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Abstract 

 
Continuous handwriting input using the finger on small 

devices such as PDAs and mobile phones is difficult if not 

impossible. Also, handwriting input has always required 

significant attention from the user during the process of 

writing. In our previous work, we proposed the concept of 

‘eyes-free writing’, a novel solution that addresses both 

the problems. In this paper, we describe the challenges 

from the perspective of recognizing eyes-free handwriting 

input and explain the architecture of our recognition 

system in detail.  Recognition is performed using word-

level Hidden Markov Models (HMM), and empirical 

evaluation of the recognition accuracy using English and 

Tamil handwriting datasets has shown promising results.  
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1. Introduction 

The naturalness or ease-of-use offered by handwriting-

based text input methods has been the motivation for 

researchers for several years to explore pen-based human-

computer interaction. Existing handwriting-based 

interfaces can broadly be classified into character-by-

character input and continuous (e.g., word) input. 

Character-by-character entry methods typically either make 

use of the time lapse after writing or await explicit 

indication by the user to trigger recognition. The Unistroke 

approach [4] uses the end of stroke to signify the end of a 

character and provides “heads-up” text input, but mandates 

the user to learn special symbols. Word input methods 

allow the entire word to be written at once before invoking 

recognition. As a result, continuous handwriting input 

methods for text entry are more efficient than their 

character-entry counterparts. Apart from the challenges in 

recognizing continuous input, in recent times as the sizes of 

the devices tend to shrink, continuous handwriting using a 

finger on a small area such as a PDA or a notebook 

touchpad becomes difficult. 

A key aspect in the case of handwritten input is user 

attention. Almost in all continuous input methods such as 

the Microsoft’s TabletPC handwriting input panel, the user 

writes the way he/she would normally do on paper. The 

characters that make up the word are written one after 

another, with similar sizes and aligned horizontally with 

respect to an imaginary or displayed baseline. This 

classical way of writing demands significant user attention 

and burdens the user with constant context switching 

between the input panel and the application in focus. The 

need for user attention becomes even more important in the 

absence of visual feedback from the device, as in the case 

of a graphics tablet. 

The remainder of the paper is organized as follows. In 

the next section, we describe the solution proposed in our 

previous work [1] which addresses the two main issues of 

continuous handwriting input using the finger on a small 

device and the need for significant user attention during the 

process of writing. In the sections that follow we focus on 

the different components of a modified Hidden Markov 

Model based word recognition system developed to 

recognize eyes-free handwritten input. Section 3 describes 

the preprocessing steps. The features extracted from the ink 

are explained in Section 4. Word modeling using HMMs is 

illustrated in Section 5. Sections 6 and 7 describe the 

datasets used and the experimental evaluation carried out. 

Some conclusions and future directions are stated in the 

final section. 

2. Eyes-free Handwriting Input 

Our solution to the problems described above is 

“attention-free writing” or “eyes-free writing”. This 

solution is inspired by the question: what if the user does 

not look at the writing? In other words, what are the side-

effects of such handwritten input? Analogous to touch-

typing where the typist does not look at the keyboard while 

entering text, in the case of “eyes-free writing” the writer 

does not have to look at the writing surface.  Some of the 

issues one may envisage resulting from such inputs are: 

a. The relative position between the strokes 

forming a character and between characters 



  

 

becomes highly unreliable. As a result, the shape 

of a multi-stroke character on the whole becomes 

worse and the spatial alignment between 

characters is lost. 

b. The ascenders and descenders, considered to be 

vital information in some approaches for word 

recognition, disappear. 

The eyes-free writing model may also be logically 

extended to the small writing surface scenario (e.g. 

notebook touchpad, mobile phones etc.) wherein the user is 

allowed to overwrite on the same surface without 

attempting to lay characters out in the conventional left-to-

right order. Such handwriting input is possible only 

because of the intrinsic advantage with online ink capture. 

The core idea of eyes-free writing is to use the shapes and 

sequence of strokes, and ignore the unreliable sizes and 

relative positions. Fig. 1 shows some examples of eyes-free 

writing for large and small writing surface scenarios. 

A related effort we came across recently is “overlaid 

handwriting” published in [8]. That effort also addresses 

the problem of small real-estate by allowing the users to 

write one character over another to form the word. 

However, it assumes that visual feedback is available, and 

the relative position between strokes forming a character is 

maintained by the user. In contrast, our solution does not 

require that the ink be rendered back to the user, or that 

relative position between strokes be maintained. In addition 

to enabling “eyes-free” text input, this also makes our 

solution suitable for devices without graphical displays.  

The following sections describe the different stages of 

our recognition system and how we cope with the 

challenges posed by eyes-free writing. 

3. Preprocessing for Eyes-free Handwriting 

Input 

Typically in any handwriting recognition system, 

preprocessing is carried out to eliminate noise and any 

undesirable variations in the input. However, unlike the 

preprocessing techniques presented in the literature, in 

order to cope with the issues described in the previous 

section, we carry out stroke-level preprocessing. To deal 

with the unreliable nature of position information, 

irrespective of the position of the stroke on the writing 

surface, we translate each stroke such that the (x-min, y-

min) point of its bounding box is moved to the origin. In 

order to cope with the unreliable sizes, each stroke is 

normalized by fixing the height or width of the bounding 

box, whichever is larger, to a constant value and then 

altering the length of the other dimension taking into 

account the original aspect ratio of the stroke. Once the 

handwritten word is preprocessed at the stroke level, each 

stroke in the temporal order appears to be written at the 

same location and with similar size as shown in Fig. 2. 

4. Feature Extraction 

Once the strokes in the word are preprocessed at the 

stroke level, features are extracted at each point. Time-

domain features described in [6] are shown to be speed-

invariant and hence even for writer-independent 

recognition no resampling is required in the preprocessing 

step. The features at each point in the trajectory include 

size normalized values of x and y, normalized first and 

second derivatives of x and y, and curvature. The 

normalized first derivatives are computed using the 

equations shown below. The normalized second derivatives 

are obtained by replacing x and y with the first derivatives 

in these equations. 
Figure 1. Eyes-free writing of the word “free” 
on a (a) large surface (b) small device 

      (a)                                               (b) 

Figure 2. Stroke-level preprocessing 



  

 

5. HMM-based Recognition System 

The HMM framework briefly described in [1] for 

recognizing English overwriting, is described here in detail 

and further validated for Tamil, an Indic script. The 

different steps involved in training and testing of our 

Hidden Markov Model based word recognition system are 

shown in Fig. 3. 

5.1. Symbol Definition 

In the recognition of eyes-free writing for English, 

lowercase letters (a-z) are defined as the symbols. On the 

other hand, Tamil script belongs to the family of syllabic 

alphabets [3] and consists of symbols for vowels and 

consonants. In Tamil, the implicit vowel sound of each 

consonant can be modified by adding another vowel sound 

in the form of a diacritical mark, also known as matra. The 

symbol set defined in [2], shown in Fig. 4, is reused here to 

form the basic set of symbol classes in Tamil. Both in the 

case of English and Tamil, symbols are the fundamental 

units of recognition which are then extended to represent a 

syllabic unit (consonant vowel combination) in the case of 

Tamil, and then a word. However, representing a Unicode 

word in Tamil as a sequence of these symbol IDs implicitly 

imposes a writing order. Based on our knowledge about the 

script and manual investigation of the collected 

handwriting samples, we find that most people write the 

consonant first followed by the matra barring a few 

exceptions. Assuming this as a constraint, any Unicode 

string in Tamil can be converted into a unique sequence of 

symbol IDs. 

5.2. Symbol Modeling 

Hidden Markov Models are used for handwriting 

recognition for two main reasons. Firstly, these are 

stochastic models and hence can cope with noise and 

variations in the input. Secondly, HMMs solve the problem 

of segmentation implicitly.  

Training 

Figure 3. HMM-based architecture for recognizing eyes-free writing [1] 

Testing 
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In the case of Tamil, handwritten word samples 

collected from different writers are cleaned and labeled at 

the symbol level. From the labeled word samples the ink 

samples corresponding to each symbol are extracted. As a 

result, each symbol typically has a few hundred samples 

which form the training data for that symbol. In the case of 

English, isolated lowercase character samples from the 

IRONOFF [9] dataset form the train set. These samples are 

then used to train a left-to-right HMM with no state 

skipping (Fig. 5) to model the symbol. The well-known 

Baum-Welch algorithm [7] is employed for training. The 

number of states for the symbol HMM is determined based 

on the average trajectory length of the symbol in the 

training samples. The trajectory length is expected to 

indicate the complexity of the shape as higher the length 

more complex the shape is. Therefore complex shapes are 

modeled using a large number of states. The state 

probability density function is assumed to be a mixture of 

Gaussians and the number of components was determined 

empirically to be 15. 

The reader may note that in the symbol set for Tamil 

(Fig. 4) symbol 72 (vowel muting diacritic) and symbol 83 

(period) are of identical shape and differ only in their 

absolute positions in the word context. But since our 

preprocessing step discards the position information, the 

samples of 72 and 83 are used to train a single HMM and 

the model is shared between the two symbols.  However, 

sometimes the loss of position information may also result 

in ambiguity. For instance, taking an example from 

English, it becomes impossible to distinguish a two-stroke 

‘b’ written as “|” followed by “)” from a two-stroke “p” 

written in the same way. In such cases additional 

contextual information either in the form of a lexicon or a 

language model is needed to resolve the ambiguity. 

5.3. Word and Lexicon Modeling 

Once the symbol models are formed as described 

above, each word entry in the lexicon is again modeled as 

an HMM. The word model corresponding to a sequence of 

symbol IDs is constructed by simply concatenating the 

constituent symbol models. 

In order to model the lexicon, we use the efficient Trie 

(also known as prefix tree) representation. Each node in the 

tree corresponds to a symbol and the models corresponding 

to the common prefixes are shared across words. The Trie 

representation considerably reduces the recognition time in 

addition to having low space complexity. 

During recognition, the standard Viterbi algorithm is 

used to determine the conditional probability of a 

handwritten word given the word model. The label 

associated with the word model that has the maximum 

probability is assigned to the test word. 

6. Dataset Description 

6.1. Tamil 

The Tamil dataset includes word samples written 

normally on a Tablet PC by 132 writers. 112 writers’ data 

was used for training and the rest for testing. In order to 

evaluate writer-independent recognition, no writer is 

present in both the train and test sets. All the samples in the 

dataset were manually cleaned and labeled at the symbol 

level. Out of the 981 word samples in the test set, 707 

samples were written discretely i.e. there was a pen-up in 

between every two consecutive symbols. Currently, our 

recognition system supports only discrete style of writing.  

This is mainly because, when the stroke-level 

preprocessing is applied to a stroke that corresponds to two 

or more symbols written cursively, the feature values are 

likely to change significantly. The remaining 284 word 

samples had mixed (cursive and discrete) style of writing 

and hence were not used for evaluation. Details of the data 

collection process may be found in [2]. 

6.2. English 

Isolated lowercase character samples from the 

IRONOFF [9] dataset were divided in the ratio 2:1 to form 

the train and test character sets. The train set was used to 

train the symbol models as described before. The test set 

was used to artificially generate 3000 word samples from 

the isolated character dataset for evaluating word 

recognition accuracy. This was possible because of stroke-

level preprocessing and our assumption of discrete-style 

input. More details about the generation of the test set may 

be found in [1]. 

7. Experimental Evaluation 

The recognition accuracy of the system for both 

English and Tamil was computed on lexicons of different 

sizes. Each N-word lexicon used the top N most frequently 

used words in the language derived from a text corpus. 

During evaluation, it was ensured that the sequence of 

symbol IDs corresponding to the test word was present in 

the lexicon in accordance with our standard writing order 

constraints. Table 1. compares the accuracies for normal 

writing (discrete and mixed-style) reported in [2], normal 

writing with only discrete style, and eyes-free writing for 

Tamil. It is encouraging to note that the accuracy on eyes-

free input is only marginally worse than discrete despite 

discarding the position information. This suggests that for  

Figure 5. Topology of a symbol HMM 



  

 

Tamil, most of the information is in the shapes of strokes. 

It is also interesting to note that the accuracy obtained on 

eyes-free writing is more than that of the dataset that has 

both mixed and discrete style samples. One possible reason 

could be that the system for recognizing mixed style of 

writing is burdened with the task of segmentation. On the 

other hand, segmentation issue does not arise in the case of 

eyes-free handwriting as it assumes that the input word is 

written discretely. Table 1. also compares the accuracies of 

eyes-free and normal writing for English. One may note 

that the top 2 accuracy of eyes-free writing is close to the 

state-of-the-art accuracy for normal writing published in 

the literature [5]. The samples of lowercase letters in the 

IRONOFF [9] dataset are written cursively and as a result 

the similarity between symbols tends to be high. For 

instance, ‘l’ and ‘e’ appear quite similar when written in 

cursive style. This could possibly be the reason for the 

accuracy of eyes-free writing of Tamil being more than that 

of English. The experimental setup of our investigations for 

Tamil is summarized in Table 2. 

8. Conclusions and Future Directions 

In this paper, we described the notion of “eyes-free 

writing”, our solution for continuous input on a small 

device. We then discussed the challenges for recognition of 

such input. We also described the different components of 

our HMM-based word recognition system. The stroke-level 

preprocessing was shown to help in discarding the 

unreliable position information resulting from eyes-free 

writing. The recognition accuracy for eyes-free Tamil 

writing was found to be comparable with normal writing 

and hence it is encouraging to pursue this research thread 

further. 

 Our immediate next step is to evaluate the performance 

of eyes-free handwriting recognition on other Indic scripts 

such as Devanagari and Telugu. Since the Devanagari 

script is considered to be more complex than Tamil, we 

expect a few challenges ahead. For instance, unlike in 

Tamil, Devanagari writing has a lot of stroke order/number 

variations as well as symbol order variations, in which case 

our writing order constraint may not be justified. We would 

also like to support mixed (discrete-cursive combination) 

styles of writing in our future system, which we believe 

may be achieved by selection of appropriate features. 

Along with the lexicon, one may also make use of language 

models to improve recognition performance. 
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