[LaBs™)

Configurable Editing of XML-based Variable-Data Documents
John Lumley, Roger Gimson, Owen Rees

HP Laboratories

HPL-2008-53

Keyword(s):
XSLT, SVG, document construction, functional programming, document editing

Abstract:

Variable data documents can be considered as functions of their bindings to values, and this
function could be arbitrarily complex to build strongly-customised but high-value documents.
We outline an approach for editing such documents from example instances, which is highly
configurable in terms of controlling exactly what is editable and how, capable of being used with
a wide variety of XML-based document formats and processing pipelines, if certain reasonable
properties are supported and can generate appropriate editors automatically, including web-
service deployment.

External Posting Date: October 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2008 [Fulltext] (éfn

Published and presented at DocEng’08, September 16-19, 2008, S&o Paulo, Brazil

© Copyright 2008 ACM

Configurable Editing of XML-based Variable-Data
Documents

John Lumley, Roger Gimson, Owen Rees
Hewlett-Packard Laboratories
Filton Road, Stoke Gifford
BRISTOL BS34 8QZ, U.K.

{john.lumley,roger.gimson,owen.rees}@hp.com

ABSTRACT

Variable data documents can be considered as functions of their
bindings to values, and this function could be arbitrarily complex
to build strongly-customised but high-value documents. We outline
an approach for editing such documents from example instances,
which is highly configurable in terms of controlling exactly what
is editable and how, capable of being used with a wide variety of
XML-based document formats and processing pipelines, if certain
reasonable properties are supported and can generate appropriate
editors automatically, including web-service deployment.

Categories and Subject Descriptors
1.7.2[Computing Methodologies]: Document Preparation —

desktop publishing, format and notation, languages and systems,
markup languages, scripting languages

General Terms: Languages

Keywords: XSLT, SVG, Document construction, Functional
programming, Document editing

1. INTRODUCTION & MOTIVATION

In recent years there has been much research on formats, semantics
and implementation techniques for variable-data documents, driv-
en in part by new business opportunities in customised publishing.
Our own exploration has focussed on the Document Description
Framework [1] (DDF), an architecture which treats a variable con-
tent document as an extensible function with distinct separation of
data, logical structure and presentation. It is heavily dependent upon
XML representations and technologies, using an XML tree as the
main syntactic representation, with constructional semantics sup-
ported by sections of XSLT[2] and an SVG-based geometric
presentation by a hierarchical tree of layout instructions[3].

During early research such documents (which can of course be
highly programmatic) have been constructed ‘by hand’, but devel-
oping innovative methods of authoring and editing has always been
one of the goals. Users have become very used to editing on a visu-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.

DocEng’08, September 16-19, 2008, Sao Paulo, Brazil.

Copyright 2008 ACM 978-1-60558-081-4/08/09...$5.00.

al form of the final document (WYSIWYG rather than declaring
intent such as using LaTeX), but when the document is highly vari-
able and there are very many different possible instances, how to
do this is not immediately obvious.

We were also keen to consider that, especially in complex commer-
ical document workflows, there may be many distinctly different
roles of ‘editor’ and ‘author’ for such documents. Original design-
ers may generate branding material and document exemplars that
can result in various elements and styles of document templates
being fixed for other downstream editors. Other individuals may
have edit capability which is restricted (“you can choose the style
but not edit the style’; ‘you can edit the mapping to data sources,
but not style nor fixed content’) .

Editing used to be the province of dedicated standalone editing tools,
of increasing complexity and cost. But in the system and service
deployment scenarios we envisage, many of these editing actions
must also be supported through web-deployed facilities.

We sought an extensible architecture that could support the possible
editing and authoring of sets of variable-data documents that:

e Was highly configurable in terms of tuning what editing can be
performed on documents and by whom

e Can edit variable-data documents of high complexity, from
understandable visual presentations of sample document
instances

e Can support a wide variety of XML-based document types

e Can operate within workflows where multiple documents are
merged and correctly edit appropriate components.

e Does not depend upon any intimate knowledge of the processing
pipeline that creates instances of variable documents, nor even
the detailed semantics of the documents themselves

e Requires minimal or zero disturbance of the document pro-
cessing pipeline tools when supporting editing.

e Is deployable both in standalone and web-service situations,
with very little change in configuration.

In this paper we will usually discuss examples using DDF, but the
techniques are applicable to a wide range of potential XML-based
variable document technologies, provided a few key requirements
are satisfied. We'll show that the basic technique is very effective
and highly flexible when the causality between source and result
is ‘local’. Adding more knowledge of the semantics of the source
language supports modifying documents in less local scopes.

We'll start by illustrating editing on an instance of a variable doc-
ument then outline the basic implementation, including how ‘edit-

ability’ may be described and how modifications are actually per-
formed on source (template) documents. We'll then discuss using
a ‘view’ of a document, remote editing using the technique and how
we can edit the extent of modification other users can perform. Lim-
itations and specialist treaments are then outlined, followed by a
survey of prior art and future directions.

2. EDITING: ON A DOCUMENT INSTANCE

A variable content document is just that - variable; its appearance
usually depends upon the data that is bound to it. The human con-
sumer reads the intended message in a visualisation of a document
instance. Consequently editing within such a visualisation is prefer-
able, provided we don't have to compromise the ‘smartness’ of the
document substantially. We'll outline the issues and approaches on
an example 2-page tourist flyer that is a true variable document:

Honest John's
HeliTours

Honest John's
HeliTours

Ofis B. Driftwood

BackBow,ccial offert

All-inclusive: £1234

oprasentativos at any high-stroet tationer,

‘Cayman Island or Stales of Jersey bank

riy, ot allemativelytrn up withcashinhand
for Harry.

Figure 1. An example 2-page variable content brochure

This example is moderately complex as a variable data document.
Each holiday is constructed as a separate sub-component, which var-
ies its appearance dependent on whether it is marked as being a spe-
cial offer and the number of photographs available for the tour. The
tours are grouped in pairs by page and arranged as a horizontal flow.
Other elements, such as the selected customer are very simple inter-
polations. The background is constant for each page. Figure 2 shows
some alternative results for other customers:

Honest John's Honest John's

LT PR
Honest John's
HeliTours

Honest John's
HeliTours

Figure 2. Two differing instances of the brochure

Now if we want to alter the template, can we do so by simple selec-
tion and dialogue actions on this visual instance? Can we point to
a text block that is a ‘description’ of one of the tours and edit its
style for all such descriptions in that instance document and all oth-

er instances that will be generated subsequently from the template?
Figure 3 shows such a case, where we've selected one of the text
blocks in the result document and have an editing dialogue that
allows us to alter various properties, such as borders and margins:

Figure 3. Editing an element of the template

In this example we have selected a text block for editing1 and this
has caused the ‘text block’ editing dialogue to be displayed and pop-
ulated with the correct properties for the text block in question (and
indeed for all text blocks, such as that under the right hand picture,
that were generated from the same element in the template source.)
These properties can be altered and eventually an ‘Apply’ action
performed. This new set of properties is then written onto the cor-
rect source element and the instance document re-built. Figure 4
shows details of the ‘before’ and ‘after’ states of the selected text
blocks where we added a border.

FlyB:

n‘!nxmmr blades have wmee BackBoy
and the first fresh s have beg 2
carved to

Y

provde us wath excellent
in weather candition

Nam bero
Pam htero
ngkis et ol | Comue. 1
impadit 1 | mnus &
placeat face | plocest fao
Allinshiciuar £4924 Ll]

Figure 4. Changes to text blocks generated from the same source

element - before & after
Note that whilst we selected the text in the ‘FlyBy’ tour, another
text block in the ‘BackBowl’ tour was also edited - they were gen-
erated from the same point in the source template (the code frag-
ment that processes ‘description’ data sections) and hence both these
have altered. This is desirable for promoting coherence of styling
and branding.

It will also be apparent that the picture on the left-hand tour has
moved down after the change to the text styling - this is because

1 . .

What exact form of mouse and/or keyboard action triggers the
event isn't important - many schemes could be used with the same
underlying architecture.

the tour has been laid out as a group, flowing the title, description
and picture below each other (the ‘BackBowl’ tour flows in a dif-
ferent order as it is a special offer). Can we edit the properties of
this flow? If as in this case, we can select the group, then we can:

BackBow

=
Direction "
Spacing
Offast
Bl

All-inclusive: £1234

Figure 5. Altering a compound layout - changing flow spacing

We can select the group because an element in the final result cor-
responds to the ‘flow’ instruction in the original template and a suit-
able editor is then displayed. Using this we can change the spacing
property on that instruction and in the subsequent re-build we get
the new result. Note that the other tour (‘BackBowl’) has not
changed its spacing - it is defined in this template by a different
part of the code. We can add a new element if we select the flow
and then add a new child of the corresponding source element:

FlyBy
The hebcopter blades have wmec BaC
and the firs fresh racks have besr
e ack off the 2008 season I
yet fa helisi dunng the
consmder € 3 must At

AlHndusive: £1234

Allinclusive: £1234 %
ol

Figure 6. Adding new elements to a compound layout

Here we have added a new (horizontal) flow to our product group,
moved it up in the order to place it between the description and
picture and added two ellipses to it.

A single instance of a variable document isn't of much interest or
value - it's the variability that matters. So we should consider show-
ing multiple instances. We can do this in several ways: the easi-
est of course is to show a vector of results corresponding to a vec-
tor of instances of the variable data. We would expect to be able
to point to a text block that fulfils the description role in any of
the instances, make an alteration and see the results in all of them.
With the implementation we'll describe next, this is exactly what
would happen — each of the instances would be edit-sensitive in
the same way and changes would happen on the common template.
Thus if document dependency is being tracked all the instances dis-
played would now be ‘out-of-date’, since the template upon which
they depend is now ‘younger’ than the instances and a synchron-
isation rebuild would propagate the change to all instances.

3. EDITING: BASIC IMPLEMENTATION

In our editing scenario we are presented with an instance of a vari-
able document and we select a displayed block of text. If we then
want to change the font size, ‘where is that defined?’ and ‘what
can I change it to?” In normal document editing this is usually
straightforward - the editor has intimate knowledge of the mapping
between source element and display element - but in variable doc-
uments that need not be the case. For example we might want to
change the text, but the text involved is not in the source template,
but is variable data. In this case we may want to change either the
variable element from which this text is generated (e.g. from
last_name to first_name) or even the actual variable data itself (e.
g. change Lumley to Gimson in the customer record) - we'll dis-
cuss the latter in section 8.2 .

Equally well how might we control that only certain pieces of text
may be edited by this particular (human) editor, and only in pre-
scribed ways? For example we may only permit the font size to be
altered to one of a finite set of possibilities, or choose from a par-
ticular font-family/size/style combination...

3.1. Linking Result To Cause

The key technique of this approach is to ensure that in the instance
document being viewed there is just sufficient information to:

i) identify what editing might be performed on (or through) this
displayed element

ii) where in the source document(s) should any change take place

Figure 7 shows a schematic example production process for a very

simplified variable document (whose only variation is in the num-

ber of white ‘rating-point’ crosses it presents):

Processing Pipeline [
9r

- - —_— * A

®

Result
Document

A]

Variable Data

Figure 7. Merged variable documents and result

The variable data document is constructed from some merge of two
source templates, containing both program and symbolic output ele-
ments. This merge is convolved with an instance of the variable data,
by a black-box processing pipeline creating a result document.
Some, but not all, of the elements in the source templates appear
in the result, because of conditionality over the variable data. (The
green square didn't appear, the white cross appears twice, presum-
ably because of some data-dependent iterator.)

Let us assume that we wish to edit these source documents, but only
in areas where we permit, and from a view of the result document
(What You See Is One of the Ones You'll Get). Firstly we can
somehow define which elements in the source are variable, and how.
Then we need to arrange that the user can select a piece in the res-

ult document corresponding to an editable element in the source,
open up a suitable and correctly populated editing dialogue and then
perform the requested editing action on the correct element in the
correct source template.

As we will show, this can be acheived if two pieces of informa-
tion can flow from the source to the result, without otherwise dis-
turbing the result, and can then be identified in an interactive edit-
ing rendition of the result document. These are:

i) the name of the specific editor or editing component to take con-
trol of the editing action

ii) an address for the specific source element that caused this res-
ult piece to appear - the exact source template responsible and
a unique position within that document.

This means we need to add the sorts of links shown in Figure 8:

Result

Source [—fe - - — ’. ‘ Document

Templates

e

Figure 8. Links from result to editors and source

If we know what we want editable in the source then we could
arrange to modify all appropriate source documents with such
information. For XML-based formats we can do this simply through
programs (XSLT transforms are certainly the simplest) that match
such situations and attach one or more additional attributes to the
elements under consideration. The source fragments (in pseudo-
SVG for brevity) that made up the schematic example might be:

<doc href="A.xml">
<layout function="X">
<cross rotate="30" fill="brown"/>
<layout type="flow"s>
<xsl:for-each select="rating-point">

<cross fill="white" .../>
</xsl:for-each>
</layouts>

<square fill="green"/>
<xsl:call-template name="bar"/>
</layouts>
</doc>
<doc href="B.xml">
<xsl:template name="bar"s>
<ellipse fill="red"/>
<triangle fill="blue"/>
</xsl:template>
</doc>

Figure 9. A sample source spread across two documents

with just the white cross and the red ellipse editable, might be trans-
formed to:

<doc href="A.xml">
<layout function="X">
<cross rotate="30" fill="brown"/>
<layout type="flow"s>
<xsl:for-each select="rating-point">
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
</xsl:for-each>
</layouts>
<square fill="green"/>
<xsl:call-template name="bar"/>
</layout>
</doc>
<doc href="B.xml">
<xsl:template name="bar">
<ellipse fill="red" e:source="B.xml#1/1"
e:edit="ellipse"/>
<triangle fill="blue"/>
</xsl:template>
</doc>

Figure 10. The annotated versions of Figure 9

where we now use an encoding of the source file URI and a rel-
ative tree position within that file to link back to the sourcez, and
some appropriate name for the edit component to take responsib-
lity for action. If this document is processed through a pipeline such
that these two additional attributes (shown here in namespace
mapped to a prefix e :) appear attached to every instance of the ele-
ments appearing as a causal consequence of the source, then we can
implement a generic editor that is independent of the document type.

Note that in our example rwo white crosses appear (presumably
because there were two rating-points). Any one of these can be used
to edit its properties, or indeed the iterator context surrounding it.

This critical requirement (transmission of source pointer and
required edit component through the processing pipeline) may at
first glance appear expensive, especially if almost the whole of the
document is editable, but the situation isn't as bad as you might think:

e If the pipeline is principally XML-based and doesn't serialise
and re-parse XML trees in intermediate stages (i.e. the trees stay
in memory), the additional burden of the tracing attributes is rel-
atively slight - they only need simple copying.

e This additional overhead is only required for editing - produc-
tion runs know nothing about these additional markings, that
have not been written onto the real source templates.

What we do however require is that the processing pipeline acts as
a ‘good XML citizen’. That means:

i) It is not an error for (unknown) foreign namespace attributes
to appear on XML elements being processed by stages in the
pipeline. For example a e : source="path" attribute on an
fo:block element within an XSL-FO document

ii) Where an XML element appears in the output corresponding to
a given input element, then ‘unknown’ attributes should be
copied across, and

iii) If appropriate the output result tree topology should locally fol-
low that of the input.

2Several schemes could be used for this linking, XPath[4] being a
general form. That shown here is textually ‘tight” when serialised
but easy to follow down the tree to identify target elements.

By supporting these principles, in-band communications channels
can operate through the pipeline, letting these systems work. In our
example the final single result document (in pseudo-SVG with pos-
ition attributes omitted) might be:

<svg:svg href="result.svg">
<cross rotate="30" fill="brown"/>
<SVg:svg>
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
</svg:svg>
<square fill="green"/>
<ellipse fill="red" e:source="B.xml#1/1"
e:edit="ellipse"/>
<triangle fill="blue"/>
</svg:svg>

Figure 11. The final result version of Figure 9

where the elements have been positioned by the layout functions
in A.xml. Now we have information on the definition of the visu-
al result that will allow 1) editable pieces to be identified, ii) what
class of editing might be performed and iii) where in the source
files the exact declaration of the element is.

Editing is not confined just to source ‘leaf’ primitives. The same
technique can be used to edit combinators, such as layout functions,
which are not tree leaf nodes. Suppose we wish to permit editing
the £1ow layout function (e.g. allowing a spacing to be altered).
If we now arrange that A . xm1 is annotated to become:

<doc href="A.xml">
<layout function="X">
<cross rotate="30" fill="brown"/>
<layout type="flow" e:source="A.xml#1/2"
e:edit="flow">
<xsl:for-each select="rating-point">
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
</xsl:for-each>
</layouts>
<square fill="green"/>
<xsl:call-template name="bar"/>
</layouts>
</doc>

Figure 12. Annotating a layout function

Then if the ‘agent’ who processes the flow and generates the res-
ult is a good XML citizen the result document will now look like:

<svg:svg href="result.svg">
<cross rotate="30" fill="brown"/>
<svg:svg e:source="A.xml#1/2"
e:edit="flow">
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
<cross fill="white" e:source="A.xml#1/2/1/1"
e:edit="cross"/>
</svg:svg>
<square fill="green"/>
<ellipse fill="red" e:source="B.xml#1l/1"
e:edit="ellipse"/>
<triangle fill="blue"/>
</svg:svg>

Figure 13. Result document corresponding to Figure 12

The svg:svg element in the output corresponds to the layout
function in the template. If this element can be selected in the res-
ulting visualisation (as distinct to both its children who are also edit-
able), then we can edit the flow itself. This is one area where we
make fairly stringent demands on the document processing pipeline:
we need to preserve structure in the result presentation that is
implied in the source. In this case the group of white crosses remains
a structural group in the result (as an svg: svg sub-tree with its
own local co-ordinate space), rather than being flattened and each
cross being positioned absolutely. In our layout model the benefits
of such preservation (especially in being able to build higher-order
layouts) makes this feature almost universal.

We can develop this a little further. Suppose we want to edit what
the ranking stars measure, i.e. the attachment to the rating-
point inthe xsl: for-each. If we can arrange that cross ele-
ments as direct children of xs1 : for-each are edited differently
(see later for how we do this), then we could substitute another edit
operation e:edit="for-each-cross" on suitable eclements,
which will enable the value of the selector to be altered, and we
can do this without altering the editing of normal white crosses.

This succeeds because it operates locally within the XML tree and,
if the processing pipeline behaves as a good XML citizen, the edit-
or need only match elements within /ocal scope in the source tree.

3.2. Other Components

We have outlined the fundamental mechanism of signalling from
editable parts of the source to the result document. To build a real
editor we must then address several problems above this:

e How do we describe what we want or permit to edit (and how
might we control such editability to suit different roles or users)?

e How do we describe what can be edited on those parts of doc-
uments that are editable?

e How do we inject the necessary tracking information into the
source documents?

e How do we display the editability in the result?

e How do we construct or configure the necessary editing com-
ponents, both in terms of their interactivity, their initial states
and their modification action on the source template?

e How do we update displays with the consequences of changes?

Our approach is to use declarative descriptions of intent as much
as possible and generate appropriate code from these automatically.
There are two starting points: an XML description of all the ediz-
ability supported within this editing application and an XML
description of the document processing workflow within which the
editing is expected to be supported. Different editing applications
can be built by varying the editability; differing document work-
flows can be supported by altering the workflow description.

3.3. Describing the Editability

When we describe the editability we require, we assume that ele-
ments that we wish to edit in different ways are distinguishable in
the source templates. In our simple example that means that we can
distinguish between a cross which is white and any other general
form of cross (which presumably is not). Our overall description

of editability is a set of descriptions, each tied to a specific type

of source element we wish to allow to be modified. In our imple-
.3 .

mentation, with a little simplification, this can look like:

<target match="cross|[@fill='white']">
<bindings>
<bind name="stroke" nodeset="@stroke"/>
<bind name="size" nodeset="@size"/>
<bind name="rotate" nodeset="@rotated"/>

</bindings>
<group>
<selectl label="Stroke" bind="stroke">
<item>red</item>

<itemsblack</items>
<item>green</item>
</selectl>
<input label="Size" bind="size"/>
<checkbox label="Rotated" bind="rotate"/>
<button label="Delete"
action="delete-element"/>
</group>
</targets>

Figure 14. Declaring editability for a simple element

which declares that white-filled crosses can have their border (stroke
attribute) set to either red, green or black, their size property set
to a number and an optional ‘rotated’ boolean value. What these
actually mean in terms of the final view of the cross doesn't mat-
ter - that's a matter for the document's semantics. As far as edit-
ing is concerned, we're just altering properties.

The first issue is how we target this edit requirement to the cor-
rect source elements. We use a boolean pattern (the value of the
match attribute), using XPath[4] semantics, such as cross
[@fill="white']. This can be extended easily: editing crosses
that are white or red or triangles would use a pattern cross
[@fill=('white', 'red')]|triangle. If we wish to edit
crosses that are not white differently we would require a mutually-
exclusive pattern cross [not (@fill='white')]. Alternat-
ively and more usefully, the use of a priority ordered set of pat-
terns cross [@fill="white'](priority 1), cross(priority 0)
can give more natural declarations.

Only elements which match these patterns are editable - all others
will not get ‘annotated’ and thus are immutable by construction. If
we wish to configure what is editable dependent upon ‘role’ then
we generate a different set of patterns, presumably smaller subsets
as editing capability is reduced. With a little ingenuity these pat-
terns can be used to give subtle changes. For example a text block
may be declared editable through the pattern £o : block, but a text
block that was inside an iterator (‘for each address-line - text”) can

be matched by the more specific pattern xsl:for-each/fo:

block and the ability to alter the context for the block (i.e. the
pattern over which the iteration occurs) can be added.

Clearly this basic technique has limitations. For example in an
XSLT-based template a cross might be coloured white by sever-
al means other than a direct attribute: by a computed attribute value

3 . S
We use some syntax and semantics from XForms[5] in this area

4 . . :

Care is needed that these declarations do not have unfortunate side-
effects. Changing the fill colour of the white cross could result in
a new cross which wasn't white, and thus no longer editable.

(an attribute value template), an attribute-generating child instruc-
tion or indirect application of an attribute set. (We'll discuss these
in section 8.)

With suitable use of such patterns we can cover some interesting
application-specific cases, with no alteration to the underlying
machinery. For example if we wish to use a document element that
is either a text-block or an image dependent upon some property
of the data, then XSLT code for it might be that shown in Figure 15:

<xsl:choose>
<xsl:when test="CONDITION">
<svg:image xlink:href="picture.png"/>
</xsl:when>
<xsl:otherwise>
<fo:block>
<xsl:value-of select="."/>
</fo:block>
</xsl:otherwise>
</xsl:choose>

Figure 15. A complex variable document element

We can recognise this as a single entity with a pattern of two parts:
xsl:choose [xsl:otherwise/fo:block] /*/svg:image and
xsl:choose [xsl:when/svg:image] /*/fo:block. [Jﬁng this
would arrange that either of the image or text block appearing in
the result would be editable, though the editing ‘effector’ (the pro-
gram that actually peforms the change to the source) would have
to be smart enough to edit suitable properties on both elements as
well as the test condition. This is an example of a case where any
generators of these edit components would have to be provided with
increased knowledge of the source language to accomodate non-
local behaviour.

Having identified an editable element, we must consider how it can
be altered. There are three main types of manipulation:

e Altering a property, such as a size or colour or some control para-
meter. This is the most common operation.

e Altering the element itself completely - either by deleting it
cloning it, altering its position with respect to its siblings or
replacing it with another element completely. (Some of these
operations need to be performed within the element's parent.)

e Adding a permitted child to it.

In our example the bind elements describe properties (attributes
on the source XML element) that can be altered and their type. The
group construct describes specific editing controls (with type,
label and permitted values) that can be displayed within any edit
dialogue, and the binding between these controls and the proper-
ties. The button with the ‘action’ describes a possible action on
the element itself. Simple extensions can add other useful features,
such as validity testing (e.g. the size must be positive and not 0),
relevancy between the editing controls (e.g. if there isn't a stroke
colour set, then a ‘stroke-width’ control is inoperable) and further
conditionality (the size could be either set statically or linked to
some data-dependent variable)

From this description we can generate a program to create a suit-
able editing dialogue and include the links to some data instance
corresponding to the element currently being edited. For reasons
that will become apparent later, we consider this editing dialogue

to be a specialist view of the result document (the ‘white-cross-
editor’) which happens to change its details as the selection in the
main view alters. By simple extensions to these editability declar-
ations we can for example include new archetypes of the element
for adding new copies to the document, describe suitable visual
indicators and selectors for them and indicate whether the elements
are capable of receiving additional children.

3.4. Modifying the Source Document(s)

When new values for properties of the part have been decided by
the human editor, she usually commits the changes via some ‘Apply’
control. The editing dialogue can then package up the new (and
unaltered) values as a data structure, along with the source point-
er to the exact element being edited, such as Figure 16:

<edit target="A.xml" position="1/2/1/1"
effector="white-cross">

<bind name="stroke"s>red</bind>

<bind name="size">13</bind>

<bind name="rotate"/>
</edit>

Figure 16. Edit modification request for the white cross

This data structure is then passed to a suitable ‘effector’ program
(identified as ‘white-cross’) which is responsible for altering the
properties on the element at the position //2/1/1. There are many
ways this could be achieved, such as direct manipulation of a DOM
tree, or in the case we use, by invoking an XSLT transform (actu-
ally called ‘white-cross’) which copies the document, modifying
those parts (of which there should be one only) which is at the indic-
ated position. These modifications could be altering a property
attribute, adding a given child or cloning or deleting the element
itself. Some operations may involve an additional modification of
the parent of that element, such as altering the sibling order of the
element or changing a specific property which is defined in the par-
ent itself, such as the ‘context-iterator’ for a text-block within an
iterator.

4. EDITING: THROUGH A VIEW

Thus far we have described how we can identify what is editable
and how, and how this information can pass through intermediate
processing stages to end up on the instance result document. We
could then have a smart editor that understood all these annotations
and responded appropriately. Such an editor would render the view
into a visual form, attach suitable processing to interaction events
such as mouse or keyboard clicks and arrange for selection indic-
ations and editing dialogues to be displayed and populated as
needed. But such an approach is not as flexible as it could be. In
this section we show how a further level of abstraction, editing
through a view enables many different types of manipulation to be
performed with a canonical final viewer.

Recall that our result document is an XML tree, with editing annota-
tions added to certain nodes that can be manipulated - it's usually
an SVG tree, but doesn't have to be, provided we can convert it
into some form of suitable visualisation, preserving the essential
annotations. For example we could visualise the result document
as a (picture of) an XML tree:

SVg:svg

square triangle

Cross

Figure 17. An XML tree view of the final result document

If the view that made the tree picture was also a good citizen, then
the elements corresponding to the editable nodes (the white crosses,
the ellipse and the svg: svg that's a flow) - in this case the text
tags, will still have the editing annotations attached. (In this view
we have decorated the elements which are editable with a border
surround, but they are not necessary for the method.) Thus these
parts are still editable in this view. No other alterations are required
to the editing framework whatsoever. Moreover multiple views of
the same result document can co-exist, each of them having poten-
tial access to the full editing of the document sources. The critic-
al idea is that the visual elements which are tagged for editability
as an svg: image don't have to actually be an image in the final
view, they just have have the correct editing attributes on them to
invoke the ‘image’ editing dialogues when selected.

The program that generates this resulting view can take many forms,
but as input and output are XML trees, XSLT has considerable
advantages, and as described elsewhere makes it distinctly possible
to generate suitable view-generation programs automatically. In our
implementation there is a message exchange mechanism whereby
views can generate messaging events and respond to certain classes
of these messages - this is used extensively to provide synchron-
isation between different views of the same result document, sup-
porting facilities such as co-ordinated selection displayss.

This use of a specific view to observe a result document can have
very many uses. For example a multi-page document could be con-
verted into an overlapping set of single pages with additional visu-
al control elements controls to set the visibility on the page in focus.
Similarly we could produce a view that only showed pieces that
were editable, either as perhaps a (long) list of correctly sized visu-
al pieces, or as a view of the document with uneditable sections
greyed out. Just as importantly we can consider the editing dialogues
themselves to be specialist views of the result document (possibly
in a different format such as XForms) which also respond to the
selection messages to set appropriate values for the properties.

S. EDITING: BUILDING THE PROGRAMS

We've described how by annotating source documents appropriately
and then detecting these annotations within some final view, we can
build a configurable editor. We've also described how the editab-
ility can be declared and what are appropriate editing ‘effector’ pro-
grams to alter the sources. There is now the issue of how these com-
ponents and annotations are actually generated and injected into the
workflows. To acheive this we must have a machine-readable ver-

5 - . .

Clicking on one result element generates a selection event which
triggers the display of selection for all result parts that share the
same source element.

sion of the workflow being used. Unsurprisingly the key is to devel-
op a compiler that operates on the editability specification and gen-
erates several program components and stitches them into modified
workflows. We need to build five separate types of output:

e Programs that annotate source templates (or variable data files)
with editability tracing attributes (the ‘annotators’)

e View generators that take the result document and produce the
appropriate graphic view complete with sensitivity information
or interactivity

e Edit dialogue generation programs which make the interactive
controls corresponding to the required editing (e.g. text, ellipse
under interator etc.) and the specific instance of that type being
operated on. This should also include code for type verification,
relevancy etc. These programs can be split into two separate sec-
tions for efficiency if required: a static component (the display,
verification code, possible values etc.) and a dynamic portion,
giving binding for a particular instance.

e Edit effecting programs that apply the requested change to the
selected element in the selected source template.

e A modified workflow such that the appropriate programs (espe-
cially the annotators) are added into the process where needed.

We need the workflow of our example to be modified to:

Editor |2 I

I‘i
Source -0 ‘.4F
Templates e
-
Bami |4 fjj

o
A Variable Data

Processing Pipeline

Figure 18. Modified workflow

The additional workflow components (the annotators and view gen-
erators) need to be ‘stitched into’ the existing workflow. If the
annotation, view & edit-dialogue generation and edit effector pro-
grams operate on XML sources then XSLT is a suitable language,
which has the advantage that they too can be generated as XML,
by a compiler itself written in XSLT. A workflow being presen-
ted in XML also helps as well of course.

The annotator programs are generated from the editability descrip-
tion as XSLT transforms with an xs1 : template instruction for
each of the editable pieces - this copies the element across, adds
the ‘position trace’ and ‘edit dialogue name’ tracking attributes and
then recursively processes children for more matches. Similarly the
view generator is responsible for arranging that only editable pieces
are selectable, how selection might be indicated, attachment to the
correct edit dialogue etc. It is similarly built from the editing descrip-
tion as an XSLT transform with templates to match result elements
which request various editors. And unsuprisingly all the other com-
ponents - edit dialogue generators and effector programs are built
from the edit description as XSLT transforms.

6. EDITING: LOCAL & REMOTE

‘Everything as a web service’ is a common mantra, and we need
to consider whether the editing of variable documents can be sup-
ported similarly. Luckily, establishing a few fairly simple interfaces
can make this possible, at least for simple forms of editing such
as via dialogue boxes. Much depends upon the expected smartness
of the browser client. There are a number of options from com-
pletely dumb (using merely (X)HTML and forms), through stand-
ard supported extensions (such as Javascript or Flash), to a browser-
specific specialist plug-in. But the essential approach remains sim-
ilar. The dumbest options require large amounts of communication
between client and server, the smartest fewest.

Firstly we need to enable the browser to display the result docu-
ment. If SVG is assumed available then that is preferable, but a
server-side image rendition of the viewed document (an image for
each page) can of course be employed. Then a simple HTML page
with the image referenced will suffice.

Secondly we need to make editable regions of the document view
sensitive. At the simplest we can provide an image map, though
we will have to arrange the map order to account for specificity
of action. In this case we link each area back to a specific request
for a new dialogue.

Thirdly, we need to define the dialogue that will perform the edit.
In the simplest case this might be a complete HTML page with some
suitable form elements. In more complex situations this might be
an abstraction of the edit ‘form’ which is then interpreted client-side.

7. EDITING: THE EDITABILITY

A common requirement in large document workflows is that dif-
ferent users have different capabilities of modifying documents, and
that some may have the ability to control what editing other (lower
power) users can perform. Sometimes this is on a large class of doc-
uments, sometimes it might be on a specific template or a given
instance. The architecture discussed here can support this with com-
paratively modest extra facilities. We can split the problem into two
parts: i) different editing powers for different users and ii) con-
trolling the editability scope within a document. The first is com-
paratively trivial - we could write different descriptions for differ-
ent roles, but it's better to generate different projections from the
same description. In our example we add some extra decorations:

<target match="cross|[@fill='white']"
e:edit-level-required="user">
<bindings>
<bind name="stroke" nodeset="@stroke"/>
</bindings>
<group>
<input label="Size" bind="size"/>
<checkbox label="Rotated" bind="rotate"/>
<button label="Delete" action="delete-element"
e:edit-level-required="master"/>
</group>
</targets>

Figure 19. Role-variable editing

We indicate that white crosses are only editable when some ‘power
level’ equals or exceeds ‘user’ level and that the ability to delete
an element requires master powers. It is comparatively trivial then
to generate different projections of the editability description for

different user roles and thence to completely different sets of com-
ponents of the editor, by evaluating these predicates on various ele-
ments. (The technique can use many different models: levels, cap-
abilities etc. with trivial changes in the underlying machinery).

If we want one user to be able to control the editing scope for anoth-
er then again a modest addition to the declaration can support it:

<target match="cross([@fill='white'] [Suser-level ge
(@e:edit-requires,0) [1]]">

<bindings>
<bind name="edit" nodeset="@e:edit-requires"/>
</bindings>
<group>
<selectl label="EditLevel" bind="edit">
<item>0</item>
<item>l</item>
<item>2</item>
</selectl>
</group>
</targets>

Figure 20. Setting the editability within the document

In this case we arrange for the addition of another optional prop-
erty e:edit-requires to the white crosses. Assuming there is
aglobal variable Suser-1level setto the current level of the user's
power, then if the user's level is below that recorded ina e : edit -
requires attribute on a given white cross in the source, then no
‘tracking’ annotations will be added to that white cross and it will
thus be uneditable by construction for that user, though of course
other white crosses requiring lower levels (with a default here of
0) might be. Similarly the e : edit -requires attribute on an ele-
ment can be edited just like any other property, so a simple added
edit control is all that is required to support this.

Finally, and incestuously, the editability descriptions are XML doc-
uments, so we could develop a graphical view for such documents,
and an editability description for elements within them and hence
develop and modify editability declarations graphically.

8. LIMITATIONS & SPECIAL TREATMENT

This technique clearly depends heavily on pieces that are editable
appearing as direct elements in the source XML tree and corres-
ponding elements appearing in the result XML document instances.
But there are other forms of generation that might be used for which
this is not the case. The first of these is where an element is con-
structed (xsl:element is the XSLT instruction) and the type
might be data dependent. This would be difficult, but not impossible,
to track and would require understanding of XSLT semantics to alter
the template ‘code’ to inject appropriate annotations.

8.1. Style Sets

The most important practical feature that requires specialist
treament is editing style sets, the use of which should be encour-
aged to increase document repurposing. Within XSLT such styles
are usually codedas xs1:attribute-set elements, which con-
tain named sets of applicable properties and can be cascaded
through a simple static inheritance graph. These styles are used by
result fragments referencing applicable attribute sets by name - these
properties can be further overridden by element-specific values, or
additional child attributes (Figure 21 where ‘attribute’ has been

shortened for compactness). So if we select a text block and want
to edit its font-size, where can we look ?

<xsl:attr-set name="base">
<xsl:attr name="font-family">Times-Roman</xsl:attr>
<xsl:attr name="font-size">9pt</xsl:attr>
</xsl:attr-set>
<xsl:attr-set name="A" use-attr-sets="base">
<xsl:attr name="font-size">1llpt</xsl:attr>
</xsl:attr-set>
<xsl:attr-set name="B">
<xsl:attr name="fill">green</xsl:attr>
</xsl:attr-set>
<fo:block font-size="12"
xsl:use-attribute-sets="A B"> Some text
</fo:block>

Figure 21. Styles in cascaded attribute sets

The font-size could be defined directly on the text-block itself. In
this case we can alter it directly in the usual way. Alternatively it
might in our example be contained in any of the attribute-sets A,
B or base. To actually determine where the definition is to edit,
we would need to ‘thread’ the attribute sets in the source document,
retrieving them in appropriate priority order. For simple documents
we can do this by following the ‘pointer’ to the fo:block and
then searching around the XML document tree to determine the
attribute set order. But if multiple documents have been merged to
produce a result (often styles are held in one document but refer-
enced from another) then this is much more complex.

It becomes clear that these stylistic interpolations can be edited by
the current approach, but only with enhanced understanding of the
document semantics - in this case the editing program elements must
be aware of the semantics of XSLT and its attribute-set and
particularly its non-local natureﬁ. Choice of the style to apply to a
given element (if any) is altogether much simpler - this is merely
editing the xsl:use-attribute-sets property and is little
different than any other property as regards editing.

8.2. Editing Variable Data

With the architecture described we can edit static text and the ‘map-
ping’ of dynamic text, i.e. those elements within the variable data
for a given instance from which we wish to interpolate text. Can
we use this mechanism to support editing the variable data itself,
such as changing the price for the ‘FlyBy’ tour, directly from the
result document? We could generate a specialist view of the data
‘record’ for ‘FlyBy’ and edit it as a static XML document, but with
some additional knowledge of (and modification of) the document
template semantics we can do this consistently. Note that we track
editable source elements into the result though annotations added
by specialist stages in the workflow. We can arrange that elements
in (XML) data records be annotated similarly. To complete the pro-
cess, we need to alter the document template to pass these annota-
tions across into the result elements. Figure 22 shows the modific-
ations required to a simple fo:block operating within a contex-
tual iterator to track data dependency

6It can be highly dynamic - both values and names of attributes can
be computed from application context - such dynamic uses would
essentially be uneditable in the proposed architecture.

<xsl:for-each select="address-line">
<fo:block>
<xsl:sequence
select="@e:data-posn,@e:data-editor"/>
<xsl:value-of select="."/>
</fo:block>
</xsl:for-each>

Figure 22. Tracking variable data causality

where the attributes @e:data-posn and @e:data-editor
may appear on (pre-processed) editable data, and point to the data
position and necessary editor respectively. This scheme can be
extended with increasing understanding of the semantics of the
source template.

9. PRIOR ART

The most common user-controlled variable-data documents are
probably those used for ‘mail merge’ in word processors like
MSWord. In this case the template is created with reserved struc-
tures (often with specialist field codes) to indicate the presence of
a variable interpolation point and how the value of the variable
should be interpolated. Typically this is then processed using a ‘wiz-
ard’ to complete the mapping process and project the output data.
These variables are usually only interpolating text, which means the
styling is taken from the text in which the reference is written, and
the layout (usually a text-flow) is again taken from the context.

Recent developments in variable data publishing technologies have
introduced a small number of products that support a more gener-
al solution. Pageflex[6] provides standalone and web-deployed tools
for editing presentation material in a grounded-layout and text-flow
copyhole model, with support for editing configuration and a suite
of standard tools. DialogueLive[7] supports role-based editing of
document instances against a computed variable document model,
which is extensible.

Quint discusses the use of structured editing in XML[8], where
DTD-driven constructor programs are created on a data instance
within the Amaya editor. He and his colleagues also approach edit-
ing documents where the stylistic and to some extent layout appear-
ance of the document is defined in a separate CSS stylesheet[9].
In this case the CSS stylesheet is analysed to produce an inversion,
to discover which part styled a particular result element.

When the document processing is performed by XSLT, as is increas-
ingly the case in the XML world, theoretical studies of increment-
al and reversible XSLT execution are relevant. Villard & Layaida
[10] describe an approach to incremental processing which recom-
putes only those sections of output that need to be from changes
to source or transformation. The use of an execution flow tree struc-
ture could perhaps be used to trace back from the output to caus-
al points in source document or transformational template and thus
support template editing from interaction in the result document.

Source-code debugging of programs[11] has employed some sim-
ilar ideas - the compiler (which of course has complete knowledge
of the language semantics) can modify the code to include addi-
tional tracking information to trace back to source code (usually
line/column) and add extra sections to trigger suitable (and differ-
entiated) breakpoints, making it possible to run program code under
inspection. Means to make the tracers more general and less lan-

guage/processor specific have been explored for many years [12].
However they don't support a general approach to ‘what caused this
piece of the final output’ design queries.

10. STATUS, FUTURE & THANKS

The architecture discussed is operational and has been used as the
basis of some current field trials for models of variable document
creation services, exploiting the client-server interface described.
An extensible compiler is used to create all necessary program ele-
ments and a multi-view, multi-document framework exists which
permits a wide variety of document types to be edited.

Future directions include adding models for more interactive edit-
ing, such as mouse-based manipulation (drag-n-drop, rubber-band),
supporting ‘partial rebuilding’ of documents (to decrease editing
response time) and exploring the use of ‘document type’ inform-
ation within the framework to support larger-scale authoring and
exploring multiple-view editing.

The authors are grateful to Philip Fennell and the development team
in HP Brazil, led by Alexis Cabeda and Eduardo Lutz, for their valu-
able help respectively on the implementation of early trial and devel-
opment versions of this framework.

11. REFERENCES
[1] Lumley, J., Gimson, R. and Rees, O. A Framework for Struc-

ture, Layout & Function in Documents . In Proceedings of
the 2005 ACM symposium on Document engineering. 2005.

[2] W3C, World Wide Web Consortium XSL Transformations
(XSLT) Version 2.0 . http://www.w3.org/TR/xslt20/. 2007.

[3] Lumley, J., Gimson, R. and Rees, O. Extensible Layout in
Functional Documents . In Digital Publishing, Proc. of SPIE-
IS&T Electronic Imaging, Vol 6076. 2006.

[4] W3C, World Wide Web Consortium XML Path Language
(XPath) 2.0 . http://www.w3.org/TR/xpath20/. 2007.

[5] W3C, World Wide Web Consortium XForms 1.0 (Third Edi-
tion) . http://www.w3.org/TR/xforms/. 2007.

[6] Bitstream Inc. Pageflex . http://www.bitstream.com/publish-
ing/products/pageflex/index.html. 2008.

[7] Exstream DialogueLive . http://www.exstream.
com/Products/DialogueLive/. 2008.

[8] Quint, V. and Vatton, I. Techniques for authoring complex
XML documents. In DocEng ‘04. Proceedings of the 2004
ACM symposium on Document engineering pages 115--123
ACM. 2004

[91 Quint, V. and Vatton, I. Editing with Style . In Proceedings
of the 2007 ACM symposium on Document engineering. 2007.

[10] Villard, L. and Layaida, N. An Incremental XSLT Transform-

ation Processor for XML Document Manipulation . In Proc.
11th World Wide Web Conference, Honolulu. 2002.

[11] Hennessy, J. Symbolic Debugging of Optimized Code. In
ACM Trans. Program. Lang. Syst.Vol 4 ,no 3 , pages 323--
344 ACM. 1982

[12] Ramsey, N. and Hanson, D. A retargetable debugger. In S/G-
PLAN Not.Vol 27 ,no 7, pages 22--31 ACM. 1992

