared to software-only approaches.
As a result, VLAN tagging can provide network isolation
not only between virtual machines, but also between physi-
cal machines.

Another basis for comparison is the way each approach
handles the communication across different networking do-
mains. In MAC rewriting, all decisions on whether to allow
communication across domains (i.e., subnets and farms) are
taken by a distributed virtual gateway. This yields an effi-
cient scheme and allows VMs to communicate over a single
hop regardless of their domain membership. However, the
virtual gateway becomes the single point of decision that
needs to be trusted by all domains. In contrast, in EtherIP
and VLAN tagging, a virtual switch is designated to a par-
ticular domain and controls communication within that do-
main only. Communication across domains is handled by
gateway routers or firewalls that are trusted by both do-
mains. This yields a less efficient scheme than MAC rewrit-
ing. However, it can potentially provide a better separation
of networking resources across domains. Further, the vir-
tual switch design allows the disaggregation of components
into separate, highly isolated domains. For example, each
virtual switch can run in a separate purpose-build stripped-
down VM. This creates an advantage for providing high as-
surance about the security properties of a system and en-
ables the separation of the configuration and management
of VLANs that are not under a single administrative en-
tity. This is especially beneficial for systems that are shared
amongst competing parties.

While the vSwitch approaches focus on strong separa-
tion of virtual networks, the MAC Rewriting technology
addresses secure inter-farm communication from a different
perspective. In particular, this approach fits best when cus-
tomers owning different farms want to share services in a
controlled but efficient manner. This is, for example, the
case with the Service Utility Platform (SUP) project which
is currently developed within HP Labs. We present a MAC
Rewriting prototype that runs on SUP in Section 5.

Lastly, all schemes support confidentiality and can pro-
vide encryption over untrusted physical medium. Further,
EtherIP can protect the VLAN membership information us-
ing end-to-end encryption. In VLAN tagging, however, the
tag needs to be revealed to the physical switch. Hence, end-
to-end encryption of the tagging information is not possible.
MAC rewriting does not involve a tag, hence no extra pro-
tection is needed.

4.3 Applications and Use Cases
Each networking technology we have described in the pre-

vious sections has specific advantages in different environ-
ments with varying use cases and scenarios. Here, we present
a number of scenarios that each technology can be best tar-
geted for.

Customers might want to use virtual machine technol-
ogy to run legacy applications, simulate proprietary net-
work solutions, or run non-IP based protocols. The MAC
Rewriting approach cannot be used for these specific ap-
plication requirements, because it only supports IP-based
network communication. Note that most mainstream data
center solutions will fit for the MAC Rewriting approach in
this regard (as IP is a widely used protocol). However, it
might not be the best applicable solution for customers that
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Table 1: Summary of the advantages and disadvantages.

Features MAC RW EtherIP VLAN Tagging

Arbitrary L3 protocols for VMs N Y Y
Forces reduced MTU sizes N Y Y/Na

User-selectable IP addresses for VMs N Y Y
Single-hop networking Y N N

Arbitrary L3 protocols for hosts N N Y
Arbitrary physical network topology N Y Y

Requires programming of physical switches N N Y
Requires support from NICs N N Y

Runs over WAN link if tunneling available Y Y Y
VM MAC addresses on the wire N N Y
Requires external routing entities N Y Y

Automatic network policy verificationb Y N N
Integrated NAC frameworkc N Y Y

Number of subnets per single LAN (by default) 14K 4K 4K

aAs defined in the IEEE 802.1Q standard, a VLAN-tagged Ethernet frame can be larger than the standard 1500 byte Ethernet
MTU size. However, many older network interfaces cannot handle frames with sizes of over 1500 bytes, so in practice the
standard MTU size has to be reduced for most older network cards.
bAs described in 3.3
cThe NAC framework is a Network Admission Control mechanism that we have implemented in order to control whether or
not a VM is allowed to join a specific virtual network segment.

require customized network configurations (e.g., non-IP).
Currently, the VLAN approach is the best fit when run-

ning over a shared, untrusted physical network infrastruc-
ture as it facilitates the separation of network traffic on the
physical wire – enforced by network switches within the in-
frastructure. However, both EtherIP and MAC Rewriting
can be easily enhanced to securely run over untrusted net-
works by using encryption or network access control mech-
anisms such as, for example, IEEE 802.1X ([1]). As well as
being able to use 802.1X network access control to restrict
physical machine access to a particular physical LAN, the
virtual switch implementation supports 802.1X authentica-
tion of virtual machines before they are allowed to join a
particular virtual LAN.

Lastly, the MAC Rewriting prototype implementation fa-
cilitates a scheme to automatically verify network policies
and provide assurance about the actual state of the com-
plete system from a network point of view. This is an im-
portant feature that can help guarantee fulfilling certain se-
curity requirements (e.g., as defined in Service Level Agree-
ments (SLAs)).

5. PROTOTYPE IMPLEMENTATIONS
In this section, we provide a brief overview of two proto-

types we implemented on Xen and VMware platforms using
the virtual networking technologies we introduced in Sec-
tion 3. In Section 5.1, we present the virtual switch imple-
mentation that uses a combination of EtherIP encapsulation
and VLAN tagging. In Section 5.2, we present the virtual
gateway implementation that uses MAC Rewriting. Lastly,
in Section 5.3, we empirically assess the performance of each
approach.

5.1 Security-enhanced NetworkVirtualization
We describe a Xen-based [3] prototype implementation of

the virtual switching framework. Figure 7 shows the imple-

mentation of virtual switches that manage two vLAN seg-
ments, V LANα and V LANβ . The policy engine, also shown
in the figure, implements the policies corresponding to the
security domains formed by the VLAN segments.

5.1.1 Implementation Details

Our implementation is based on Xen-unstable 3.0.4, a
VMM for the IA32 platform, with the VMs running the
Linux 2.6.16 operating system. Our networking extensions
are implemented as kernel modules in Dom0, which also
acts as driver domain for the physical NIC(s) of each physi-
cal host. A driver domain is special in the sense that it has
access to portions of the host’s physical hardware, such as a
physical NIC.

The virtual network interface organization of Xen splits
a NIC driver into two parts: a front-end driver and a back-
end driver. A front-end driver is a special NIC driver that
resides within the kernel of the guest OS. It is responsible
for allocating a network device within the guest kernel (eth0
in Dom1 and Dom2 of hosts A and B, shown in Figure 7).
The guest kernel layers its IP stack on top of that device as
if it had a real Ethernet device driver to talk to. The back-
end portion of the network driver resides within the kernel
of a separate driver domain (Dom0 in our implementation)
and creates a network device within the driver domain for
every front-end device in a guest domain that gets created.
Figure 7 shows two of these back-end devices, vif1.0 and
vif2.0, in each of the two hosts A and B. These back-end
devices correspond to the eth0 devices in Dom1 and Dom2,
respectively, in each host.

Conceptually, the pair of front-end and back-end devices
behaves as follows. Packets sent out by the network stack
running on top of the front-end network device in the guest
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Figure 7: Prototype implementation of VLANs as security domains.

domain appear as packets received by the back-end network
device in the driver domain. Similarly, packets sent out by
the back-end network-device by the driver domain appear to
the network stack running within a guest domain as packets
received by the front-end network device. In its standard
configuration, Xen is configured to simply bridge the driver
domain back-end devices onto the real physical NIC. By this
mechanism, packets generated by a guest domain find their
way onto the physical network and packets on the physical
network can be received by the guest domain.

The Xen configuration file is used to specify the particular
vSwitch and the particular port in the vSwitch to which a
Xen back-end device is attached. We use additional scripts
to specify whether a particular vSwitch should use one or
both of VLAN tagging and encapsulation mechanisms for
isolating separate virtual networks.

The vSwitches for V LANα and V LANβ are each imple-
mented in a distributed fashion (i.e., spread across hosts A
and B) by a kernel module in Dom0, which maintains a ta-
ble mapping virtual network devices to ports on a particular
vSwitch. Essentially, the kernel module implements EtherIP
processing for packets coming out of and destined for the
VMs. Each virtual switch (and hence VLAN segment) has
a numeric identifier associated with it. The Ethernet pack-
ets sent by a VM are captured by the kernel module im-
plementing part of the vSwitch as they are received on the
corresponding back-end device in Dom0. The packets are
encapsulated using EtherIP with the network identifier field
set to match the identifier of the vSwitch that the VM is
supposed to be plugged into. The EtherIP packet is given
either a multicast or unicast IP address and simply fed into
the Dom0 IP stack for routing onto the physical network.
The kernel module also receives EtherIP packets destined
for the physical host. The module un-encapsulates the Eth-
ernet frames contained in the encapsulated EtherIP packets
and transmits the raw frame over the appropriate virtual
network interface so that it is received by the intended guest

vNIC.
In addition to the kernel module for EtherIP processing,

we have also implemented a kernel module for VLAN tag-
ging in Dom0 of each virtualized host. Ethernet packets sent
by a VM are grabbed at the same point in the Dom0 net-
work stack as in the case of EtherIP processing. However,
instead of wrapping the Ethernet packets in an IP packet,
the VLAN tagging module tags the packet with the ID of
the VLAN that the VM is supposed to be connected to. The
tagged packet is then sent straight out onto the wire through
the physical NIC. The VLAN tagging module also intercepts
VLAN packets arriving on the physical wire destined for a
VM. The module then removes the VLAN tags and, based
on the tag, maps packets to the appropriate vSwitch (α or
β) which, in turn, maps them to the corresponding back-end
device (vif1.0 or vif2.0) in Dom0. The packets eventually ar-
rive at the corresponding front-end device (eth0 in Dom1 or
Dom2) as plain Ethernet packets.

5.1.2 Implementation Issues

Below are some implementation issues we had to tackle in
realizing the VLAN and encapsulation approaches.

1. Some Ethernet cards offer VLAN tag filtering and tag
removal/offload capabilities. Such capabilities are use-
ful when running just a single kernel on a physical plat-
form, in which case there is no need to maintain the
tags for making propagation decisions. However, for
our virtual networking extensions, the hardware de-
vice should not strip the tags from packets on recep-
tion over the physical wire; instead, the kernel mod-
ules we have implemented should decide to which VM
the packets should be forwarded. For this purpose,
we modified the Linux kernel tg3.ko and forcedeth.ko
network drivers so as to disable VLAN offloading.

2. For efficiency reasons, the Xen front-end and back-
end driver implementations avoid computing check-
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sums between them for TCP/IP and UDP/IP packets.
We modified the Xen code to also handle our EtherIP-
encapsulated IP packets in a similar manner.

3. The EtherIP encapsulation approach relies on map-
ping a virtual Ethernet broadcast domain to a IP mul-
ticast domain. While this works in a LAN environ-
ment, we encountered problems when creating VLAN
segments that span WAN-separated physical machines.
We resolved this issue by building uni-directional mul-
ticast tunnels between successive LAN segments.

5.2 Network Virtualization in Datacenters

5.2.1 Providing Secure Service Environments

A prototype of the MAC Rewriting approach has been
implemented as part of the Service Utility Platform (SUP)
project within HP Labs. The SUP is a secure, automated
management system that facilitates the unified aggregation
of virtual resources into secure service environments. The
SUP focuses on a local virtualized datacenter. In this con-
text the MAC Rewriting approach securely separates and
isolates customers’ virtualized elements to provide the illu-
sion of dedicated network resources. It also separates cus-
tomer networks from the utility network. Additionally, cus-
tomer farms should be allowed to implement and selectively
expose services to other farms and consume services pro-
vided by other farms, to allow a rich ecosystem of interact-
ing services to develop. The MAC Rewriting approach is the
most suitable choice to enable network virtualization in this
particular scenario, because unlike the other two approaches,
the communication that spans over farm boundaries is real-
ized as a single-hop network path.

5.2.2 Security Assumptions

In implementing MAC rewriting, we have assumed that
the following conditions are present:

1. The datacenter network is separated from the Internet
by a firewall and NAT, only a subset of VMs will be
visible externally.

2. A layer 2 connection exists between all machines that
are part of the virtualized datacenter. However, tun-
neling could allow federation of multiple instances of
these datacenters.

3. The virtualized datacenter is controlled by a single
owner who manages physical machines and network
devices of the infrastructure. All hosts run standard
software to provide basic system-level virtualization.
We use Xen and VMWare for this purpose.

4. Access to the host OS on VMWare systems as well
as to Xen’s most privileged domain is assumed to be
granted only to authorized users, as in here one has
full control over the configuration of virtual networking
capabilities.

5.2.3 Implementation

Every physical machine of the infrastructure runs a vir-
tualization layer - in our cases Xen 3 or VMWare Server.

The virtual networking capabilities are provided by a Linux
kernel module (the VNET module). On a Xen host, this
module runs in domain 0 (or in an isolated driver domain)
and on a VMWare system it is loaded within the host OS.
Here each VM’s network card is represented by a virtual
NIC, and also the driver for the physical NIC resides here.
In the current design all network traffic has to pass through
this domain, and it is impossible for VMs to circumvent this.

The VNET module (1) intercepts packets coming from
virtual machines as well as coming from the physical wire,
(2) hands them to the filtering engine, (3) replaces MAC ad-
dresses, and (4) passes them on to either one or more VMs
or onto the network to a remote machine. The kernel mod-
ule hooks into the network stack at the Ethernet layer for
packets from / to the physical network and from / to VMs.
Packets from the host OS (or Xen domain 0 respectively)
are intercepted on the IP layer and also passed back in at
that level. This means that the host OS does not do any
ARP discovery on its own, but uses the shared ARP engine
provided by the VNETLinux kernel module instead.

The kernel module exports certain configuration param-
eters and options to user-space tools through the Linux
SYSFS filesystem. Only authorized users or processes can
access this interface to configure virtual network settings.
SYSFS cannot be directly accessed from remote machines,
therefore there is a control daemon running on each system
to enable automatic remote deployment.

The current implementation supports all features of the
MAC Rewriting approach that have been described in Sec-
tion 3. Although, we do not provide transparent encryption
of network traffic yet.

Packet filtering is currently realized using standard IPT-
ables and a proprietary matching module that allows us to
easily filter traffic to enforce farm and subnet boundaries.
Network policies have to be set up within the host OS us-
ing standard IPTables user-space tools. It is also possible
to configure more advanced network policies on a per-VM
basis - here we support most filtering options that IPTables
provides. Policies can only be set up by the owner of the
VM.

Global packet filtering rules that enforce farm and subnet
boundaries are distributed amongst all participating host
machines. Each host runs a rules management component
that knows about illegal packet flows and immutable, global
policies (these static rules are part of the configured Trusted
Computing Base (TCB) that all physical machines boot up
with). All new network policies have to be validated and
approved by this component. Additionally, policies that af-
fect multiple farms with potentially different owners always
have to be mutually agreed.

5.3 Performance Analysis
As part of our comparative study, we have empirically

assessed how current prototypes fare when running basic
networking applications within a virtual machine. We com-
pare our solutions against a virtualized system (such as Xen
or VMWare) in standard bridging mode and also against
a non-virtualized system. We first report and analyze the
performance figures for each VNET technology and compare
the results. We then provide an overview of potential per-
formance improvements that we are currently investigating.

We obtained the throughput results using the netperf

network benchmark and latency results using the ping tool.
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(a) Summary of relative throughput performance results. (b) TX/RX throughput benchmark results in Mbps.

Figure 8: Intra-subnet Throughput Results.

While our VNET technologies run with both VMWare and
Xen systems, we only provide performance results for a Xen
setup in this report as both technologies perform very simi-
lar. Our test systems run Xen 3.0.4 (release version) with a
2.6.16.33 Linux kernel in domain 0. We used HP ProLiant
BL25p G2 blade servers each fitted with two AMD Opteron
processors running at 2 GHz, 8GB system memory and a
Gigabit Ethernet card. For throughput measurements we
have configured netperf with a confidence level of 99% and
a confidence interval of 5% to ensure that our results only
include consistent samples. As netperf is a client/server-
based tool, we ran one instance of the benchmark on one
guest VM as a server process and another instance on the
second guest VM to do the actual benchmark.

We have measured network performance for two different
scenarios:

1. Intra-subnet communication - both communicating VMs
reside on the same virtual network segment (or sub-
net), and

2. Inter-subnet communication - communicating VMs re-
side on different subnets.

5.3.1 Intra-subnet communication

Figure 8(a) shows a summary of the throughput results
that we have obtained for a netperf TCP STREAM test
using a message size of 8192 bytes and a socket size of
65536 bytes. The figure evaluates throughput performance
of a standard Xen bridged configuration, VLAN tagging,
EtherIP encapsulation and MAC Rewriting and compares
them to the performance that a native (non-virtualized)
Linux system achieves. These results take into account how
much CPU resources each approach consumes during the
tests. This is a critical characteristic of any solution that
needs to be assessed, mainly because it is important to
clearly account for resource utilization in a virtualized sys-
tem where resources like CPU are shared across multiple
VMs. The results show that in this setup all approaches
perform very similarly.

In Figure 8(b), we report more detailed throughput mea-
surements that break down the implementation specific dif-

ferences between our three network virtualization approaches.
These results show the actual achieved throughput reported
by the netperf tool in Megabits per second (Mbps). We
do not report CPU figures in these graphs as utilization
between these three technologies is very close and there-
fore does not give any additional insight. The graphs show
that the VLAN tagging extension achieves the best perfor-
mance overall while EtherIP encapsulation yields the worst
throughput.

All VNET extensions perform better on the Tx path -
except the EtherIP method where the major cost is having
to allocate a fresh socket buffer (skb) and copy the original
buffer data into the fresh skb. During the initial alloca-
tion of the skb, the Linux network stack allocates a fixed
amount of headroom for the expected headers that will be
added to the packet as it goes down the stack. However,
not enough space is allocated initially to accommodate the
EtherIP header; thus, we have to copy the data, which is a
costly operation. However, there is some spare headroom
space, which is sufficient for the extra VLAN tag. As a re-
sult, the VLAN tagging method does not suffer from the
packet copying overhead. It is important to mention here
that the small headroom is an implementation specific issue
that could be fixed with a specifically patched Linux kernel.
The MAC Rewriting approach does not change the packet
in any way other than eventually replacing source and des-
tination Ethernet addresses. Therefore, it does not need to
allocate a new socket buffer. However, it has more complex
decision paths in order to find out how to rewrite the packet
which results in more processing overhead. Additionally,
packets need to be processed up to the IP header while both
VLAN tagging and EtherIP encapsulation inspect packets
on Ethernet level only.

In the Rx path, there is no packet-copying overhead for
the EtherIP approach; the extra EtherIP header merely has
to be removed before the packet is sent to a VM. However,
as compared to VLAN tagging and MAC Rewriting in which
packets are grabbed from the Linux network stack immedi-
ately after coming into the OS from the network driver, the
EtherIP solution requires that packets are passed into and
processed by the host OS IP stack before they are handed
over to the EtherIP packet handler of the virtual switch
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code. Lastly, the MAC Rewriting approach performs simi-
lar for both Tx and Rx due to similar packet processing -
e.g. the same lookups and the same packet rewriting in both
directions.

An important difference between MAC Rewriting and the
other approaches including standard Xen bridging is that
MAC Rewriting virtualizes the network on a higher level
(network layer). This has two significant implications from
a performance point-of-view:

1. MAC Rewriting manages larger lookup tables. In fact
the VLAN / encapsulation implementation facilitates
a table per vSwitch/VNET while the MAC Rewriting
prototype manages only one table per physical host
(as it operates in a distributed router fashion).

2. Communication between VMs which are deployed on
an infrastructure that runs MAC Rewriting only ever
involves a single network hop. All other approaches
require a routing entity in the network path in the case
where communicating VMs are on different VNETs.

Lastly, in Table 2 we report the round-trip times between
two guest VMs on a physical host for the bridged, VLAN,
EtherIP encapsulation, and MAC Rewriting cases obtained
using the ping -c 1000 host command, i.e., 1000 packets
sent. The results show that on average Xen bridging has the
lowest round-trip time.

Table 2: Intra-subnet Round-trip Times using Ping.
Minimum Average Maximum Mean

Deviation
Bridged 0.1355 0.18 0.294 0.0235

MAC RW 0.1582 0.2062 0.3182 0.0276
VLAN 0.1395 0.21225 0.35675 0.0295
EtherIP 0.151 0.246 0.378 0.0335

5.3.2 Inter-subnet communication

We have additionally measured and analyzed the per-
formance that our different approaches achieve when the
communicating VMs reside on different virtual network seg-
ments (or subnets). While all technologies offer similar per-
formance for communication within a subnet, the results
for inter-subnet communication demonstrate a major de-
sign difference between MAC Rewriting and the other two
extensions, and its impact on network performance. This
is because MAC Rewriting operates at L3 and it does not
rely on external routing entities, whereas both VLAN tag-
ging and EtherIP encapsulation introduce a routing entity
on the network path for inter-subnet communication.

We cam deploy routing entities in various forms for both
the EtherIP encapsulation and the VLAN tagging approach.
These can mainly be distinguished by the degree of flexibil-
ity, manageability and performance that they can provide.
For VLAN tagging we enforce routing between virtual net-
work segments through the integration of layer 3 switches
that are capable of carrying out Inter-VLAN routing. This
approach allows high-performance inter-subnet communica-
tion. For EtherIP we can deploy Routing VMs that route
packets between VMs that reside on different subnets. How-
ever, the use of Routing VMs introduces a huge performance

Figure 9: Inter-subnet Throughput Results in
Mbps.

drop for cross-subnet traffic. This is demonstrated in Fig-
ure 9 which compares cross-subnet throughput performance
of MAC Rewriting and EtherIP encapsulation. These re-
sults have been recorded with the same netperf test con-
figuration and process that we have used for intra-subnet
communication as described in Section 5.3.1. While both
approaches achieve similar performance for network traffic
that stays within a single subnet, we see a drop in per-
formance of about 40% in case of EtherIP encapsulation
when traffic has to go across subnet boundaries and only a
single VM is transmitting through the Routing VM at the
same time (shown as ”single VM TX” in Figure 9). The
performance suffers even more when multiple VMs commu-
nicate through the a Routing VM at the same time: we
have recorded a drop in throughput of almost 60% when
only two VMs are transmitting at the same time (shown as
”double VM TX” in Figure 9). In contrast, the L3 approach
of MAC Rewriting eliminates the need for any kind of exter-
nal routing entities, and therefore it provides more constant
and reliable network performance within and across subnets.

The introduction of Routing VMs on the network path
also shows a significant increase in latency which we report
in Table 3. The results show that latency is almost doubled
when using a Routing VM for the EtherIP encapsulation
extension, whereas no increased latency is reported when
using MAC Rewriting.

Table 3: Inter-subnet Round-Trip Times using Ping.
Min Avg Max Mean

Dev
MAC RW 0.1582 0.2062 0.3182 0.0276
EtherIP 0.287 0.37 0.4975 0.387

The poor performance of Routing VM network communi-
cation is mainly due to the fact that the overhead of virtual-
ization hits at least twice. Also, it is clear that Routing VMs
can quickly become the bottleneck of inter-subnet network-
ing, and additionally a single point of failure. To overcome
some of these issues we can also deploy routing entities di-
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rectly on physical host machines.

5.3.3 Future Performance Enhancements

Network virtualization provides a flexible scheme to sepa-
rate customer networks in virtualized platforms; usually at
the expense of performance. A recent development we are
investigating in this area is the enhancement of hardware
with better support for virtualization. This is especially
relevant to networking because the virtualization layer is
involved in all network I/O processing which significantly
degrades performance as we have reported in Figure 8(a).
Advanced hardware virtualization support can remove the
privileged domain or host OS from the main data I/O path
which will enable direct access to the network hardware for
a virtual machine.

We are also investigating network resource control mech-
anisms that can allow better performance isolation across
virtual machines. Briefly, this scheme enables throttling
network bandwidth for VMs which in turn can improve the
overall network performance within a virtualized infrastruc-
ture. Further, it protects the infrastructure in the pres-
ence of malicious/buggy VMs that could use up network
resources and slow down other VMs or network services.

6. RELATED WORK
Previous work on virtualizing physical networks can be

roughly grouped into two categories: those based on Eth-
ernet virtualization (Layer 2) and those based on TCP/IP-
level virtualization (Layer 3). Virtualization technologies
such as Xen and VMWare also provide basic virtual net-
working in these two categories – these are referred to as
bridged and routed configuration modes. However, these
basic approaches alone do not provide sufficient isolation of
network traffic between virtual network segments. Further,
they lack the mechanisms that can enforce more sophisti-
cated intra-VNET and inter-VNET network policies.

Although both categories include a substantial amount of
work (e.g., [12, 2, 4, 8, 9, 16, 19, 20, 21]), few studies have
an explicit security focus:

Ethernet Virtualization: Ethernet virtualization aims at
transporting multiple Ethernet connections over a single phys-
ical medium. There are a large number of Ethernet tunnel-
ing protocols [9]. Local transport over a “trusted” wire is
usually multiplexed using the well-established VLAN stan-
dard IEEE 802.1Q-2003. It adds virtual LAN tags to each
Ethernet segment and enables separation of multiple net-
works. An example for high-performance Infiniband VLANs
is given in [10]. In wide-area networks, VLAN tags are of-
ten not preserved. To overcome these restrictions, Ethernet
encapsulation has been proposed as an alternative [12, 19,
8, 9]. Ethernet packets (including tags) are wrapped into
TCP/IP packets. This enables the embedding of a virtual
Ethernet network into a wide-area network. Unfortunately,
the performance and scalability of the resulting system are
limited.

TCP/IP-level Virtualization: TCP/IP-based virtualiza-
tion is for example used for Overlay Networks that provide
application-level network virtualization among participating
hosts. An overlay network typically consists of hosts (phys-
ical or virtual), routers, and tunnels that serve as virtual
links between the hosts. Several overlay designs have been
introduced in the literature: PlanetNet VNET [16, 4], X-
Bone [20], Resilient Overlay Networks [2], and the JXTA

project [21]. The designs share the common goal of creat-
ing a virtualized network layer with a customized topology
mapped onto the actual physical infrastructure. They dif-
fer in the underlying technology that enables the mapping,
management of the technology, and the terminology used.

Overlay networks are most useful for implementing a vir-
tual network topology on top of the physical topology. How-
ever, they are not suitable for systems with strong separa-
tion, isolation, and flow control requirements. As an exam-
ple, although the PlanetLab VNET provides separation of
network packets originating from different slices, the sepa-
ration is merely enforced using the OS network services [4].
Similarly in JXTA, peergroups are used to group network
peers and enforce certain isolation properties [21]. However,
it is the network administrator’s responsibility to enforce
flow control policies across group boundaries as JXTA does
not impose any specific flow control schemes for the sake of
flexibility. Other shortcomings of overlay networks are com-
plex management models, binary intra-group flow policies,
and lack of inter-group flow control policies.

The VIOLIN project addresses a number of these deficien-
cies and enhances the traditional TCP/IP overlay networks
to create mutually isolated distributed environments [13,
17]. The main idea is to provide each subsystem with a
virtual IP world having its own address space. In particu-
lar, a VIOLIN is created on top of an overlay network (such
as PlanetLab [4]) and consists of virtual hosts, switches,
and routers. Communication between these entities is en-
abled through a User-Mode Linux (UML) implementation
enhanced with UDP-tunneling for inter-host communica-
tion3. The VIOLIN model provides isolation between dif-
ferent VIOLINs, which in turn enhances mobility through
location-independent addressing. Further, the model en-
ables the customization of each VIOLIN with the desired
technology (e.g., IPv6) without requiring a global deploy-
ment. A major disadvantage of VIOLIN is that the model
completely disallows inter-VIOLIN communication rather
than adopting a policy-based flow control scheme. In prac-
tice, it may be desirable for VIOLINs belonging to different
organizations to interact with each other under certain flow
control policies enforced at each VIOLIN boundary.

Previous solutions also offered network virtualization schemes
that do not rely on overlay networking. Spawning networks,
employ nested programmable networks to form a hierarchy
of virtual networks that are isolated from each other [6, 7,
14]. The main idea is to enable parent networks to spawn
child networks that utilize the parents’ resources. The child
networks then may or may not choose to inherit certain char-
acteristics from their parents. The advantages are that the
child networks can employ a specialized networking tech-
nology (e.g., a mobile-IP network) while inheriting basic
network functionality from their parent. Further, they can
spawn child networks of their own, forming a forest of net-
works.

Spawning networks utilize the Genesis network kernel [14]
that enables the life-cycle management of each spawned net-
work including the spawning capability. The Genesis kernel
is a complex virtual networking kernel that needs to be in-
stalled on every physical domain that will potentially host
spawning networks. The major downside is that this re-
quires major changes to the existing network infrastructure.

3A Xen-based solution has recently been introduced [18].
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7. CONCLUSIONS
In this report we have presented and analysed three HPL

VNET technologies that we have successfully developed and
deployed in different application scenarios. We have assessed
the advantages and disadvantages of each approach and dis-
cussed that the choice of which network virtualization tech-
nology should be based on application and security require-
ments, and also on how much control we have over the un-
derlying infrastructure and what kind of features it provides.
We have shown that our approaches show measurable differ-
ences from a performance point of view. Further, they im-
pose different restrictions on network applications and rely
on different external capabilities in order to operate.

In the light of our findings, we deduce that an optimal
solution would interoperate multiple network virtualization
technologies in different settings. E.g., one could use MAC
Rewriting or VLAN tagging within a LAN / data center
environment, but use EtherIP encapsulation in cases the
packets need to traverse a WAN link. Ideally, we want to be
able to automatically deploy the underlying network virtu-
alization approach based on a high-level specification that
describes networking and application needs.

We are currently investigating emerging networking and
virtualization technologies that we will employ to further
enhance our approaches regarding performance, manage-
ability and security. These enhancements include hardware-
assisted virtualization and networking, advanced network re-
source controlling, network access control mechanisms, and
automated configuration management of network equipment.
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