

Recognition of Eyes-free Handwriting Input for Pen and Touch
Interfaces
Bharath A. and Sriganesh Madhvanath
HP Laboratories
HPL-2008-51
May 21, 2008*

text input, pen and
touch interfaces,
handwriting
recognition

Continuous handwriting input using the finger on small devices such as
PDAs and mobile phones is difficult if not impossible. Also, handwriting
input has always required significant attention from the user during the
process of writing. In our previous work, we proposed the concept of
‘eyes-free writing’, a novel solution that addresses both the problems. In
this paper, we describe the challenges from the perspective of recognizing
eyes-free handwriting input and explain the architecture of our recognition
system in detail. Recognition is performed using word-level Hidden
Markov Models (HMM), and empirical evaluation of the recognition
accuracy using English and Tamil handwriting datasets has shown
promising results.

External Accession Date Only Approved for External Publication

Submitted to International Conference on Frontiers on Hand-writing Recognition (ICFHR 2008)

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Recognition of Eyes-free Handwriting Input for Pen and Touch

Interfaces

Bharath A. and Sriganesh Madhvanath

Hewlett-Packard Labs India

Bangalore, India

{bharath.a, srig}@hp.com

Abstract

Continuous handwriting input using the finger on small

devices such as PDAs and mobile phones is difficult if not

impossible. Also, handwriting input has always required

significant attention from the user during the process of

writing. In our previous work, we proposed the concept of

‘eyes-free writing’, a novel solution that addresses both

the problems. In this paper, we describe the challenges

from the perspective of recognizing eyes-free handwriting

input and explain the architecture of our recognition

system in detail. Recognition is performed using word-

level Hidden Markov Models (HMM), and empirical

evaluation of the recognition accuracy using English and

Tamil handwriting datasets has shown promising results.

Keywords: Text input, pen and touch interfaces,

handwriting recognition.

1. Introduction

The naturalness or ease-of-use offered by handwriting-

based text input methods has been the motivation for

researchers for several years to explore pen-based human-

computer interaction. Existing handwriting-based

interfaces can broadly be classified into character-by-

character input and continuous (e.g., word) input.

Character-by-character entry methods typically either make

use of the time lapse after writing or await explicit

indication by the user to trigger recognition. The Unistroke

approach [4] uses the end of stroke to signify the end of a

character and provides “heads-up” text input, but mandates

the user to learn special symbols. Word input methods

allow the entire word to be written at once before invoking

recognition. As a result, continuous handwriting input

methods for text entry are more efficient than their

character-entry counterparts. Apart from the challenges in

recognizing continuous input, in recent times as the sizes of

the devices tend to shrink, continuous handwriting using a

finger on a small area such as a PDA or a notebook

touchpad becomes difficult.

A key aspect in the case of handwritten input is user

attention. Almost in all continuous input methods such as

the Microsoft’s TabletPC handwriting input panel, the user

writes the way he/she would normally do on paper. The

characters that make up the word are written one after

another, with similar sizes and aligned horizontally with

respect to an imaginary or displayed baseline. This

classical way of writing demands significant user attention

and burdens the user with constant context switching

between the input panel and the application in focus. The

need for user attention becomes even more important in the

absence of visual feedback from the device, as in the case

of a graphics tablet.

The remainder of the paper is organized as follows. In

the next section, we describe the solution proposed in our

previous work [1] which addresses the two main issues of

continuous handwriting input using the finger on a small

device and the need for significant user attention during the

process of writing. In the sections that follow we focus on

the different components of a modified Hidden Markov

Model based word recognition system developed to

recognize eyes-free handwritten input. Section 3 describes

the preprocessing steps. The features extracted from the ink

are explained in Section 4. Word modeling using HMMs is

illustrated in Section 5. Sections 6 and 7 describe the

datasets used and the experimental evaluation carried out.

Some conclusions and future directions are stated in the

final section.

2. Eyes-free Handwriting Input

Our solution to the problems described above is

“attention-free writing” or “eyes-free writing”. This

solution is inspired by the question: what if the user does

not look at the writing? In other words, what are the side-

effects of such handwritten input? Analogous to touch-

typing where the typist does not look at the keyboard while

entering text, in the case of “eyes-free writing” the writer

does not have to look at the writing surface. Some of the

issues one may envisage resulting from such inputs are:

a. The relative position between the strokes

forming a character and between characters

becomes highly unreliable. As a result, the shape

of a multi-stroke character on the whole becomes

worse and the spatial alignment between

characters is lost.

b. The ascenders and descenders, considered to be

vital information in some approaches for word

recognition, disappear.

The eyes-free writing model may also be logically

extended to the small writing surface scenario (e.g.

notebook touchpad, mobile phones etc.) wherein the user is

allowed to overwrite on the same surface without

attempting to lay characters out in the conventional left-to-

right order. Such handwriting input is possible only

because of the intrinsic advantage with online ink capture.

The core idea of eyes-free writing is to use the shapes and

sequence of strokes, and ignore the unreliable sizes and

relative positions. Fig. 1 shows some examples of eyes-free

writing for large and small writing surface scenarios.

A related effort we came across recently is “overlaid

handwriting” published in [8]. That effort also addresses

the problem of small real-estate by allowing the users to

write one character over another to form the word.

However, it assumes that visual feedback is available, and

the relative position between strokes forming a character is

maintained by the user. In contrast, our solution does not

require that the ink be rendered back to the user, or that

relative position between strokes be maintained. In addition

to enabling “eyes-free” text input, this also makes our

solution suitable for devices without graphical displays.

The following sections describe the different stages of

our recognition system and how we cope with the

challenges posed by eyes-free writing.

3. Preprocessing for Eyes-free Handwriting

Input

Typically in any handwriting recognition system,

preprocessing is carried out to eliminate noise and any

undesirable variations in the input. However, unlike the

preprocessing techniques presented in the literature, in

order to cope with the issues described in the previous

section, we carry out stroke-level preprocessing. To deal

with the unreliable nature of position information,

irrespective of the position of the stroke on the writing

surface, we translate each stroke such that the (x-min, y-

min) point of its bounding box is moved to the origin. In

order to cope with the unreliable sizes, each stroke is

normalized by fixing the height or width of the bounding

box, whichever is larger, to a constant value and then

altering the length of the other dimension taking into

account the original aspect ratio of the stroke. Once the

handwritten word is preprocessed at the stroke level, each

stroke in the temporal order appears to be written at the

same location and with similar size as shown in Fig. 2.

4. Feature Extraction

Once the strokes in the word are preprocessed at the

stroke level, features are extracted at each point. Time-

domain features described in [6] are shown to be speed-

invariant and hence even for writer-independent

recognition no resampling is required in the preprocessing

step. The features at each point in the trajectory include

size normalized values of x and y, normalized first and

second derivatives of x and y, and curvature. The

normalized first derivatives are computed using the

equations shown below. The normalized second derivatives

are obtained by replacing x and y with the first derivatives

in these equations.
Figure 1. Eyes-free writing of the word “free”
on a (a) large surface (b) small device

 (a) (b)

Figure 2. Stroke-level preprocessing

5. HMM-based Recognition System

The HMM framework briefly described in [1] for

recognizing English overwriting, is described here in detail

and further validated for Tamil, an Indic script. The

different steps involved in training and testing of our

Hidden Markov Model based word recognition system are

shown in Fig. 3.

5.1. Symbol Definition

In the recognition of eyes-free writing for English,

lowercase letters (a-z) are defined as the symbols. On the

other hand, Tamil script belongs to the family of syllabic

alphabets [3] and consists of symbols for vowels and

consonants. In Tamil, the implicit vowel sound of each

consonant can be modified by adding another vowel sound

in the form of a diacritical mark, also known as matra. The

symbol set defined in [2], shown in Fig. 4, is reused here to

form the basic set of symbol classes in Tamil. Both in the

case of English and Tamil, symbols are the fundamental

units of recognition which are then extended to represent a

syllabic unit (consonant vowel combination) in the case of

Tamil, and then a word. However, representing a Unicode

word in Tamil as a sequence of these symbol IDs implicitly

imposes a writing order. Based on our knowledge about the

script and manual investigation of the collected

handwriting samples, we find that most people write the

consonant first followed by the matra barring a few

exceptions. Assuming this as a constraint, any Unicode

string in Tamil can be converted into a unique sequence of

symbol IDs.

5.2. Symbol Modeling

Hidden Markov Models are used for handwriting

recognition for two main reasons. Firstly, these are

stochastic models and hence can cope with noise and

variations in the input. Secondly, HMMs solve the problem

of segmentation implicitly.

Training

Figure 3. HMM-based architecture for recognizing eyes-free writing [1]

Testing

Stroke-level
Preprocessing

& Feature
Extraction

Estimation of
Number of

States for each
Symbol HMM

Left-to-Right
HMM Training for

each Symbol
Model

Concatenation of
Symbol HMMs to

form Word
HMMs

Efficient TRIE
representation of
Word HMMs to
model Lexicon

Test
Word

Sample

Viterbi
Decoding of the
TRIE Network
of Word HMMs

Recognition Result
(Maximum

Probability Path in
the TRIE)

Labeled
Samples of

Symbols

Stroke-level
Preprocessing &

Feature
Extraction

Figure 4. Tamil symbol set defined for word
recognition [2]

In the case of Tamil, handwritten word samples

collected from different writers are cleaned and labeled at

the symbol level. From the labeled word samples the ink

samples corresponding to each symbol are extracted. As a

result, each symbol typically has a few hundred samples

which form the training data for that symbol. In the case of

English, isolated lowercase character samples from the

IRONOFF [9] dataset form the train set. These samples are

then used to train a left-to-right HMM with no state

skipping (Fig. 5) to model the symbol. The well-known

Baum-Welch algorithm [7] is employed for training. The

number of states for the symbol HMM is determined based

on the average trajectory length of the symbol in the

training samples. The trajectory length is expected to

indicate the complexity of the shape as higher the length

more complex the shape is. Therefore complex shapes are

modeled using a large number of states. The state

probability density function is assumed to be a mixture of

Gaussians and the number of components was determined

empirically to be 15.

The reader may note that in the symbol set for Tamil

(Fig. 4) symbol 72 (vowel muting diacritic) and symbol 83

(period) are of identical shape and differ only in their

absolute positions in the word context. But since our

preprocessing step discards the position information, the

samples of 72 and 83 are used to train a single HMM and

the model is shared between the two symbols. However,

sometimes the loss of position information may also result

in ambiguity. For instance, taking an example from

English, it becomes impossible to distinguish a two-stroke

‘b’ written as “|” followed by “)” from a two-stroke “p”

written in the same way. In such cases additional

contextual information either in the form of a lexicon or a

language model is needed to resolve the ambiguity.

5.3. Word and Lexicon Modeling

Once the symbol models are formed as described

above, each word entry in the lexicon is again modeled as

an HMM. The word model corresponding to a sequence of

symbol IDs is constructed by simply concatenating the

constituent symbol models.

In order to model the lexicon, we use the efficient Trie

(also known as prefix tree) representation. Each node in the

tree corresponds to a symbol and the models corresponding

to the common prefixes are shared across words. The Trie

representation considerably reduces the recognition time in

addition to having low space complexity.

During recognition, the standard Viterbi algorithm is

used to determine the conditional probability of a

handwritten word given the word model. The label

associated with the word model that has the maximum

probability is assigned to the test word.

6. Dataset Description

6.1. Tamil

The Tamil dataset includes word samples written

normally on a Tablet PC by 132 writers. 112 writers’ data

was used for training and the rest for testing. In order to

evaluate writer-independent recognition, no writer is

present in both the train and test sets. All the samples in the

dataset were manually cleaned and labeled at the symbol

level. Out of the 981 word samples in the test set, 707

samples were written discretely i.e. there was a pen-up in

between every two consecutive symbols. Currently, our

recognition system supports only discrete style of writing.

This is mainly because, when the stroke-level

preprocessing is applied to a stroke that corresponds to two

or more symbols written cursively, the feature values are

likely to change significantly. The remaining 284 word

samples had mixed (cursive and discrete) style of writing

and hence were not used for evaluation. Details of the data

collection process may be found in [2].

6.2. English

Isolated lowercase character samples from the

IRONOFF [9] dataset were divided in the ratio 2:1 to form

the train and test character sets. The train set was used to

train the symbol models as described before. The test set

was used to artificially generate 3000 word samples from

the isolated character dataset for evaluating word

recognition accuracy. This was possible because of stroke-

level preprocessing and our assumption of discrete-style

input. More details about the generation of the test set may

be found in [1].

7. Experimental Evaluation

The recognition accuracy of the system for both

English and Tamil was computed on lexicons of different

sizes. Each N-word lexicon used the top N most frequently

used words in the language derived from a text corpus.

During evaluation, it was ensured that the sequence of

symbol IDs corresponding to the test word was present in

the lexicon in accordance with our standard writing order

constraints. Table 1. compares the accuracies for normal

writing (discrete and mixed-style) reported in [2], normal

writing with only discrete style, and eyes-free writing for

Tamil. It is encouraging to note that the accuracy on eyes-

free input is only marginally worse than discrete despite

discarding the position information. This suggests that for

Figure 5. Topology of a symbol HMM

Tamil, most of the information is in the shapes of strokes.

It is also interesting to note that the accuracy obtained on

eyes-free writing is more than that of the dataset that has

both mixed and discrete style samples. One possible reason

could be that the system for recognizing mixed style of

writing is burdened with the task of segmentation. On the

other hand, segmentation issue does not arise in the case of

eyes-free handwriting as it assumes that the input word is

written discretely. Table 1. also compares the accuracies of

eyes-free and normal writing for English. One may note

that the top 2 accuracy of eyes-free writing is close to the

state-of-the-art accuracy for normal writing published in

the literature [5]. The samples of lowercase letters in the

IRONOFF [9] dataset are written cursively and as a result

the similarity between symbols tends to be high. For

instance, ‘l’ and ‘e’ appear quite similar when written in

cursive style. This could possibly be the reason for the

accuracy of eyes-free writing of Tamil being more than that

of English. The experimental setup of our investigations for

Tamil is summarized in Table 2.

8. Conclusions and Future Directions

In this paper, we described the notion of “eyes-free

writing”, our solution for continuous input on a small

device. We then discussed the challenges for recognition of

such input. We also described the different components of

our HMM-based word recognition system. The stroke-level

preprocessing was shown to help in discarding the

unreliable position information resulting from eyes-free

writing. The recognition accuracy for eyes-free Tamil

writing was found to be comparable with normal writing

and hence it is encouraging to pursue this research thread

further.

 Our immediate next step is to evaluate the performance

of eyes-free handwriting recognition on other Indic scripts

such as Devanagari and Telugu. Since the Devanagari

script is considered to be more complex than Tamil, we

expect a few challenges ahead. For instance, unlike in

Tamil, Devanagari writing has a lot of stroke order/number

variations as well as symbol order variations, in which case

our writing order constraint may not be justified. We would

also like to support mixed (discrete-cursive combination)

styles of writing in our future system, which we believe

may be achieved by selection of appropriate features.

Along with the lexicon, one may also make use of language

models to improve recognition performance.

9. References

[1] Bharath A. and Sriganesh Madhvanath. “FreePad: A Novel

Handwriting-based Text Input for Pen and Touch

Interfaces,” Proceedings of the International Conference on

Intelligent User Interfaces, Canary Islands, Spain, Jan 13-16

2008.

[2] Bharath A and Sriganesh Madhvanath. “Hidden Markov

Models for Online Handwritten Tamil Word Recognition,”

Proceedings of the 9th International Conference on

Document Analysis and Recognition (ICDAR), Curitiba,

Brazil, 2007, pp. 506-510.

Table 1. Recognition accuracy for normal and eyes-free handwriting for Tamil and English

Tamil Word Recognition
English Lowercase Word

Recognition

Eyes-free Writing Eyes-freeWriting [1] Lexicon
Size

Normal
Writing

[2]

Normal
Writing

(Discrete
Input)

Top1 Top2

Normal
Writing

[5] Top1 Top2

1K 97.96 97.88 96.75 97.17 - 94.87 96.4

2K 95.82 97.31 96.18 96.75 - 93.6 95.63

5K 94.49 96.18 95.19 96.18 96 91.97 94.43

10K 93.17 94.77 94.20 96.04 94.7 90.63 93.87

20K 92.15 93.49 92.93 95.33 93.4 89.17 93.17

Table 2. Experimental setup for Tamil

Symbol HMM 15 Gaussian components per

state, variable number of states,

left-to-right HMM with no state

skipping

Lexicon Trie representation

Viterbi Setting Beam width = 750

Datasets

Training:

Testing:

112 writers, approx. 30 words, 2

samples per word per writer

20 writers, 707 discrete-style

word samples

[3] F. Coulmas. The Blackwell Encyclopedia of Writing

Systems. Blackwell, Oxford, 1996.

[4] D. Goldberg, and C. Richardson. “Touch-typing with a

stylus,” Proceedings of the ACM Conference on Human

Factors in Computing Systems - INTERCHI, Amsterdam,

The Netherlands, 1993, pp. 80-87.

[5] S. Jaeger, S. Manke, J. Reichert, and A. Waibel. Online

Handwriting Recognition: The NPen++ Recognizer.

International Journal on Document Analysis and

Recognition, 3:169–180, 2001.

[6] M. Pastor, A. Toselli, and E. Vidal, “Writing Speed

Normalization for On-Line Handwritten Text Recognition,”

Proceedings of the 8th International Conference on

Document Analysis and Recognition (ICDAR), Seoul,

Korea, 2005, pp. 1131–1135.

[7] R. Rabiner “A Tutorial on Hidden Markov Models and

Selected Applications in Speech Recognition," Proceedings

of IEEE, 1989, 79(2), pp. 257-286.

[8] H. Shimodaira, T. Sudo, M. Nakai, and S. Sagayama. “On-

line Overlaid-Handwriting Recognition Based on Substroke

HMMs,” Proceedings of the Seventh International

Conference on Document Analysis and Recognition

(ICDAR), Edinburgh, Scotland, 2003, pp. 1043 – 1047.

[9] C. Viard-Gaudin, P. M. Lallican, P. Binter, and S. Knerr.

“The IRESTE On/Off (IRONOFF) Dual Handwriting

Database,” Proceedings of the Fifth International

Conference on Document Analysis and Recognition

(ICDAR), Bangalore, India, 1999, pp. 455 – 458.

