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Abstract

We present techniques that allow sharing of standard-
ized digital ink in a heterogeneous collaborative environ-
ment. We explore the use of W3C InkML (Digital Ink
Markup Language) and show how it is more flexible and
suitable than other digital ink formats for this purpose. We
discuss different possible digital ink sharing schemes us-
ing InkML and describe pros and disadvantages of each.
We present our implementation of a shared whiteboard
collaboration system for sharing digital ink across dif-
ferent devices and platforms. We discuss several usage
scenarios such as collaborative document annotation and
map annotation etc in which our system can be used for
sharing digital ink in an efficient manner.
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1. Introduction

It has long been established that pen-based input meth-
ods provide more natural and convenient ways to inter-
act with machines for certain tasks. One of the most
useful and important applications of pen input is white-
board sharing (digital ink messaging in a collaborative
environment), wherein several users collaborate by us-
ing pen-enabled devices to write or draw on a shared
virtual whiteboard which may be blank or may present
some shared information such as a map, image or a docu-
ment. Whiteboard sharing is very useful in scenarios such
as class room teaching, distance education, work-group
meeting, collaborative document annotation, amongst oth-
ers. Whiteboard sharing becomes more useful and inter-
esting, but at the same time more challenging, when the
collaborative environment is heterogeneous. The chal-
lenges stem not only from differences between operating
systems and platforms but also from the differences in
characteristics of the pen devices, such as channel prop-
erties, screen resolution and so on.

In early electronic whiteboard applications such as
Tivoli [1], which was developed for work-group meetings,

interoperability was not an area of focus. A more recent
example is InkBoard [2], a collaborative sketching appli-
cation based on Microsoft’s ConferenceXP research plat-
form [5] designed for Tablet PCs. InkBoard enables de-
sign teams to interact with each other by using real-time
strokes which are streamed in Microsoft’s proprietary Ink
Serialized Format(ISF) [12]. This limits its use to Win-
dows environments where ISF is natively supported.

For flexible interchange of digital ink data between
applications on different platforms, it is critical that dig-
ital ink be stored in an open and standard format. The
best known open format, UNIPEN [3], is very focused on
handwriting recognition and not optimized for operations
such as real time digital ink transmission, rich ink anno-
tation and so on. On the other hand, W3C InkML [4],
a draft standard developed by the W3C Multi Modal In-
teraction(MMI) Working Group, is an open standard and
provides robust structures for representing ink data and the
inking environment. InkML is designed to support col-
laborative environments with heterogeneous devices and
platforms. Being an XML based language, it offers greater
flexibility to application developers, e.g. application spe-
cific information can be easily added to digital ink files.
InkML facilitates complete and accurate representation of
digital ink by allowing capture of recording information
such as device characteristics, pen tilt, pen pressure and
so on. Besides other benefits, it provides better support
for streaming and sharing digital ink.

In this paper, we discuss techniques for sharing digi-
tal ink in a heterogeneous collaborative environment using
InkML. This significantly extends initial work by some
of the authors on peer-to-peer collaboration using digital
ink [10]. Among solutions aimed at supporting interop-
erability across platforms and devices, XEP-0113 [7], an
extension protocol to XMPP [11], proposes SVG [8] to
represent ink messages. The RiverInk Framework [6] pro-
poses the use of a subset of InkML (trace and brush) to
represent Ink messages for interoperability. RiverInk pro-
poses sending ink data simultaneously in PNG image and
native Ink format along with InkML, for interoperabil-



ity between heterogeneous devices (including non pen-
enabled devices), which may work well for LAN envi-
ronments but may be too bulky for mobile networks. Fur-
ther, these approaches focus only on the capture of X & Y
channels of ink stroke data, and do not capture all relevant
context information, or device capabilities and attributes
such as additional channels, screen size and resolution.

We describe the streaming style of InkML in Section
2. Section 3 describes the shared canvas notion of InkML,
which is central to our discussion. We present different
techniques for sharing digital ink in Section 4, and our
implementation in Section 5. Conclusions and future di-
rections are presented in the final section.

2. Streaming InkML

InkML allows digital ink to be stored in two styles:
streaming and archival. The two are semantically equiva-
lent and can be converted from one to another without any
loss of information. Algorithms to do such conversion
have been presented elsewhere [9]. The only difference
between these two styles is that each of these allow certain
operations more directly, and hence more efficiently, than
the other. For example, streaming InkML provides more
direct support for streaming ink data resulting is lower
overhead on the wire, whereas archival InkML provides
more direct support for operations such as search and re-
trieval, annotations and so on.

Regardless of style, InkML models each ink capture
device as an ink source, and specifies a trace format which
in turn describes the format of samples captured by the
digitizer, as a list of Channels such as X, Y and F (force)
with dimension attributes. Digital ink is represented as a
set of traces conforming to the trace format, each trace be-
ing a sequence of pen/finger position samples (typically at
a uniform sampling rate) demarcated by consecutive pen-
down and pen-up events.

Streaming InkML is based on the concept of “cur-
rent context” which can be altered by <context> el-
ements. At any particular instance in time, the ink
application can maintain an associated current context
which has various aspects such as canvas (<canvas>),
canvas transform (<canvasTransform>), trace format
(<traceFormat>), ink source (<inkSource>), brush
(<brush>) and time stamp (<timestamp>). Initially, all
of these contextual elements have a default value (Default
Context). An event such as a change in brush that occurs
as a result of one user’s action can be mapped to the rel-
evant contextual elements and sent to all others. Ink data
may then be sent after its context has been established.
Thus, a stream of ink data interspersed with context events
may be transmitted in an incremental manner.

With this model, a receiver can easily maintain the cur-
rent context of the sender besides maintaining its own lo-

Figure 1. Ink and context changes communicated us-
ing streaming InkML

cal context. Whenever a new contextual element is re-
ceived, its values suitably modify (or override, as appro-
priate) the old values. Context elements are sent only
when there is a context change, which helps in the stream-
ing scenario by reducing data on the wire. For instance, if
the current brush’s color is already red and a red trace in
scribbled then it is sufficient to only send the trace data
and not the brush color information, as the receiver is
maintaining the sender’s current context, and knows what
the sender’s current brush color is. This idea is illustrated
in Figure 1.

In InkML, a change in context can be expressed by
making contextual elements a direct child of <context>.
This has the effect of altering the current context as well
as defining a contextual element which can be referenced
subsequently. Another method to change a context is by
making references to contextual elements using referenc-
ing attributes (e.g. brushRef) of <context>. This al-
lows reuse and extension of previously defined contextual
elements.

3. Shared Canvas

InkML provides built-in support for applications
that require sharing of digital ink coming from dif-
ferent ink sources by means of the <canvas> and
<canvasTransform> elements, both aspects of cur-
rent context. A canvas has an associated trace format
specified either as a child element or referred to by its
traceFormatRef attribute.

In a collaborative environment, all the ink sources
should agree upon a common canvas i.e. current con-
text of each sender (ink source) should point to the shared
canvas. The <canvasTransform> element can spec-
ify two child elements known as the forward canvas

transform and the inverse canvas transform. In the
whiteboard sharing scenario, forward canvas transform
contains the mapping information required to map the ink
data from an ink source trace format to the canvas trace
format, and reverse canvas transform contains in-
formation about the inverse mapping. If inverse can-



Figure 2. An example of shared canvas

vas transform is not specified and the invertible at-
tribute of <canvasTransform> is true, it implies that
the forward mapping is invertible i.e. the inverse can-
vas transform can be determined automatically. Each
ink source participating in the ink communication can
establish its current canvas transform by sending out a
<canvasTransform> element. Figure 2 shows an ex-
ample of shared canvas (CT denotes forward canvas trans-
form and iCT denotes the inverse).

4. Sharing Digital Ink

To allow multiple clients (ink sources) share digital
ink, there should be some method that allows the conver-
sion of digital ink from each source’s trace format to each
target’s trace format. In InkML, this is achieved using
the <canvas> and <canvasTransform> elements dis-
cussed in the previous section. The element <canvas>
provides a shared virtual space for cooperation of ink ap-
plications by supporting an intermediate representation of
digital ink. The main advantage of such an intermediate
representation is that only (n + m) conversions are re-
quired to convert from m sources to n targets instead of
(n ∗ m), as illustrated in Figure 3.

The conversion of digital ink from a source trace for-
mat to target trace format involves two steps: (i) convert
the digital ink from source trace format to shared canvas
trace format using forward canvas transform of the source
and (ii) convert the digital ink in shared canvas trace for-
mat to the target trace format using inverse canvas trans-
form of the target. For example: In Figure 2, in order to
convert the digital ink from device1’s trace format to de-
vice2’s trace format, we can apply CT1 first and then iCT2
to the ink data.

From an implementation standpoint, InkML provides
greater flexibility in the sense that the canvas transfor-
mations (forward and inverse) can be applied at different
locations (client or server) depending upon the require-
ments. In the following subsections, we discuss different
possible schemes and highlight their pros and disadvan-
tages. Depending on the location at which the transfor-
mations are applied, we may categorize these schemes as

Figure 3. Sharing ink with shared canvas(upper) and
without it(lower).

(i) client-oriented (ii) server-oriented and (iii) hybrid. In
all these schemes, we assume that there are several clients
participating in the ink communication coordinated by a
central server, and all communication is always via the
server.

4.1. Client-oriented Scheme

In this scheme, the client is responsible for keeping
record of information (trace format and canvas transform)
about other clients and doing the transformations in both
directions (i.e. to and from the shared canvas format).
This scheme can be further categorized into two variants
depending on whether the forward transformation is ap-
plied before sending the ink data to the server, or after.

4.1.1. Scheme I

In this scheme, the forward transformation is applied
only after the client receives the digital ink. The following
sequence of activities occurs whenever a client c i joins the
session or when its pen-device is changed:

• Server sends shared canvas information to client c i

(<canvas> with <traceFormat> as a child to it.)

• Client ci computes its <canvasTransform> by
comparing its own trace format with the trace for-
mat of canvas. Client sends its ink source definition
containing information about its trace format and
channel properties (<definitions> containing
<traceFormat> and <channelProperties> as
children to <inkSource>) followed by the canvas
transformation to the server.

• Server broadcasts these to all the clients (may be ex-
cept ci in which case it generates them internally).



The above process allows each client to know the can-
vas transformations of all other clients. A client ci can
send the contextual element

<context traceFormatRef=’#tf-ci’
canvasTransform=’#ct-ci’/>

followed by its trace data, where ‘tf-ci’ and ‘ct-ci’ are re-
spectively its trace format and canvas transform. This is
then broadcast by the server to all clients. Each client cj

can thereafter perform forward mapping (from client c i

to canvas) as well as inverse mapping (from canvas to its
own) of ink.

Advantages: This technique allows digital ink to be
collected from all ink sources in its original form, without
any modification or loss of precision due to approximation
as a result of transformations. The server application is
very simple as it simply broadcasts whatever it receives
and it performs no other processing.

Disadvantages: There are a number of context
switches as each client alters the context before sending its
trace data. This can increase the data on the wire. In addi-
tion, performing ink mapping in both directions may not
be feasible for resource constrained clients such as PDAs,
smart phones and so on.

4.1.2. Scheme II

This is very similar to the previous scheme. The only
difference is that each client applies the forward canvas
transformation to its ink data before sending it to the
server. Thus, the ink data broadcast by the server is al-
ways in the format of shared canvas.

Server maintains a global context to keep track of
changes such as brush color. Whenever the context at
a client changes, the server compares the effect of the
change with the global current context. The context
change is broadcast if the change is different from the
current global context, otherwise the change is ignored.
This also helps reduce data on the wire. For example, if
client ci changes the brush color to red and the previous
color the server broadcast was blue, the current brush at
server is changed to red. When another client cj changes
its brush color to red again, there is no effect. If client
cj changes its brush to blue then the global context at the
server is updated to blue.

Advantages: The server application is still simple.
Since changes in context do not occur very often, the size
of the data on the wire is smaller.

Disadvantages: There could be loss of precision. As
with the previous scheme, this scheme also may not be
efficient for resource constrained clients.

4.2. Server-oriented Scheme

This scheme puts the burden of record keeping and
transformation on the server, and relieves the clients of
these tasks. The following sequence of activities occurs

whenever a client ci joins the session or when its pen-
device is changed:

• Client sends its ink source definition contain-
ing information about its trace format and
channel properties (<definitions> containing
<traceFormat> and <channelProperties> as
children to <inkSource>).

• Server computes the canvas transformations for
client ci and keeps a record of it (does not broad-
cast to other clients). It thus constructs a Can-
vas Transformation Table (CT Table). It sends
<traceFormat> which is same as trace format of
client ci to client ci.

When the server receives trace data from client c i, it
uses CT Table and finds its forward mapping information
and then applies the transformation to convert the trace
data to the shared canvas format. The shared canvas is pri-
vate to the server and clients are completely unaware of it.
In order to send ink data to a client, it uses CT Table again
and finds the client’s corresponding inverse mapping, ap-
plies it and sends the transformed data to the client. Thus,
it applies transformations selectively for each client and
then sends the transformed ink data to each client sepa-
rately. Other contextual elements (e.g. change in brush)
are maintained globally at the server as explained in 4.1.2.

Advantages: Since there are no frequent context
switches, data on the wire is reduced. There is no bur-
den on the client, which makes this scheme particularly
suitable for resource constrained devices.

Disadvantages: Simple broadcast by the server is not
possible, since selective transmission to each client is also
required. The ink data collected by the client is the trans-
formed version, possibly resulting in loss of precision.

4.3. Hybrid Scheme

This scheme can be thought of as a blend of two previ-
ous schemes. It helps retain some of the the benefits of the
previous schemes and strike a better balance of server load
and complexity on the one hand, and support for resource
constrained clients on the other. The central idea is to per-
form half of the transformation (forward transformation)
at the server and the other half (inverse transformation) at
the client. Under this scheme, the following sequences of
activities occur whenever a client ci joins the session or
when its pen-device is changed:

• Server sends shared canvas information to client c i

(<canvas> with <traceFormat> as a child to it.)

• Client ci computes its <canvasTransform>

by comparing its own trace format with the
trace format of the canvas. Client sends its



ink source definition containing information
about its trace format and channel properties
(<definitions> containing <traceFormat>

and <channelProperties> as children to
<inkSource>) followed by the canvas transforma-
tion to the server.

• Server keeps a record of canvas transformations ob-
tained from each client in the CT Table. Server
changes the current trace format by broadcasting a
trace format identical to the trace format of the can-
vas.

The channels in the trace format of the canvas should
be a superset of the channels supported by all the clients.
When the server receives trace data from client c i, it finds
its forward mapping information from the CT table and
applies it to the trace data. This also includes adding null
values for unreported channels. Then the server does a
simple broadcast of the ink data to all the clients. This
scheme also involves the server maintaining a global cur-
rent context as explained in 4.1.2.

Advantages: Simple broadcasting by the server is suf-
ficient. The size of the data on the wire is lower than in
the client oriented schemes.

Disadvantages: The size of the data on the wire is
relatively greater than the server oriented scheme. There
could be loss of precision when the server applies the for-
ward canvas transform.

The advantages and disadvantages of all the schemes
described are summarized in Table 1. The choice of
scheme for a particular implementation depends on var-
ious factors such as the network bandwidth and the nature
of the server and clients.

Table 1. Summary of the Schemes

Scheme Data size Context Processing Processing
on data size load on load on

the wire in client client server
Client I High High High Low
Client II Low Low Medium Low
Server Low Low Low High
Hybrid Low Low Low Medium

5. Implementation

We have implemented a system for collaborative ink-
ing using the ideas outlined above. Our implementation
uses the Hybrid Scheme described in section 4.3 as it en-
joys the benefits of the other two schemes and balances
the processing load between the server and clients. It has
lesser load on clients than client-oriented scheme II which
is crucial for systems with resource constrained clients.
For our implementation, we chose XMPP [11] (popularly
known as Jabber), a open IETF standard as the base pro-
tocol for transporting InkML data over the network. We

Figure 4. Solution architecture

have extended the XMPP server by developing an InkML
plug-in and use it as the server component.

An InkML extension (XMPP Client Manager) devel-
oped using Smack API [13] is used by client applications
to communicate InkML messages with the server. All of
the platform independent code is written in Java, and plat-
form dependent code in C/C++, and these are glued to-
gether using the Java Native Interface (JNI). Currently the
application supports both Linux and Windows platforms.
The solution architecture is depicted in Figure 4.

The trace format of the shared canvas used in our im-
plementation has X , Y and F (pressure) channels, which
covers the channel capabilities of the clients we are us-
ing presently. The values of channels X and Y of shared
canvas are in absolute length units (millimeters) and we
assume their resolution to be infinite. Channel properties
of the ink source are used to compute the forward and in-
verse canvas transforms. For example, if channel X of
a particular ink source has a spatial resolution of 10 ppi
(points per inch), then the forward canvas transform for
that source would involve a multiplication factor of 2.54
(to convert from inches to millimeters).

We have developed a generic cross-platform API to
capture digital ink (in InkML format) that is loosely cou-



Figure 5. Annotating maps and document images us-
ing our client GUI

pled with the rest of the components. This API supports
various pen devices such as Tablet PC, graphics tablets
as well as mouse devices. It is used by the ”Ink Can-
vas” component in the client application which captures
and render digital ink on the client application GUI. The
application GUI allows images of documents, maps and
photographs to be set as the canvas background. This
allows us to do several interesting and useful tasks such
as collaborative document annotation, collaborative map
annotation and so on (Figure 5). Besides ink, our im-
plementation also features text and audio as additional
modalities. Text messaging support is available by de-
fault in the core XMPP implementation. We have utilized
the Smack Jingle API [14] for audio. The inking session
can be saved in archival InkML format [9] for future ref-
erence. References to background images are recorded in
archival InkML using InkML’s built-in annotation XML

elements.

6. Conclusions and Future Work

In this paper, we showed how InkML can be used for
sharing digital ink in heterogeneous environments in dif-
ferent ways. We presented our implementation and dis-
cussed how it can be useful in various application scenar-
ios. We compared InkML with other digital ink formats
and showed how InkML is more efficient and flexible than
other digital ink formats in general for the task of cross-
platform whiteboard sharing.

There are a number of interesting directions we wish to
pursue in the future. We plan to extend the coverage of ink
sources to include Windows Mobile PDAs/smart phones,
Smartboards and graphics tablets for Linux. We also in-
tend to investigate collaborative inking in a WAN setting

and using mobile devices, and related issues such as com-
pression and encryption of InkML data, and timestamp-
based synchronization across ink sources. We also plan
to explore the use of collaborative inking in combina-
tion with other modalities including voice, video, and im-
ages for specific usage scenarios. The general space of
classroom and distance education, and collaboration tools
enabled by electronic whiteboards, and portable devices
such as mobile phones is clearly a very rich area for ex-
plorations in collaborative inking across platforms.
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