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aFacultad de Ciencias F́ısicas y Matemáticas, Universidad de Chile, Beauchef 850, Santiago, Chile.
bHP Laboratories, Palo-Alto, CA 94034.

Abstract

An SLA/Contract is an agreement between a client and a service provider. It specifies

desired levels of service and penalties in case of violations. The objective of this work is to

develop a mathematical model for the negotiation process before an agreement is reached. The

model will be based on Game Theory models of signaling games. The idea is to try to capture

the bargaining process that occurs when clients are offered not just a take-it-or-leave-it contract

but also the opportunity for them to express their preferences via a counteroffer. Of course,

many times this counteroffer does not meet the service provider objectivess and that’s how the

bargaining begins. Then having the game defined we try to find equilibria of the game.

0Work developed during stay at HP Labs Palo-Alto
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1. Introduction

A Service Level Agreement is (SLA/Contract) is an agreement between a provider and a consumer
which is comprised of Service Level Objectives that guarantee quality of service (such as availability,
performance and reliability), a promise of payment and penalties to impose in case the objectives
are not met. The study of such contracts has become increasingly important with the increasing use
of IT outsourcing procedures, which had reached 56 billion in 2000 and was expected to reach 100
by 2005 (Dermikan et al. 2005). While the original practice of IT outsourcing contracts involved
complicated measures to safeguard the clients interest against the many potential mishaps, a more
modern approach has focused on a system of penalties and rewards based on observed quality of
service, serving as a monetary compensation that insures the client in case the service is suboptimal
(Dermikan et al. 2005).

Of course the design of a SLA requires interaction between the provider and the consumer, since
even though the provider may know the level of service that can be arranged only the consumer
knows the level of service that he requires. Therefore it’s only natural for the design of a SLA that
the provider and the consumer negotiate in order to achieve a SLA that is good enough for both
parties. Of course the develpment of this negotiation is very complex and may eventually result in
a SLA that doesn’t work for any of the parties.

The objective of this work is to develop a mathematical model for the negotiation process before
agreeing to an SLA. The model will be based on Game Theory models of signaling games[4]. The
idea is to try to capture the bargaining process that occurs when clients are offered not just a take-it-
or-leave-it contract but also the opportunity for them to express their preferences via a counteroffer.
Of course, many times this counteroffer does not meet the service provider preferences and that’s
how the bargaining begins.

The idea is to find equilibria of this game, that is to say situations where no one wants to change
their strategy. Since there is some signaling involved, these equilibria must be consequent with the
Bayes’ rule1. This means that in an equilibrium given the strategy of the players I won’t update
my beliefs and therefore I will have no incentive to change my strategy.

First in section 2. we will describe the problem we want to model. In section 3. we will present
the game that will work as a base for the diferent models, and in section B we will describe several
models, make examples of application of those models and characterize the equilibria if possible.
Later, in section 6., we will describe other works develped in this area. Finally in section 7. we will
recapitulate the results that the model establishes and also comment on the contrast of the model
with reality.

1The reason the equilibria are required to comply with the Bayes’ rule is that if they do not follow the Bayes’

rule then it means that the player is not updating her beliefs in a rational way.
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2. The Problem

In this article, we are considering a negotiation scenario between a service provider and a client. The
service provider provides services (which could be n-tier services e.g. cluster of appservers/databases,
or three-tiered services) that the client intends to use. The service provider furnishes the customer
SLA templates to begin with. For example, if the client is seeking to use an HPC service, the
service provider may provide different templates which provide choices between the price and time
to completion. Since different clients have varied needs, clients would like to modify some of the
contracts in order to adjust it more closely to their needs, for example if a contract template states
a price of 200 USD for 10 hrs in time to completion, the client may need to readjust it to obtain
the results earlier in 8 hrs. The client may be willing to pay a premium and a total amount of 400
USD. The client in this case will negotiate and provide a counter-offer. The service provider will
weigh-in on the counter offer based on its overall objectives. The service provider by looking at the
counteroffer gets an idea of the client’s preferences and decides to make a final offer. The client
may then accept the new offer or decide to abandon the negotiation.

This is the problem we are looking forward to model. This is a simplification of a scenario
where the service provider may not only have to solve the negotiation problem with the client,
but also think on how to efficiently allocate resources across clients. Likewise the client may be
negotiating with one or more enterprises for the same service. Of course every client is different,
even the same client at different stages in time might behave completely different, although as a
service provider gets to know different kinds of clients, it may be able to classify its clients based on
common properties that the client have into certain classes (e.g. gold, silver bronze). Also different
clients have varying degree of quality sensistivity, large enterprises are highly sensitive to quality
requirements while small and medim business may not be as sensitive.
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3. The Model

We will model the problem as a dynamic game between the service provider and the client. Before
describing the game development, let’s describe the elements of the game. There are initial contracts
M = {(pj , qj)|j = 1, . . . ,m}, the client may have different utility functions based on its type, this
type is denoted as λ ∈ Λ = {λi|i = 1, . . . , n}, there are probabilities known to each of the players
that refer to the client’s type, these probabilities will be denoted as P(λ = λi) = ri and finally there
will be utility functions that describe the utility of commiting to a contract: for the service provider
the utility will be denoted as u2(p, q) and for the client of type λ will be denoted as u1((p, q), λ).

Next we describe the game and how it develops:

• The client approaches the service provider, chooses one of the contracts (p, q) ∈ M and
modifies it to his advantage. We’ll model this modification as choosing a contract (p′, q′) such
that ‖(p′, q′) − (p, q)‖ ≤ εp for a given parameter ε which will be refered to as negotiation
percentage.

• The service provider receives this counteroffer and extracts some information about the client’s
type. He uses this information to update the initial beliefs about the client’s type and give a
final counteroffer. Following the previous idea if (p′, q′) is the client’s counteroffer, the service
provider chooses a contract (p∗, q∗) such that ‖(p∗, q∗)− (p′, q′)‖ ≤ ηp′, the parameter η will
be refered to as the service provider negotiation percentage.

Going into details, player 2 will be the service provider with a utility function u2 : R2 → R and
u2((p, q)) describes service provider’s utility when the contract (p, q) is established. Player 1 would
be the client with a utility function u1 : R2 × Λ → R and u1((p, q), λ) represents the client’s type
λ ∈ Λ utility when the contract (p, q) is established. Here the usual hypothesis are assumed, that
is, u1p > 0, u2p < 0, u1q < 0, u2q > 0, u1pp ≤ 0, u1qq ≤ 0, u1pq = 0, u2pp ≤ 0, u2qq ≤ 0, u2pq = 0. We
will also assume that the client accepts any contract such that u1((p, q), λ) ≥ 0, the service provider
will accept any contract such that u2((p, q)) ≥ 0. The game played will be G = (A1, A2, F ) where
A1 and A2 represent action space for player 1 and player 2 respectively and F is the payoff function
of the game. The action space for the client will be

A1 = {(p, q) ∈ R2|‖(p, q)− (pj , qj)‖ ≤ pjε for some (pj , qj) ∈M}. (1)

For the service provider or player 2, the action space will depend on the action taken by player 1:

A2(p′, q′) = {(p, q) ∈ R2|‖(p, q)− (p′, q′)‖ ≤ p′η}. (2)

The payoff function F : A1 ×A2 × Λ→ R
2 is as follows:

F 1((p′, q′), (p, q), λk) = (u1((p, q), λk))+ (3)

F 2((p′, q′), (p, q), λk) =
{

0 Si u1((p, q), λk) < 0
u2(p, q) Si u1((p, q), λk) ≥ 0

(4)

Here we will add an additional assumption in order to simplfy the subject:
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Assumption 1 Given the assumptions in section 3. then the nondominated strategies for the client
are finite. Moreover there are at most nm possible counteroffers (one for each contract in the menu)
and are solution to the problem:

max u1((p, q), λ) (5)

s.t. ‖(p, q)− (pj , qj)‖ ≤ pjε (6)

Here we consider the case when a client try to pretend to have another type. A proposition
follows:

Proposition 2 Given the assumptions in section 3. then the nondominated strategies for the ser-
vice provider given a counteroffer from the client (p′, q′) are finite. Moreover there are at most m
possible final offers (one for each client type) and are solution to the problem:

max u2((p, q)) (7)

s.t. ‖(p, q)− (p′, q′)‖ ≤ p′η (8)

u1((p, q), λ) ≥ 0 (9)

The assumption and the proposition that followed make it much easier to study the game and
therefore its equilibria. Now we extend the payoff function to the set of strategies:

A1 = {σ1 = (σ1(·|λi))mi=1|
∑

(p,q)∈A1

σ1((p, q)|λi) = 1 ∀i = 1, . . . ,m.}. (10)

A2 = {σ2 = (σ2(·|(p, q)))(p,q)∈A1 |
∑

(r,s)∈A2

σ2((r, s)|(p, q)) = 1 ∀(p, q) ∈ A1}. (11)

In the following way,F : A1 ×A2 × Λ→ R
2:

F 1(σ1, σ2, λk) =
∑

(p,q)∈A1

∑
(r,s)∈A2(p,q)

σ1((p, q)|λk)σ2((r, s)|(p, q))F 1((p, q), (r, s), λk). (12)

F 2(σ1, σ2, λk) =
∑

(p,q)∈A1

∑
(r,s)∈A2(p,q)

σ1((p, q)|λk)σ2((r, s)|(p, q))F 2((p, q), (r, s), λk). (13)

The idea is to find an equilibrium, that is a situation where neither the client nor the service
provider would like to change their behaviour. The concept of equilibrium in this framework is
the perfect bayesian equilibrium or PBE. A PBE is a trio (beliefs, client’s strategy, service provider
strategy) =(µ, σ∗1 , σ

∗
2) that satisfies2:

(P1) ∀i, σ∗1 ∈ arg max
α1∈A1

F 1(α1, σ
∗
2 , λi),

(P2) ∀a1, σ
∗
2(·|a1) ∈ arg max

α2∈A2

m∑
i=1

µ(λi|a1)F 2(a1, α2, λi),

(B) If
m∑
i=1

riσ
∗
1(a1|ri) > 0, µ(λj |a1) =

rjσ
∗
1(a1|λj)∑m

i=1 riσ
∗
1(a1|λi)

.

2Here we considered the natural extension of the utility functions to mixed strategies
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(P1) and (P2) mean neither the service provider nor the client have incentive to change their
strategies since they are maximizing their utility. (B) means that given the actions of the client,
the service provider doesn’t change her beliefs about the client’s type.

Some results have been deduced for the model, such as:

Proposition 3 Given the model described, any strategy that satisfies (P2) is such that:

(∀(p′, q′) ∈ A1)(∃(p, q) ∈ A2(p′, q′)) σ∗2((p, q)|(p′, q′)) = 1
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4. Non Linear Numeric Example: 3 Clients 3 Initial Contracts

The model considered for this example consists on a client’s utility function u1(p, q, λi) = ai −
cie
−λiq−p where the constants {ai}mi=1 and {ci}mi=1 are given, and a service provider utility function:

u2(p, q, λ) =
{
p− d− cezq If client type λ accepts
0 Otherwise

where the constants d, c and z are given. It was also considered m = n = 3, that is 3 types of client
and 3 initial contracts.

Initially we have the clients and the service provider, with their respective utility functions. In
figure 1 we show the contour of the utility function asociated to the reservation utility, that is to
say any contract with utility lower than the described is not acceptable, any contract with utility
greater than the described is acceptable. The contracts with greater utility are in the direction
of the arrow next to the utility function. For example for the service provider the contracts with
greater utility are found by increasing the price or lowering the quality.

Figure 1: Utility functions of the players.

This allows to define negotiation areas, that is contracts that are rationally acceptable for both
the service provider and the client. For example in figure 2 we see the negotiation area between the
service provider and the client type 2.

Figure 2: Negotiation area between the type 2 client and the service provider.

The same can be done for the type 3 client and the type 1 client.

Figure 3: Negotiation areas between the type 1 and 3 client and the service provider.

Initially the service provider offers 3 contracts that can be located in the graph as seen in figure
4.

The client has a certain area in which he can modify the contract, as seen in figure 5:
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Figure 4: Location of the initial contracts.

Figure 5: Area of posible replyes from the client.

From within these contracts the client may choose his reply, of course this reply will have less
price and more quality if possible. For example possible client replyes might be like the ones
described in figure 6.

Figure 6: Possible client replyes.

Now seeing this counter offer the service provider tries to infer information about the client
and designs an optimal counteroffer within a certain negotiation range. In figure 7 we present a
negotiation range.

Figure 7: Service provider’s negotation range.
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In figure 8 we present the final schema of the negotiation. This is the actual output for the
application developed.

Figure 8: Service provider’s negotation range.
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5. An Example Of Application

The application was developed as a Java Swing frame based application using Eclipse’s Visual
Editor. The applications first screen consist of a dialog where you input all the parameters for the
problem: Negotiation parameters, utility function parameters (This may be estimated also) and
the initial contracts.

Figure 9: Application Screen 1.

The next screen requires as an input a maximum number of iterations, with default value as
100. These iterations are for computing the action space of the players. As we saw in proposition
1 the client’s actions can be found by solving the problem (5), therefore according to Karush Kuhn
Tucker conditions the solution to (5) is such that:

p = pj −
ε

(e2λiq + c2iλ
2
i )

1
2
eλiq (14)

q = qj +
ciλiε

(e2λiq + c2iλ
2
i )

1
2

(15)

Therefore we used the following fixed point iteration to solve (15):

q0 = qj +
ciλiεpj

(1 + c2iλ
2
i )

1
2

(16)

qn+1 = qj +
ciλiεpj

(e2λiqn + c2iλ
2
i )

1
2

(17)

Here q0 which corresponds to the solution of the linealized problem3 and the number of iterations
made are defined by the input parameter. To obtain the value of p we just replace the obtained
value of q in (14).

In the second screen of the application the program prints the optimal replies for the client as
well as a maximum error, this error is the difference:

Err = qN − (qj +
ciλiε

(e2λiqN + c2iλ
2
i )

1
2

)

3Just linealizing the utility function.
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where N is the maximum number of iterations, then the error is the difference between the last
iteration and what would be the next iteration. The number printed is the maximum error among
all the computations.

Figure 10: Application Screen 2.

After having the solution for the client’s replyes the next step in the program is to find the
service provider replyes. In order to do this the problem to solve is described by (7), to find the
optimal solution to this problem we first found the solution to the following problems:

(Pb1) max
(p,q)

u2(p, q, λ) (18)

s.t. ‖(p, q)− (p′, q′)‖ ≤ p′η (19)

(Pb2) u1(p, q, λ) = 0 (20)

‖(p, q)− (p′, q′)‖ = p′η (21)

To solve (Pb1) we used an analogous method, obtained the Karush Kuhn Tucker Conditions and
the followed the following fixed point schema in order to solve them:

q0 = q′ − czηp′

(1 + c2z2)
1
2

(22)

qn+1 = q′ − czηp′

(e−2zqn + c2z2)
1
2

(23)

To solve (Pb2) we used (20) to obtain a relationship p = f(q) +p′ for some function f that does
not depend on p. and replaced on (21). The following equation was obtained after replacing:

(q − q′)2 = η2p′2 − (ai − cie−λiq − p′)2

Here f(q) = ai − cie
−λiq. This problem has two solutions, both may be feasible. Then we
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followed two fixed point schemas:

q00 = q′ (24)

q0n+1 = q′ −
√
|η2p′2 − (ai − cie−λiq0n − p′)2| (25)

q10 = q′ (26)

q1n+1 = q′ +
√
|η2p′2 − (ai − cie−λiq1n − p′)2| (27)

To illustrate the fixed points we are computing let’s see figure 11

Figure 11: Fixed points solution.

In figure 11 we represent the negotiation area of the service provider by the brown circle, the
client’s utility function by the green curve and the client’s reply by the pink center of the circle.
The solution to (23) is the blue square which would be the optimal without considering if the client
accepts or not, the solution to (25) would be the black square, which would be a feasible solution for
both the client and the service provider, and the other feasible solution would be (27). To obtain
the optimal reply given the type we consider out of these 3 problems (if applicable) which one gives
the most utility.

Screens 3 and 4 of the application show the optimal reply of the service provider given each
type.

Figure 12: Application’s screen 3 and 4.

Now that we the information regarding the actions of the player what’s left is to find a perfect
Bayesian equilibrium. Before explaining the methodology followed, first let’s show the natural order
of the problem:
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• The client follows a strategy σ1(·|λi)

→ That strategy induces some beliefs µ(λj |a1) = rjσ
∗
1 (a1|λj)∑m

i=1 riσ
∗
1 (a1|λi)

→ The service provider decides to play σ∗2(·|a1) ∈ arg maxα2∈A2

∑m
i=1 µ(λi|a1)F 2(a1, α2, λi)

→ The client obtains a utility F 1(σ1(·|λi), σ∗2 , λi)

Following this idea we decided to take an initial strategy for the client as an input, and use it
to compute a utility F 1(σ1(·|λi), σ∗2 , λi) following the schema mentioned above. Then by using as
motivation replicator dynamics we updated the strategy of the client as follows:

σn+1
1 ((p, q)|λ) = σn1 ((p, q)|λ)

F 1((p, q), σ∗2 , λ)∑
(p′q′) σ

n
1 ((p′, q′)|λ)F 1((p′, q′), σ∗2 , λ)

This means that whatever action that gives greater utility is used more often that those that give less
utility. Since the utility depends on the service provider response it’s not clear that this dynamics
converge to some value. We have the following proposition:

Proposition 4 Consider the algorithm referenced above, when used over σ0 such that σ0((pj , qj)|(p′, q′)) >
0∀(p′, q′) ∈ A1 (pj , qj) ∈ A2, if σn1 →n σ̂1 then (σ̂1, sigma

∗
2, µ) with σ∗2 , µ obtained by the algorithm

form a PBE.

The application screen 5 is where you input an initial strategy and compute the clients utilities,
while application screen 6 shows the beliefs induced and the optimal reply by the service provider.
In screen 6 there is a RD button that iterates with replicator dynamics, there is a graphic button
which shows the final situation and there is a Txt button that creates and prints the results on the
text file: results.txt.

Figure 13: Application’s screen 5 and 6.
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Figure 14: Application’s final screen.
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6. Related Work

Bargaining has attracted a lot of interest from economists for a long time. The emphasis done here
is based on signaling games as presented on [4], there is also a great development of this topic in [2]
and [6]; The signaling game that is somewhat similar to the one described is the education game
presented, where the degree adquired acted as a signal for the employer. Different approaches to
bargaining in multiple stages have been made by different authors, for example [5] used fictitious
play to replicate the bargaining process, which is an interesting dynamic that has many appreciable
properties. [7] uses an evolutionary approach to bargainnig such as the one used in the numerical
implementation designed to find the PBE.

This work is also incomplete as it is of great importance the resource allocation problem while
bargaining with two or more clients, since if both clients accept and the resources aren’t enough
the lack of service may lead to great money loses on penalizations and reputation.

Also the design of the initial contracts is of great importance since if they are optimal for the
clients initially there may be no need for bargaining. A great deal about designing optimal contracts
can be seen in [3].

Experiments may be used to validate the model, although as seen in [1] designing an experiment
is a very delicate issue, where cleaning the test tubes in order to isolate the effects is fundamental.
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7. Conclusions

The objective of this work was to develop a game theoretic framework for SLA negotiation in order
to study the dynamics of the negotiation process. There were several models developed, starting
from really simple models which could be studied completely to more complex models where only
partial results could be stated, the idea of making the models more complex was to be able to
reproduce as many aspects of real life bargaining as possible. The last model developd was the
one presented on this article, this model considered the fact that counteroffers usually don’t go
over a certain range, and that negotiation proceses on IT markets are not usually long which is
the main reason to consider a 2 stage bargaining model. The models had very similar dynamics,
which is good in the sense that it means that there is some sort of robustness of the model. It
is important to notice that the results have economic intuition, and are able to replicate in some
level the negotiation when the players have enough information about each other and also agree
in negotiation ranges. This hypotheses even though sound as too binding, are common sense in
real negotiation, the problem is that the parameters such as the negotiation range differ from each
player, and are usually hidden. The problem in developing a model where all of the parameters are
hidden are that the results will be so variable that it would not be possible to conclude anything.

After defining the model the next step was the development of an application that in some sense
solved the model, this application is to assist decisions more than a decision making application,
this is due to the fact that people usually are not completely aware of their utility functions and
make decisions base on an idea of their utility function.

There are some small adjustments that may be able to help produce more accurate results, such
as consider that if the contract is not accepted the utility may be u(0, 0, λ) rather than 0. This is
useful to represent situations where the reserve value for all the different client varies. The best way
to decide which adjustments strenghten the model, is to compare results from the model with actual
negotiations, and in order to do this there is first a calibration stage where the parameters such as
utility functions and negotiation precentages are defined, for example, using previous negotation
data or assigned by an expert. Considering the idea as a whole the model and the application
developed are just a contriution to a bigger and more ambitious project that as mentioned before
may be complete by adding some statistic methods for determining the parameters given data, and
equilibrium refinements for example.
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A Proofs

1.1 Proof 1: Numerability

Proof. Proposition 2. The first thing is to recall the payoff for player 2 F 2 : A1 ×A2 ×Λ→ R

defined by:

F 2((p′, q′), (p, q), λk) =
{

0 Si u1((p, q), λk) < 0
u2(p, q) Si u1((p, q), λk) ≥ 0

Which in its extended version is given by:

F 2((p′, q′), σ2((p, q)|(p′, q′))) =


∫
R2

∑
k

σ2(~ξ|(p′, q′))F ((p′, q′), ~ξ, λk)µ(λk|(p′, q′))d~ξ Si|A2| > ℵ0∑
j

∑
k

σ2((pj , qj)|(p′, q′))F ((p′, q′), (pj , qj), λk)µ(λk|(p′, q′)) Si|A2| ≤ ℵ0

Then since the player is rational will be maximizing its expected payoff, by choosing an strategy:

σ∗2 ∈ arg maxF 2((p′, q′), σ2((p, q)|(p′, q′)))
To prove the proposition consider an action (p, q) not characterized by the system on the propo-

sition, and examine the cases.
Case 1: It’s feasible but not maximum. It can be seen directly that by choosing an action that

is maximal the payoff would be greater.
Case 2: It’s maximal but does not satisfy the inequality for any client. The payoff will be

zero, which is dominated by any action that’s feasible for some client, or weakly dominated by any
action.

Case 3: It’s not on the negotiation area. In this case the action is not feasible
Then the action space is finite and characterized by the systems on the proposition.

1.2 Proof 2: Atomic Strategies

Proof. Proposition 3. According to the previous proposition the payoff function for player 2 is:

F 2((p′, q′), σ2((p, q)|(p′, q′))) =
∑
j

∑
k

σ2((pj , qj)|(p′, q′))F ((p′, q′), (pj , qj), λk)µ(λk|(p′, q′))

Reagruping:

F 2((p′, q′), σ2((p, q)|(p′, q′))) =
∑
j

σ2((pj , qj)|(p′, q′)){
∑
k

F ((p′, q′), (pj , qj), λk)µ(λk|(p′, q′))}

By calling g((pj , qj)) =
∑
k F ((p′, q′), (pj , qj), λk)µ(λk|(p′, q′)). If we prove that maxj g((pj , qj))

is achieved by just one point, the result would be direct. Given the assumptions if the value is
greater than zero, the result follows from the conditions of strict increase and convexity.

The previous proposition allows to identify an strategy form player 2 with a function h : A1 → A2

such that h((p, q)) = (r, s) with (r, s) satisfying σ∗2((r, s)|(p, q)) = 1.
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1.3 Proof 3: PBE Convergence

Dem. Proposición 4. We must verify that when we have σn1 →n σ̂1 we are on a PBE. Given
tha algorithm (B) and (P2) follow directly since it’s the invariant of the algorithm. (P1) is still to
be checked. Assume (P1) is not satisfied, that means:

∃i, σ∗1(·|λi) /∈ arg max
α1∈A1

u1(α1, σ
∗
2 , λi)

If we have this it means that there is another strategy that delivers strictly more utility. Such
strategy can not have the same support as σ̂1, if it had the same support and also the condition it
means:

F 1(σ∗1 , σ
∗
2 , λi) > F 1(σn1 , σ

∗
2 , λi)∑

k ∈ A1

j ∈ A2(pk, qk)

σ∗1((pk, qk)|λi)F 1((pk, qk), (p̂j , q̂j), λi) >
∑

k ∈ A1

j ∈ A2(pk, qk)

σn1 ((pk, qk)|λi)F 1((pk, qk), (p̂j , q̂j), λi)

∑
k∈A1

σ∗1((pk, qk)|λi)F 1((pk, qk), (p̂g(k), q̂g(k)), λi) >
∑
k∈A1

σn1 ((pk, qk)|λi)F 1((pk, qk), (p̂g(k), q̂g(k)), λi)

Since σ̂1 is the limit strategy using (??), it satisfies:

σ̂1((r, s)|λi) = σ̂1((r, s)|λi)
F 1((r, s), σ∗2 , λi)
F 1(σ̂1, σ∗2 , λi)

(28)

This implies that:

σ̂1((r, s)|λi)F 1(σ̂1, σ
∗
2 , λi) = σ̂1((r, s)|λi)F 1((r, s), σ∗2 , λi) (29)

Then:
σ̂1((r, s)|λi) > 0⇒ F 1(σ̂1, σ

∗
2 , λi) = F 1((r, s), σ∗2 , λi). (30)

So all actions played on the limit strategy pay the same value. Also there is no (p, q) such that
F 1((p, q), σ∗2 , λi) > F 1(σ̂1, σ

∗
2 , λi), since as they have the same support this contradicts (30).

Actually the only relevant thing is that there is (r, s) ∈ arg maxF 1((r, s), σ∗2 , λi) such that
σ̂1(r, s)|λi) > 0. This follows directly from the fact that σ∗2 is achieved on finite time (still to
prove), and in any finite number of iterations N σ0

1 > 0⇔ σN1 > 0.
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B Incorporating the model in SLA negotiation

The main thing is to determine what the uncertainty will be. This uncertainty is what is referred
as type in the model, and it can be a parameter of the utility function, may be related to risk
aversion or clients preferences. Given the uncertainty we define the players, their strategies and
the payoffs. Then we start looking for equilibria. There are many possibilities: service provider’s
utility function is uncertain, client’s reservation utility is uncertain, service provider’s reservation
utility is uncertain, client’s type/utility function is uncertain, etc.

2.1 First Model: SP’s Utility Function is Uncertain

The client may not know how tight is the SP situation in terms of resources. The service provider
will most of the time try to give the impression she is in a tight situation in order to get more profit
as the SP may claim it’s more costly for her to give quality given the resources. Let’s define the
game in this situation:

The player with private information is the SP then she will be player 1 and the client will be
player 2. The strategies for both players could be various SLA’s templates and the space of possible
types could be a paramater of a particular function family or completely different functions. It
is important to point out that even if we consider certain utility functions and assumptions, the
client doesn’t know the SP’s utility function (Most of the time the SP doesn’t know his own utility
function) but he does know that if the resources are scarce it will be more costly, and has an idea
of how costly it can be. So in reality the situation is similar, and the main results established apply
in a certain degree.

2.2 Linear Example For The First Model

Consider that the possible utility functions for the SP may be u((p, q), θ) = p − θq, θ ∈ Θ =
{θ1, θ2}, where θ1 < θ2; that is when the SP utility function is u(·, θ2) it means that the marginal
cost4 quality is higher than when her utility function is u(·, θ1). For simplicity let us consider that
the action sace of the service provider is A1 = {(p, q), (p, q)} such that p − θ1q > 0 > p − θ2q and
p− θ1q > p− θ2q > 0; (p, q) represents a contract that the SP is unable to accept when she is tight
on resources. We consider that the probability that the SP is under the u(·, θ1) utility function is t,
and that the service provider accepts any contract that gives her utility greater or equal than zero.

Let’s assume that the utility for the client when accepting a contract (p, q) is V (p, q) = q − p,
and that the client’s budget bounded by p∗.

Now we can describe the payoff function of the game:

F :
A1 ×R2 ×Θ −→ R

((p, q), (r, s), θ) 7−→
(

max{0, u((r, s), θ}
v(r, s)1{u(·,θ)>0}(r, s)

)
The payoff for the service provider when accepting contract (p, q) is F 1(·, (p, q), θ)5. The payoff for

4The marginal cost is the cost of delivering 1 aditional unit of quality.
5Even though it may appear that the initial offer has no relevance, the relevance of the SP initial offer is that it

influences the beliefs that the client has about the resources avaliability of the SP
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the client is F 2(·, (p, q), θ).
With everything defined we can describe the game in extensive form:

Figure 15: Game in extensive form.

The payoff for player 1, as described before, is the first component of the vector located at the
bottom of the figure, player 2’s payoff is the second component .

2.2.1 Equilibria of the game

We would like to find (µ, σ∗1 , σ
∗
2) PBE. Let’s study the possibilities:

(P1) Establishes that the SP must maximize her expected utility. That is:

σ∗1 ∈ arg max
α1

∑
(p,q)

∑
(r,s)

α1((p, q)|θ)σ∗2((r, s)|(p, q))(r − θs)+

Which excluding all the contracts that the SP won’t accept, can be rewritten as:

σ∗1 ∈ arg max
α1

∑
(p,q)

∑
(r,s)∈Fθ

α1((p, q)|θ)σ∗2((r, s)|(p, q))(r − θs) (31)

Where Fθ denotes all the feasible contracts for the SP. That is Fθ = {(p, q)|p > θq}.
(P2) Establishes that the client must maximize his expected utility given the beliefs for any

action (p, q). That is:
σ∗2 ∈ arg max

α2

∑
θ

µ(θ|(p, q))F 2((p, q), α2, θ)
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Which can be rewritten as:

σ∗2 ∈ arg max
α2

µ(θ1|(p, q))
∑

(r,s)∈Fθ1

α2((r, s)|(p, q))(s− r) + µ(θ2|(p, q))
∑

(r,s)∈Fθ2

α2((r, s)|(p, q))(s− r)

(32)
The last condition is that µ satisfies the Bayes’ rule. According to the beliefs induced after the

offer we divide the equilibria in separating, pooling and hybrid.

• Separating Equilibria

A separating equilibrium is one that after the SP makes her move her type is revealed. Since
there is a contract that is unfeasible for the SP under one type, there is only one reasonable
possibility, that is:

µ(θ1|(p, q)) = 1; µ(θ2|(p, q)) = 1

What are the consequences/conditions for this type of equilibrium?

Proposition 5 Under the assumptions of this model there are no separating equilibria.

Proof. (P2) establishes that the client should maximize his utility given the beliefs, therefore:

σ∗2 ∈ arg max
α2

∑
(r,s)∈Fθ1

α2((r, s)|(p, q))(s− r) (33)

σ∗2 ∈ arg max
α2

∑
(r,s)∈Fθ2

α2((r, s)|(p, q))(s− r) (34)

Figure 16: Maximization problem described by (33)

Therefore we deduce that if θ1 > 1 then σ∗2((0, 0)|(p, q)) = 1 that is, there is no deal. We’ll sup-
pose from now on, that θ1 < 1. Then the previous condition states that σ∗2((p∗, p

∗

θ1
)|(p, q)) = 1

and σ∗2((p∗, p
∗

θ2
)|(p, q)) = 1.

21



Let’s see the conditions (P1) given this strategy σ∗2 :

σ∗1 ∈ arg maxα1 α1((p, q)|θ1)(p∗ − θ1 p
∗

θ2
) + α1((p, q)|θ1)(p∗ − θ1 p

∗

θ1
) (35)

⇒ σ∗1((p, q)|θ1) = 1 (36)

σ∗1 ∈ arg maxα1 α1((p, q)|θ2)(p∗ − θ2 p
∗

θ2
) + α1((p, q)|θ2) (p∗ − θ2

p∗

θ1
)+︸ ︷︷ ︸

0

(37)

⇒ σ∗1((p, q)|θ2) ∈ [0, 1] (38)

Finally the Bayes’ rule condition must be studied by cases:

If
∑
i σ
∗
1((p, q)|θi) > 0 then (B) is satisfied only by the direct revelation strategy σ∗1((p, q)|θ1) =

1, σ∗1((p, q)|θ2) = 0. This goes against condition (36). Therefore there is no separating equi-
librium such that σ∗1((p, q)|θ1) > 0 or σ∗1((p, q)|θ1) > 0.

If
∑
σ∗1((p, q)|θi) > 0 then is satisfied only by the direct revelation strategy σ∗1((p, q)|θ2) = 1

and σ∗1((p, q)|θ1) = 0, but this also goes against condition (36).

Then we conclude that there are no separating equilibria.

• Pooling Equilibria

Pooling equilibria are the ones that after the SP makes her move, the client does not update
his beliefs. That is:

µ(θ1|(p, q)) = t; µ(θ1|(p, q)) = t.

Proposition 6 Under the assumptions of this model the strategy of the client will be deter-

ministic depending on the prior probability t. More specifically, σ2(p∗, p
∗

θ1
) = 1 if t >

1
θ2
−1

1
θ1
−1

,

and σ2(p∗, p
∗

θ1
) = 0 otherwise.

Proof. Let’s study the conditions now, let’s call ξ(r, s) the variable representing α2((r, s)|(p, q)),
then:

σ∗2 ∈ arg max
ξ
t
∑

(r,s)∈Fθ1

ξ(r, s)(s− r) + (1− t)
∑

(r,s)∈Fθ2

ξ(r, s)(s− r) (39)

Linearity implies that the solution of the maximization problem (39) is such that ξ(p∗, p
∗

θ1
) +

ξ(p∗, p
∗

θ2
) = 1 since other allocations give strictly less payoff. now the problem is to find the

optimal distribution over these 2 points. Let φ = ξ(p∗, p
∗

θ1
), then the maximization problem

we have to solve is:

max
0≤φ≤1

t[(1− φ)(
p∗

θ2
− p∗) + φ(

p∗

θ1
− p∗)] + (1− t)(1− φ)(

p∗

θ2
− p∗) (40)

The solution to this problem is φ = 1 if t >
1
θ2
−1

1
θ1
−1

, and φ = 0 otherwise.
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Figure 17: Maximization problem for the client

Since the equations are the same for α2((r, s)|(p, q)) we have the same result: the strategy is
deterministic depending on t.

This means that if the probability of a relaxed service provider is high enough the client will
always counteroffer according to the relaxed type. This is consequent with the fact that the
service providers signal does not allow the client to update his beliefs, therefore his decision
is not based in the signal.

Let’s see the other conditions that make this equilibrium sustainable.

Proposition 7 The pooling equilibria of this game are infinetly many, and are characterized
by:

σ∗1((p, q)|θ1) = σ∗1((p, q)|θ2) = s ∀s ∈ [0, 1] (41)

σ2(p∗,
p∗

θ1
) = 1 if t >

1
θ2
− 1

1
θ1
− 1

σ2(p∗,
p∗

θ1
) = 0 otherwise (42)

µ(θ1|(p, q)) = t µ(θ1|(p, q)) = t (43)

Proof. The characterization of σ2 had already been proven, and the last equation is the
definition of pooling equilibrium, let’s see the characterization of sigma1.

Conditions (P1): Since player 2 strategy is deterministic, depending only on the prior proba-
bilities it is not hard to see that if σ2(p∗, p

∗

θ1
) = 1 the expected utility is always zero independent

of the type (since when she accepts the counteroffer gets zero, and otherwise she rejects the
counteroffer), and if σ2(p∗, p

∗

θ1
) = 0 she gets zero in case her type is θ2 and constant equal to

p∗ − θ1
θ2
p∗ in case her type is θ1. Then there are no restrictions for σ∗1 regarding (P1).
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The Bayes condition states that:(
t 1− t
t 1− t

)(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
=
(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
(44)

That is SP’s strategy must be an eigenvector asociated to the eigenvalue 1 for the matrix
above. Then to satisfy this system it is neccesary that σ∗1((p, q)|θ1) = σ∗1((p, q)|θ2). Then we
conclude it can be any strategy as long as it doesn’t depend on the type.

Since we can use any strategy as long as it doesn’t depend on the type it would be nice to
find the optimal in mean for the service provider. But since the client does not care what
the service providers signal, he only cares about the probability ex ante, the Service provider

expected utility is t(p∗ − θ1
θ2
p∗) only if t <

1
θ2
−1

1
θ1
−1

regardless of the strategy.

• Semi-Pooling Equilibria

In the case that the client believe the service provider never offers a contract that does not
give him positive utility, we have that:

µ(θ1|(p, q)) = t; µ(θ2|(p, q)) = 0

Proposition 8 The semi pooling equilibria of this game are infinetly many, and are charac-
terized by:

σ∗1((p, q)|θ1) = σ∗1((p, q)|θ2) = s s ∈ {0, 1} (45)

σ2(p∗,
p∗

θ1
) = 1 if t >

1
θ2
− 1

1
θ1
− 1

σ2(p∗,
p∗

θ1
) = 0 otherwise (46)

µ(θ1|(p, q)) = t µ(θ2|(p, q)) = 0 (47)

Proof. (P2) Condition results for σ∗2((r, s)|(p, q)) are basically the same, the change is that
now σ∗2((p∗, p

∗

θ1
)|(p, q)) = 1.

If
∑
σ∗1((p, q)|θi) > 0 the Bayes’ rule implies that σ∗1((p, q)|θ1) = 1 which has as a consequence

that σ∗1((p, q)|θ1) = 0, also if
∑
σ∗1((p, q)|θi) > 0, the other condition (44) implies that

σ∗1((p, q)|θ2) = 0 which contradicts
∑
σ∗1((p, q)|θi) > 0. Then the service providers strategy

will be to always offer (p, q).

If
∑
σ∗1((p, q)|θi) = 0, means that σ∗1((p, q)|θi) = 1 which satisfies condition (44), then the

other equilibrium is to always offer (p, q).

• Hybrid Equilibria

First we will study the case when the client believes the service provider is not willing to lose
money. In this context we have 1 extra parameter:

µ(θ1|(p, q)) = η; µ(θ1|(p, q)) = 1
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Proposition 9 There are no equilibria with the beliefs µ(θ1|(p, q)) = η; µ(θ1|(p, q)) = 1
other than the case t = η

Proof. Algebraically is the same problem for the client as the case before, thus σ∗2((p∗, p
∗

θ1
)|(p, q)) =

1 if η >
1
θ2
−1

1
θ1
−1

, and σ∗2((p∗, p
∗

θ2
)|(p, q)) = 1 otherwise.

Since strategy of (P2) is very similar as in the case before (algebracally the same), (P1) does
not add any restrictions just like in the case before.

The Hybrid equilibria desirable for the service provider are those where η <
1
θ2
−1

1
θ1
−1

. To achieve

this Bayes’ rule implies that:(
η 1−t

t η
t

1−t (1− η) 1− η

)(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
=
(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)

Which implies that σ∗1((p, q)|θ1) = (1−t)η
t(1−η)σ

∗
1((p, q)|θ2)

If
∑
σ∗1((p, q)|θi) > 0 , then the other Bayes’ rule condition states that σ∗1((p, q)|θ1) = 1 and

σ∗1((p, q)|θ2) = 0, therefore 1 = σ∗1((p, q)|θ1) 6= (1−t)η
t(1−η)σ

∗
1((p, q)|θ2) = 0. Then this equilibrium

is not sustainable.

If σ∗1((p, q)|θ1) = σ∗1((p, q)|θ2) = 0, then the Bayes’ rule does not aply, but this directly implies
that σ∗1((p, q)|θ1) = σ∗1((p, q)|θ2) = 1. Which contradicts the previous Bayes’ condition unless
t = η. Then the equilibria is not sustainable.

Now if we allow that the client believes the service provider is willing to offer contracts not .
In this context we have 2 extra parameters:

µ(θ1|(p, q)) = η; µ(θ1|(p, q)) = π
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Proposition 10 The following (σ∗1 , σ
∗
2 , µ):

σ∗1((p, q)|θ2) =
t

1−t −
π

1−π
η

1−η −
π

1−π
(48)

σ∗1((p, q)|θ2) = 1−
t

1−t −
π

1−π
η

1−η −
π

1−π
(49)

σ∗1((p, q)|θ1) =
(1− t)η
t(1− η)

t
1−t −

π
1−π

η
1−η −

π
1−π

(50)

σ∗1((p, q)|θ1) =
(1− t)π
t(1− π)

(1−
t

1−t −
π

1−π
η

1−η −
π

1−π
) (51)

σ∗2((p∗,
p∗

θ2
)|(p, q)) = 1 If

(1− π) + η

η
>

( 1
θ1
− 1)

( 1
θ2
− 1)

) (52)

σ∗2((p∗,
p∗

θ1
)|(p, q)) = 1 If

(1− π) + η

η
<

( 1
θ1
− 1)

( 1
θ2
− 1)

) (53)

σ∗2((p∗,
p∗

θ2
)|(p, q)) = 1 If

π + (1− η)
1− η

>
( 1
θ1
− 1)

( 1
θ2
− 1)

(54)

σ∗2((p∗,
p∗

θ1
)|(p, q)) = 1 If

π + (1− η)
1− η

<
( 1
θ1
− 1)

( 1
θ2
− 1)

(55)

µ(θ1|(p, q)) = η µ(θ1|(p, q)) = π (56)

Is an equilibrium.

Proof. Bayes’ rule condition (if the strategy is mixed) implies that:(
η 1−t

t η
t

1−t (1− η) 1− η

)(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
=
(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
(57)

(
π 1−t

t π
t

1−t (1− π) 1− π

)(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
=
(
σ∗1((p, q)|θ1)
σ∗1((p, q)|θ2)

)
(58)

These equations imply that σ∗1((p, q)|θ1) = (1−t)η
t(1−η)σ

∗
1((p, q)|θ2) and σ∗1((p, q)|θ1) = (1−t)π

t(1−π)σ
∗
1((p, q)|θ2).

The solution to (P2) maximization problem is:

If (1−π)+η
η >

( 1
θ1
−1)

( 1
θ2
−1)

then σ∗2((p∗, p
∗

θ2
)|(p, q)) = 1, otherwise σ∗2((p∗, p

∗

θ1
)|(p, q)) = 1, and if

π+(1−η)
1−η >

( 1
θ1
−1)

( 1
θ2
−1)

then σ∗2((p∗, p
∗

θ2
)|(p, q)) = 1, otherwise σ∗2((p∗, p

∗

θ1
)|(p, q)) = 1.

Now instead of looking at condition (P1) let’s see how the utility function of the service
provider changes as she tries to implement this equilibria. That is let’s assume that the service
provider reacts according to Bayes’ rule, and see how much utility can she get depending on
the beliefs.
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Finally there is a restriction that completely defines σ∗1 :

σ∗1((p, q)|θ1) + σ∗1((p, q)|θ1) = 1 (59)

(1− t)η
t(1− η)

σ∗1((p, q)|θ2) +
(1− t)π
t(1− π)

σ∗1((p, q)|θ2) = 1 (60)

(1− t)η
t(1− η)

σ∗1((p, q)|θ2) +
(1− t)π
t(1− π)

(1− σ∗1((p, q)|θ2)) = 1 (61)

The last equation implies that:

σ∗1((p, q)|θ2) =
t

1−t −
π

1−π
η

1−η −
π

1−π
(62)

σ∗1((p, q)|θ2) = 1−
t

1−t −
π

1−π
η

1−η −
π

1−π
(63)

σ∗1((p, q)|θ1) =
(1− t)η
t(1− η)

t
1−t −

π
1−π

η
1−η −

π
1−π

(64)

σ∗1((p, q)|θ1) =
(1− t)π
t(1− π)

(1−
t

1−t −
π

1−π
η

1−η −
π

1−π
) (65)

Therefore, there are 4 cases:

If (1−π)+η
η >

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η >

( 1
θ1
−1)

( 1
θ2
−1)

then the SP’s expected revenue is t(p∗ − θ1 p
∗

θ2
).

If (1−π)+η
η >

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η <

( 1
θ1
−1)

( 1
θ2
−1)

then the SP’s expected revenue is t(p∗−θ1 p
∗

θ2
) (1−t)η
t(1−η)

t
1−t−

π
1−π

η
1−η−

π
1−π

.

If (1−π)+η
η <

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η >

( 1
θ1
−1)

( 1
θ2
−1)

then the SP’s expected revenue is t(p∗−θ1 p
∗

θ2
) (1−t)π
t(1−π) (1−

t
1−t−

π
1−π

η
1−η−

π
1−π

).

If (1−π)+η
η <

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η <

( 1
θ1
−1)

( 1
θ2
−1)

then the SP’s expected revenue is 0.

Observation : Of course the service provider would like to achieve the first equilibrium,

the one when (1−π)+η
η >

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η >

( 1
θ1
−1)

( 1
θ2
−1)

, to simplify notation let’s consider
( 1
θ1
−1)

( 1
θ2
−1)

= c ∈ [0, 1]. In order to satisfy these conditions it is necesary that :

(1− c)η + cπ < c and 1− c < cπ + (1− c)η (66)

Rewritting this last equation we have:

cπ + (1− c)η ∈ (c, 1− c) (67)

To obtain this equilibrium it is necesary that 1
2 < c. We can do the same with the other

equilibria:
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To obtain the one when (1−π)+η
η >

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η <

( 1
θ1
−1)

( 1
θ2
−1)

we must have that:

cπ + (1− c)η ∈ [0,min{c, 1− c}) (68)

To obtain the one when (1−π)+η
η <

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η >

( 1
θ1
−1)

( 1
θ2
−1)

we must have that:

cπ + (1− c)η ∈ (max{c, 1− c}, 1] (69)

To obtain the one when (1−π)+η
η <

( 1
θ1
−1)

( 1
θ2
−1)

and π+(1−η)
1−η <

( 1
θ1
−1)

( 1
θ2
−1)

we must have that:

cπ + (1− c)η ∈ (c, 1− c) (70)

To be able to achieve the last equilibrium it’s necesary that 1
2 > c, 6

The case (68) and (69) are always accesible, and they give smaller revenue than the one that
can be achieved if 1

2 < c.

So if 1
2 < c, we can obtain maximum revenue by finding feasible beliefs such that cπ+(1−c)η ∈

(c, 1− c). If 1
2 > c the service provider has to solve a maximization problem that yields what

beliefs are optimal.

2.3 Second Model: Client’s type/utility function is uncertain

Now let’s assume the service provider doesn’t know a parameter of the client’s utility function. For
example if the client’s utility function is V ((p, q), λ) = aλ − cλe−λq − p, where {aλ, cλ} are known
for each λ, and the SP is uncertain of what’s the λ of the client he is negotiating with, although he
might have an initial idea. We model this by assuming that there is a prior probability distribution
over a set of posible values of λ ( P(λ = λi) = ri), that is common knowledge for both, the client
and the service provider.

The situation we are modelling is the following: The client goes to the service provider and asks
her what are the possible contracts she has to offer. The client then chooses one of the contracts
and modifyies it a little. The service provider’s looks at what the client chose as a contract and
updates her beliefs about what kind of client she is dealing with, and then offers a final contract,
taking into account the client’s counteroffer. The client will then accept or reject this counteroffer.

The changes in the model are as follows:
Now the first player will be the client and his action space is restricted to:

A1 = {(p, q)|∃(p̃, q̃) ∈M ‖(p̃, q̃)− (p, q)‖ < ε}.

Where M is the menu of contracts the service provider initially has to offer.
The counteroffer from the service provider when the client offers (p̃, q̃) will also be restricted to

the set:
A2(p̃, q̃) = {(p, q)| ‖(p̃, q̃)− (p, q)‖ < η}.

6Inducing the belief η = π = 1
2

can not be achieved unless t = 1
2

. Since it violates (59) -(61).
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We’ll consider ε, η proportional to the price of the contract being modified.
The proportionality constant will be referred to as the client’s and service provider’s negotiation
factor respectively.

2.4 Linear Example For The Second Model

First let’s consider as an example when the utility functions of the service provider and the client
are linear. Then the client’s utility function is V ((p, q), λ) = λq − p where λ ∈ {λ1, λ2, λ3} (this
is a simplification of the example mentioned before). The service provider utility function will be
u(p, q) = p − zq where z is some fixed constant. The service provider initially offers 3 menus:
(pb, qb), (ps, qs) and (pg, qg). Now let’s describe the game:

First the client chooses (r, s) such that ‖(r, s)− (pb, qb)‖ < ε, ‖(r, s)− (ps, qs)‖ < ε or ‖(r, s)−
(pg, qg)‖ < ε. Of course, the client has many choices, and for simplicity we’ll usually focus on 9
options: the ones that give maximum utility to the client for any kind of type.

Assumption 11 By solving the maximization problem:

max λq − p (71)

s.t. ‖(p, q)− (pj , qj)‖ ≤ ε (72)

where j ∈ {b, s, g}, we obtain the different actions that the player may take.

The solution to this problem is:

p = pj −
ε

(1 + λ2)
1
2

(73)

q = qj +
λε

(1 + λ2)
1
2

(74)

Which is what can be expected, they counteroffer less price and more quality within the range.
Next the service provider will take that offer, update her beliefs, and make a counteroffer that

will also be around the client’s offer. That is, the counteroffer (p, q) is such that ‖(p, q)−(r, s)‖ < η.
The payoffs are similar to the game described before. If no contract is accepted then they both
get zero, and if the contract (p, q) is accepted the client type λ and the service provider get
V ((p, q), λ) and u(p, q) respectively.We will also assume that the client accepts any contract such
that V ((p, q), λ) ≥ 0, the service provider will accept any contract such that u((p, q)) ≥ 0.

Proposition 12 When z 6= λk, k = 1, 2, 3, the SP actions are:

p = p∗ +
η

(1 + z2)
1
2

(75)

q = q∗ − zη

(1 + z2)
1
2

(76)
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Where (p∗, q∗) is the client’s offer, or

q =
(λp∗ + q∗)±

√
(λp∗ + q∗)2 − (1 + λ2)(p∗2 + q∗2 − η2)

(1 + λ2)
(77)

p = λ
(λp∗ + q∗)±

√
(λp∗ + q∗)2 − (1 + λ2)(p∗2 + q∗2 − η2)

(1 + λ2)
(78)

Where (p∗, q∗) is the client’s offer and λ ∈ {λ1, λ2, λ3}.

Proof. Since we know that the client’s offers are limited we may do the same with the service
provider. The service provider will face the problem:

max p− zq (79)

s.t. ‖(p, q)− (p∗, q∗)‖ ≤ η (80)

Where (p∗, q∗) is the client’s offer. Then the solution to this problem will be:

p = p∗ +
η

(1 + z2)
1
2

(81)

q = q∗ − zη

(1 + z2)
1
2

(82)

With this we have reduced the action space the players.
But there is a chance that the contract is not feasible for the client in that case the service

provider will go for a contract that’s good for him and also feasible for the client. A contract
defined by:

max p− zq (83)

s.t. ‖(p, q)− (p∗, q∗)‖ ≤ η (84)

λq − p ≥ 0 (85)

The solution to this problem is:

q =
(λp∗ + q∗)±

√
(λp∗ + q∗)2 − (1 + λ2)(p∗2 + q∗2 − η2)

(1 + λ2)
(86)

p = λq (87)

Whether is plus or minus is determined by which one gives greater utility to the service provider.

The game played will be G = (A1, A2, F ) where A1 and A2 represent action space for player 1
and player 2 respectively and F is the payoff function of the game. The action space for the client
will be

A1 = {(p, q) ∈ R2|‖(p, q)− (pj , qj)‖ ≤ pjε for some (pj , qj) ∈M}. (88)
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For the service provider or player 2, the action space will depend on the action taken by player 1:

A2(p′, q′) = {(p, q) ∈ R2|‖(p, q)− (p′, q′)‖ ≤ p′η}. (89)

The payoff function F : A1 ×A2 × Λ→ R
2 is as follows:

F 1((p′, q′), (p, q), λk) = (V ((p, q), λk))+ (90)

F 2((p′, q′), (p, q), λk) =
{

0 Si V ((p, q), λk) < 0
u(p, q) Si V ((p, q), λk) ≥ 0

(91)

2.4.1 Equilibria

Here we have more parameters than in the case before, let’s just study the equilibria we’d think
more likely: hybrid equilibria. Let:

µ(λi|oj) = aij

Where oj is the optimal offer for client type λj−[ j3 ]·3 when choosing the (p[ j3 ]+1, q[ j3 ]+1) contract.
To study (P2) condition let’s recall what was mentioned earlier about the action space of the

service provider. Now that we know the strategies, payoff and beliefs for the service provider. This
show us that depending on the belief of the value of λ the service provider has 3 choices for each
value, and 7 choices total. Considering this the solution to (P2) is direct: The service provider will
play the contract that gives him the most expected utility. Explicitly the condition is:

σ∗2(·|oj) ∈ arg max
α

∑
k

[F 2(oj , ϕk, λ1)a1j + F 2(oj , ϕk, λ2)a2j + F 2(oj , ϕk, λ3)a3j ]α(ϕk) (92)

Where ϕk represents one of the possible offers made by the service provider, mentioned in the
previous paragraph. As mentioned before the solution to this problem is σ∗2(ϕk(j)|oj) = 1, where
k(j) is such that [F 2(oj , ϕk(j), λ1)a1j + F 2(oj , ϕk(j), λ2)a2j + F 2(oj , ϕk(j), λ3)a3j ] is maximum.

Now with σ∗2 defined (with the beliefs as a parameter), we can find the client’s expected payoff
given an strategy. Given a strategy σ1(·|λi) the client’s payoff is:

F 1(σ1(·|λi), σ∗2 , λi) =
∑
j

σ1(oj |λi)
∑
k

σ∗2(ϕk|oj)(λiqk − pk) (93)

=
∑
j

σ1(oj |λi)(λiqk(j) − pk(j)) (94)

Where qk and pk are the quality and price stated in contract ϕk. Therefore if the client is rational,
given the beliefs he will maximize his payoff while trying to keep the beliefs.

Even thoughnstudying this game would be interesting we will focus on the next model, which
is a more general than this model.
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