

Automatically Determining Compatibility of Evolving Services
Karin Becker, Andre Lopes, Dejan Milojicic, Jim Pruyne, Sharad Singhal
HP Laboratories
HPL-2008-49
May 21, 2008*

SOA, service,
backward
compatibility,
version

A major advantage of Service-Oriented Architectures (SOA) is
composition and coordination of loosely coupled services. Because the
development lifecycles of services and clients are de-coupled, multiple
service versions have to be maintained to continue supporting older
clients. Typically versions are managed within the SOA by updating
service descriptions using conventions on version numbers and
namespaces. In all cases, the compatibility among services description
must be evaluated, which can be hard, error-prone and costly if performed
manually, particularly for complex descriptions. In this paper, we describe
a method to automatically determine when two service descriptions are
backward compatible. We then describe a case study to illustrate how we
leveraged version compatibility information in a SOA environment and
present initial performance overheads of doing so. By automatically
exploring compatibility information, a) service developers can assess the
impact of proposed changes; b) proper versioning requirements can be put
in client implementations guaranteeing that incompatibilities will not
occur during run-time; and c) messages exchanged in the SOA can be
validated to ensure that only expected messages or compatible ones are
exchanged.

External Accession Date Only Approved for External Publication

Submitted to the IEEE International Conference one Web Services (ICWS), 2008 China

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Automatically Determining Compatibility of Evolving Services

Karin Becker, Andre Lopes

T&T Engenheiros Associados Ltda.

{karin.becker, andre.lopes}@hp.com

Dejan Milojicic, Jim Pruyne, Sharad Singhal

HP Labs

{dejan.milojicic,jim.pruyne,sharad.singhal}@hp.com

Abstract

A major advantage of Service-Oriented Architectures

(SOA) is composition and coordination of loosely coupled

services. Because the development lifecycles of services

and clients are de-coupled, multiple service versions have

to be maintained to continue supporting older clients.

Typically versions are managed within the SOA by

updating service descriptions using conventions on

version numbers and namespaces. In all cases, the

compatibility among services description must be

evaluated, which can be hard, error-prone and costly if

performed manually, particularly for complex

descriptions. In this paper, we describe a method to

automatically determine when two service descriptions are

backward compatible. We then describe a case study to

illustrate how we leveraged version compatibility

information in a SOA environment and present initial

performance overheads of doing so. By automatically

exploring compatibility information, a) service developers

can assess the impact of proposed changes; b) proper

versioning requirements can be put in client

implementations guaranteeing that incompatibilities will

not occur during run-time; and c) messages exchanged in

the SOA can be validated to ensure that only expected

messages or compatible ones are exchanged.

1. Introduction

One of the major advantages claimed for web services,

and in general for service-oriented architecture (SOA), is

the ease of making changes. SOA is an architectural

paradigm that supports the usage, composition and

coordination of autonomous, sharable services in a loosely

coupled manner. SOA enables independent development

by disparate teams, each one with its own delivery and

maintenance schedule [8]. The decoupled life-cycles of

services and clients have major consequences from a

change management perspective. As a service is upgraded,

it must continue to support existing clients. Likewise, it

must also support newer clients that desire to use new or

improved features. This requires the ability to represent

and manage multiple versions of the same service within

the SOA, and transparently enable redirection of old

clients to the new versions of the service when possible.

Ideally, compatible changes should not cause failures or

unexpected behavior. Hence, research is required in how

changes are introduced in services within the SOA [1], [5],

[6], [8], [9]. Finally, because every service can be used in

multiple solutions, any change in the behavior of a service

can cascade across several clients (and clients of those

clients) in a transitive manner, causing a broad impact

within the SOA. Thus the SOA must provide capabilities

that allow early detection of incompatible changes.

Currently, there is no comprehensive solution for

managing compatibility between service versions in SOA.

Existing work can be divided into: a) best practices and

design patterns for service versioning (e.g. [1], [2], [5],

[10], [13]), b) version-aware registry solutions (e.g. UDDI

v3.0.2, Systinet, [7]), which make assumptions about

service compatibility, and c) architectural components for

dealing with service compatibility within the SOA (e.g.

[6], [8], [9]). In all cases, it is assumed that compatibility

between versions is assessed manually, a particularly

error-prone task for complex service descriptions.

In this paper, we describe an approach for

automatically assessing service compatibility between

related versions of a service. Unlike related approaches,

we do not infer compatibility from version number

conventions, nor do we restrict changes between service

versions to avoid incompatibility. The compatibility

assessment method proposed is based on a version

framework that allows service descriptions to evolve in

different granularity levels, by considering a loose-

dependency between the services and the elements used to

describe them. We describe how the version framework

and compatibility assessment method were prototyped in a

SOA environment, and the lessons learned.

We focus on backward compatibility, which is

concerned with how changes to the service interface affect

existing clients [1], [2], [5], [7], [9], [13]. In the rest of the

paper, we shall use compatibility as synonym for

backward compatibility. A service version is defined to be

backward compatible with a previous one if it: a) delivers

at least the same functionality; b) possibly relaxes

constraints on the input expected while delivering the

same results; and c) generates outputs that can be

consumed by existing clients

The remaining of this paper is structured as follows.

Section 2 describes the versioning framework proposed to

assess service compatibility. Section 3 describes the rules

and the algorithm to check compatibility between service

versions, using an object-oriented service description as an

illustration. Section 4 describes our implementation of a

compatibility-aware SOA, and discusses performance and

benefits. Related work is described in Section 5, and

conclusions and future work, in Section 6.

2. Service versioning

As pointed out by Frank et al. [8], versioning is an

overloaded term in the service context. From the client

point of view, a service version refers to the “contract”

established by the interface of the service, and

consequently, to the functionality a service delivers and

the data types which it exposes within the interface. From

a service provider point of view, however, version refers

to a particular implementation of the service, and how the

service implementation evolves over time, in addition to

any changes in the interface definitions. We refer to these

two aspects as the service model and service

implementation, respectively. Because we are concerned

about compatibility between services and clients, this

paper concentrates on the evolution of the service model,

while assuming that service implementation issues are

handled using regular source versioning systems [3].

We assume that the service is represented within the

SOA by a model schema, which defines the external

representation of the service as a set of versioned

abstractions and relationships between those abstractions.

We refer to these abstractions collectively as types. The

service model defines the collection of types exposed by

the service within the SOA. When a service

implementation evolves, changes are reflected in the

corresponding service model with the update, addition or

removal of types that represent updated, added or removed

service functionality.

The service model is important from the view of both

the service implementation and the client. For the service

implementation, it defines the types that are instantiated,

validated and controlled by the implementation; for the

client, it describes the functionality provided by the

service and the message syntax and semantics necessary to

use the service. Awareness of the service model is also

important for the SOA itself to enable it to validate or

redirect client requests to the appropriate service

implementation, and handle service evolution issues

accordingly.

2.1. Versioning framework

Integration is a key value for the success of SOA, and

therefore, it is desirable that types are reused (or shared) as

much as possible across services. This is particularly

important in the context of service composition, where

message content is transparently forwarded in the context

of composed services. A type describes part of the service

functionality or properties of exchanged data. Thus,

flexibility in service description and integration is

achieved by considering a loose relationship between

types and the service models they help describe. To

achieve such independence, we assume that types can

evolve independently from service models.

Figure 1 depicts the proposed version framework for

addressing compatibility. The framework defines two

kinds of versioned units (VersionUnit): TypeVersion, and

ModelVersion. Figure 2 shows examples of constraints

defined over this framework using OCL. For instance, the

first invariant asserts the sameness criterion (name) and

unique identifier (composition of name and version) of

any VersionableItem [3]. VersionUnit.version is typically

a string composed of decimal integers separated by

periods. However, unlike other versioning systems we

assume no specific semantics about compatibility between

versions based on their version numbers.

ServiceModel

name : string

VersionableItemType

name : string

version : string

timeStamp : Date

VersionUnit

1..*

ModelVersion

TypeVersion

0..1

*

Description

1 1

undetermined

incompatible

inputCompatible

compatible

«enumeration»

Compatibility

veredict : Compatibility

delta : string

CompatibilityInformation

previous
*

next

*

Figure 1. Versioning framework

“All versions related to a VersionableItem share the

same name and have different version numbers”

context VersionableItem inv: self.VersionUnit->

forAll(v | self.name = v.name) and forAll(v1, v2 | v1

<> v2 implies v1.version <> v2.version))

“Versions of a Type are TypeVersion”

context Type inv: self.VersionUnit-

>forAll(oclIsKindOf(TypeVersion))

“Versions of a Service Model are ModelVersions”

context Service inv: self.VersionUnit->

forAll(oclIsKindOf(ModelVersion))

“A model version cannot be described in terms of two

versions of a same type”

context ModelVersion inv: self.TypeVersion-

>forAll(t1, t2 | t1 <> t2 implies t1.name <> t2.name)

Figure 2. OCL constraint excerpts

Any TypeVersion has a corresponding Description that

provides the definition for that type. The Description may

assume any service description paradigm, such as excerpts

of WSDL and XSD descriptions, or classes and

associations within an object-oriented (OO) paradigm.

This approach of relating versioned units and abstract

elements is similar to the one proposed by Murta et al.

[12] in the context of configuration management for UML

case tools.

A ModelVersion is composed of a set of TypeVersion

instances, at most one per type. We say a model version

contains a type if it is related to one of its versions.

A new VersionUnit may be compared with any

previous one to determine their compatibility. The

precedence between versions can be determined by

different criteria, such as version numbers or timestamps.

We refer to this precedence between versions as v1 < v2,

where v1 is an older version and v2 is a newer version. Due

to the focus on backward compatibility, compatibility is

evaluated considering the directed delta between the new

version and previous ones, i.e. by using the sequence of

change operations op1...opm required to transform v1 into

v2. In the case of TypeVersion, a delta defines the

operations required to change a previous description into

the newer one, by adding, removing, or changing

properties or operations defined within that description. In

the case of ModelVersion, a delta refers to the addition of

a Type (i.e. the previous model version did not contain a

version of that type), removal of a Type (i.e. the new

model does not contain a type contained by the previous

model), or update (i.e. replacement of a version by another

one of the same type, typically, a more recent one).

Compatibility is determined by analyzing the delta

between the two versions. There are different criteria for

determining compatibility of TypeVersion and

ModelVersion, where the latter depends on the former.

These are addressed in Section 3, using OO descriptions to

describe the service model as an illustration.

3. Compatibility assessment

We propose a two-phase compatibility assessment

approach for service descriptions, based on the premise

that types are shared across service descriptions, and thus

they must evolve independently of the service model. In

the assessment of type compatibility, not all contextual

information for a final decision is available: the versions

of the types to which a given type is related are not known

in advance, nor are the specific dependencies with other

types within a model. Model-based compatibility

assessment complements type-level assessment, by putting

type versions in the context of the model version and thus

defines the scope of their relationships.

We illustrate the approach using compatibility rules

defined over OO descriptions of services. This choice is

justified by the higher level of independence allowed

between types in this paradigm. We note that the approach

can also be applied to other types of service descriptions,

notably combinations of WSDL and XSD. Indeed, any

XML complex type built over simple elements can be

regarded as a class, and relationships that form more

complex XML structures as associations between those

classes. The compatibility rules proposed are similar in

nature to the ones discussed in the context of web services

(e.g. [1], [2], [5], [7]).

3.1. Type compatibility assessment

Compatible changes that can be applied to types are

summarized in Table 1. We assume that types are

described by classes, and attributes and operations defined

within those classes. Relationships between classes are

declared using associations. It should be noted that

changes on types used as parameters within operations

must be viewed from two perspectives, as represented by

their role as input or output parameter. Thus type

compatibility is in some cases sensitive to the context

within which the type is used and depends on the overall

schema. The column labeled Output Restriction in Table 1

highlights the cases that are backward compatible only if

they do not affect an output of some operation (perhaps

defined in some other type). Thus from a client point of

view, the results of the operation must conform to a type

that guarantees all expected information, functionality and

constraints. From a service point of view, constraints can

be relaxed as long as the service implementation

guarantees it can still provide the same functionality.

It should also be noted that compatibility is not

restricted to the syntactical properties of types. Semantics

can be conveyed by informal notes or formal constraints

(e.g. as represented by UML metaclasses Comment and

Constraints [14]). Currently, we treat these as mere textual

elements, such that any change on these elements is

considered incompatible.

Given two TypeVersion t, v, where t < v and delta(t, v)

is not empty, the compatibility of t with regard to v is

labeled as:

• Incompatible: if at least one operation o in

delta(t,v) is not listed in Table 1;

• InputCompatible: if all operations o in delta(t,v)

are listed in Table 1, and at least one of them is

output restricted.

• Compatible: if all operations o in delta(t,v) are

listed in Table 1, and none of them is output

restricted.

Note that if t > v, the compatibility of v with regard to t

is undetermined, because backward compatibility is not a

symmetric relationship.

3.2. Model compatibility assessment

Model versions are sets of versioned types, and their

compatibility is assessed in terms of update, addition and

removal of types as defined in Section 2.1. The removal of

types is in all cases labeled incompatible. However, the

addition and update of types usually require contextual

information about how the underlying type versions are

related in the model. In addition to type version

compatibility, the following relationships between type

versions are of relevance for model compatibility

assessment: sub-classing, dependencies established by

strongly typed arguments or attributes, and participation in

associations. It should be noted that different descriptions

related to these sets of type versions result in different

model schemas. Compatible changes are listed in Table 2,

and all others are regarded as incompatible. Given two

ModelVersion x and y, where x < y and delta(x, y) is not

empty, the compatibility of y with regard to x is labeled as:

• Undetermined: if at least one operation o in delta(x, y)

replaces a version v of a type t by a version v’ of the

same type, where v’ < v;

• Incompatible: if there is at least one operation in o in

delta(x, y) that is not listed Table 2, and this operation

does not qualify the model’s compatibility as

Undetermined;

• Compatible: if all operations o in delta(t, v) are listed

in Table 2.

Because the assessment described in Table 1 is

straightforward, the algorithm for determining type

compatibility is omitted. Figure 3 presents the pseudo-

code for processing the model version compatibility. The

algorithm is based on the data structure depicted in. Figure

4. Methods are used as explained in the text below, or their

semantics can be inferred from Figure 4. The algorithm

assumes that all type versions are known as part of the

registration process of a new release of the model, together

with the corresponding compatibility assessment

considering relevant earlier type versions, as discussed in

Section 2.

Table 1. Type level backward compatible changes
Update Operation Type Element Description Output

restriction

add Operation Add a new operation

change signature:
input parameter

Operation Change lower bound cardinality from mandatory to optional

change signature:

input parameter

Operation Change parameter class to superclass (immediate or not)

add Attribute Add new attribute where lower bound cardinality is optional

change Attribute, association participant Change cardinality lower bound from mandatory to optional yes

change Attribute, association participant Change cardinality upper bound from (1) to (*) yes

change Attribute, association participant Change referenced class to a superclass (immediate or not) yes

Table 2. Schema level backward compatible changes
Operation Model Element Description Output

restriction

Add Class Add a type t in new-model

Update Class, Association Replace version v of type t in previous-model by a compatible version v’ of t in new-model

Update Class, Association Replace version v of type t in previous-model by an inputCompatible version v’ of t in new-

model

yes

Add Association Add type t in new-model, such that if a participant class in the description of t refers to a type

u contained previous-schema, the lower-bound cardinality constraint must be optional

verifyCompatibility (pModelVersion: ModelVersion, nModelVersion: ModelVersion): CompatibilityResult;

begin

CompatibilityResult result;

ServiceSchema pSchema, nSchema;

SchemaComponent pcomp, ncomp;

1. pSchema := buildSchema(pModelVersion);

2. nSchema := buildSchema(nModelVersion);

3. result.setCompatibility(COMPATIBLE);

4. for each ncomp in nSchema.components()

5. do begin

6. pcomp := findCorrespondentComponent(pSchema.components(), ncomp.myType());

7. if pcomp = null

8. then processAddedType(ncomp, result);

9. else begin

10. compatibility := myType().getTypeCompatibility(pComp.myType()).compatibility;

11. if compatibility = INPUT-COMPATIBLE and not pcomp.isUsedAsOutput()

12. then compatibility = COMPATIBLE

13. else compatibility = INCOMPATIBLE;

14. pcomp.setProcessed(true);

15. end;

16. end;

17. for each pcomp in pSchema.components()

18. do if not pcomp.isProcessed()

19. then processRemovedType(ncomp, result);

20. return(result);

end;

Figure 3. Model compatibility comparison algorithm

1
*

*

*

*

*

Figure 4. Compatibility checking data structure

The first step in the algorithm is to build the schema

structure depicted in Figure 4 for each of the compared

model versions (lines 1 and 2). To create this schema

representation, buildSchema considers all descriptions

associated with the type versions included into each

model, and creates schema components that are related to

each other through the relationships required for

investigating compatibility, i.e., superclass, subclass,

associations in which they participate, dependencies as

operation parameters and strongly typed attributes. In

addition, it evaluates if the type is used to strongly type an

output argument anywhere in the schema. Lines 4 to 10

determine compatibility of the schemas by comparing each

component of the new schema with the corresponding one

of the previous schema. Type names are used to establish

such a correspondence between the versions (line 6). If the

type was not contained in the previous model, then it is

verified if its inclusion does not break compatibility

according to addition rules in Table 2 (line 8). If the type

is replaced by a new version, then its compatibility needs

to be resolved (lines 10 to 14). As components of the

previous schema are compared to the corresponding ones

of the new schema, they are marked as processed (line 14).

Finally, we search for removal of types, and therefore we

search for all non-processed types in the previous schema

(lines 17 to 19). Notice that the algorithm processes all

types in both models, such that it produces not only a final

verdict on compatibility between the models, but also

produces a complete explanation of the delta.

4. Case study for compatibility assessment

We are testing our solution within the Shared Services

Platform (SSP), which melds SOA and model-driven

architecture for describing IT services [15]. All services in

the SSP are hosted at a Service Access Points (SAP) and

interact through service models. The SAP is a proxy

service that provides, among other things, message routing

and validation capabilities. SSP adopts the OO paradigm

for service description, and it is implemented using Java,

OSGi technology [17], and Oracle Berkeley DB for

persistence support [16]. The SSP provides an ideal test

case for understanding how version compatibility

awareness can be leveraged into the SOA. Figure 5 depicts

the functional components developed for version

awareness in the SSP, which are briefly described below.

Service
Service

Service

Service

Service
Service

Service

Service

Client Application

Client Stub

request response

Client Application

Client Stub

request response

Message Validator

Message Instance

SAP

register

request

response

Service

Version Magager

Type Version Model Version

Validator
MetaModel

Compatibility check

Dictionary Service

Version Magager

Type Version Model Version

Validator
MetaModel

Compatibility check

Dictionary Service

request

response

Service

Directory Service

Compatibility

Versions

Life-cycle

Information

Service

Directory Service

Compatibility

Versions

Life-cycle

Information

Figure 5. Functional components within the SSP
for compatibility assessment

Dictionary Service: The Dictionary is the authoritative

repository for all types and models in SSP. These are

represented according to the versioning framework

described in Section 2.1. Version numbers must be

explicitly provided by type authors. The Dictionary checks

compatibility of all type versions and model versions

when they are inserted by extracting their directed delta

and assessing the compatibility of their differences. An

example of compatibility assessment is provided in

Section 4.1. In addition, the dictionary ensures that all

descriptions conform to the meta-model adopted for

representing types and models. Currently, the SSP

implementation assumes that models are declared using

the OO CIM meta-model [4].

Directory Service: The Directory provides

mechanisms for publishing and finding service

descriptions, and is similar to a registry service. The

distinction is that services are versioned, and that in

addition to providing the normal discovery functions, the

directory also maintains compatibility information among

different versions of the service. For this purpose, it

interacts with the Dictionary Service. In addition, the

directory maintains information about service release

lifecycle according to three perspectives: a) availability

(available, deprecated, unavailable); b) stability (stable,

experimental, unknown) and c) alias (new, old, current).

The alias is used to convey an external representation of

the recency of the service release.

Message Validator: The message validator is

implemented within the SAP and guarantees consistency

of messages exchanged in the SOA environment. Using

the description of the service model and versioning

information, it can guarantee that the service can indeed

interpret the request; and that the data in message is

compatible with the service’s model. In addition, it

interacts with the Directory to find out the availability of

the service version.

4.1. A compatibility assessment example

Figure 6 exemplifies the output of the compatibility

assessment algorithm in our Dictionary implementation. In

the picture, service descriptions are depicted using a UML

representation. Three different model versions are

presented for service Lib, namely Lib.1, Lib.2 and Lib.3.

The respective service models are based on types such as

LibraryService, Item, Book, Comment, etc, which in turn

are versioned.

Figure 6. Compatibility assessment example

In Lib.1, the service provides operations to find any

library item based on keywords, and to provide comments

on a book. In Lib.2, it becomes possible to provide

comments on any library Item, and therefore the input

argument of operation comment is generalized. The

relationship CommentedItem that relates Comment and

Book is also changed to support that (role generalization,

minimum cardinality). Another incremental feature is the

ability to reserve books, as well as the explicit control of

Magazines and their respective Issues. In Lib.3, the service

provider decides that these new features do not pay off

(e.g. they not used or they are too expensive to maintain)

so operations reserve and release are removed (from both

LibraryService and Book), and so is explicit Issue control.

Considering these changes, the Dictionary service registers

that both Lib.3 and Lib.2 are backward compatible to

Lib.1, but that Lib.3 is incompatible with Lib.2.

4.2. Performance Experiments

Experiment set-up. The SOA environment for our

experiment was located in a single machine (Pentium

2.8GHz, 2 GB RAM, Windows XP). The SOA contained

the Directory Service and the Dictionary Service. We

considered for the experiment the registering of a fire

simulation service (FDS), of which the description is

composed of 52 types (classes and associations).

Experiment Description. We compared the cost of

registering a new version of the FDS in the Directory

Service with compatibility checking and without. We

generated up to 20 model versions for FDS. Changes were

introduced with regard to the immediate previous version

at both type and model levels. We tested 3 distinct change

scenarios: changes on 10%, 30% and 50% of the types

(respectively 5, 15 and 26 types). Changes were performed

always in the same set of types, in which compatible or

incompatible updates were randomly introduced. We then

measured the time necessary to register a new service

version with and without compatibility checking

considering 4, 9, 14 and 19 prior service versions (and

consequently, the same amount of versions for the types

changed). Each execution was repeated 5 times, and the

average results are displayed in Table 3, together with the

corresponding standard deviation in parenthesis. Time is

measured in milliseconds. Rows are labeled considering a

combination of the percentage of change introduced, and

register operation without compatibility checking (OFF)

and with compatibility checking (ON). The columns

represent the number of previous releases that the new

version needs to be compared with. The graph shown in

Figure 7 shows the overhead introduced in the service

registering operation by the insertion of the compatibility

checking, considering the number of previous releases and

the percentage of changes applied.

Discussion. As it can be seen in Table 3, the absolute

time for registering a new service version with

compatibility checking is not significant. In the worst case

examined, it amounts to 29 seconds. However, it does

introduce a significant overhead to the registering

operation: from 91 times in the most favorable scenario, to

233 times in the worst case examined. These results were

expected, due to the combinatorial nature of the algorithm.

Indeed, a new model version is compared with all previous

ones, which implies in turn comparing the new type

versions with all previously existing types contained in

those model versions. Nevertheless, we believe that the

chosen persistence technology accounts for some of the

performance issues. It can be noticed an inverse

relationship between % of changes and time required to

Lib.1

Lib.2

Lib.3

Lib.2 -> Lib.1: Backward Compatible

New Components: Issue 1.0, Magazine 1.0,

MagazineToIssue 1.0

Replaced Components:

Book (2.0 replaces 1.0)

[Book#2.0

New: property:multimedia

method:setReserve, release]

CommentedItem (2.0 replaces 1.0)

[CommentedItem #2.0

Changed: reference:comment, item]

LibraryService (2.0 replaces 1.0)

[LibraryService#2.0

Changed: method:findItem, comment

New: method:reserve, release]

Lib.3 -> Lib.1: Backward Compatible:

New Components: Magazine 1.0

Replaced Components:

Book (3.0 replaces 1.0)

[Book#3.0

New: property:multimedia]

CommentedItem(2.0 replaces 1.0)

[CommentedItem #2.0

Changed: reference:comment, item]

LibraryService (3.0 replaces 1.0)

[LibraryService#3.0

Changed: method:comment

New: method:findComment]

Lib.3 -> Lib.2: : Incompatible

Deleted Components: Issue 1.0,

MagazineToIssue 1.0

Replaced Components:

Book (3.0 replaces 2.0)

[Book#3.0

Removed: method:setReserve, release]

LibraryService (3.0 replaces 2.0)

[LibraryService#3.0

Removed: method:reserve, release]

register a new model version without compatibility

checking. Recall that version numbers are provided by

service authors, and therefore, if a type version is already

registered, current implementation further checks if the

type description provided matches the registered one.

Table 3. Time to register a new service version
with and without compatibility checking

 Previous Service Releases

Percentage of

Changes

4 9 14 19

10% Comp.

checking. OFF

172

(0)

188

(0)

187

(0)

172

(0)

10% Comp.

checking ON

15580

(202)

18721

(153)

22085

(275)

25205

(191)

30% Comp.

checking OFF

171

(0)

156

(0)

140

(0)

157

(0)

30% Comp.

checking ON

16886

(163)

20267

(171)

23609

(132)

26965

(148)

50% Comp.

checking OFF

143

(0)

140

(0)

125

(0)

125

(0)

50% Comp.

checking ON

17941

(225)

21415

(202)

25381

(198)

29079

225)

0

50

100

150

200

250

4 9 14 19

NUMBER OF PREVIOUS RELEASES

O
V
E
R
H
E
A
D

10% CHANGE

30% CHANGE

50% CHANGE

Figure 7. Overhead introduced in the registering
operation

4.3. Benefits of compatibility-aware SOA

By leveraging version compatibility into the SSP, the

following benefits are observed:

Service Updates: During development, service

descriptions are changed to introduce new functionality.

Often, developers wish to offer new functionality without

compromising existing functionality. As service

descriptions become complex, it is easy to mistakenly

introduce incompatible changes. To help the developer

avoid such mistakes, the Dictionary may be used to

evaluate service compatibility with regard to previous

versions, and correct the service description in case of

errors before the service is made available to clients.

Service Discovery: Clients discover services and their

models by performing queries on the Directory and

Dictionary services. By introducing versions in to these

services, clients can request specific versions of a service

during lookup, and are aware of the version of all services

returned. They can also request for compatibility

information. Thus, as client applications are developed and

deployed, proper versioning requirements can be put in to

the implementation guaranteeing that incompatibilities

will not occur during run-time.

Service Binding: The run-time corollary to discovery

is binding. This is the time when service instances are

selected for use by a particular client instance. It is

possible that a new (perhaps incompatible) version of the

service is released between the time the client is developed

and the time it is put into operation. To prevent run-time

failures due to change, a client may use the information

collected during discovery to make sure that a bound

service is compatible with its requirements. During

binding, the client can present the service interface

definition used during development, and be assured that

the present service interface is compatible. If so, it can use

the service successfully, and if not, errors can be detected

early rather than waiting for failures to occur when the

service interactions happen.

Message Validation: The SOA run-time or

middleware systems are responsible for transporting

messages from a client to a service. Typically, run-time

systems do simple validation of the structure of a message

such as matching all begin and end tags in an XML

document. However, it is usually not possible for the run-

time to guarantee that messages contain the type of

information expected by a service. Within the SSP, the

SAP handles a number of validations, including the ability

to handle a request for validity against the expected

service description, as well as compatibility with it. In

particular, if message content is forwarded to upgraded

services as part of some service composition,

compatibility checks ensure that the service receives only

messages that it expects or backward compatible

messages. Notice that individual type compatibility is very

important for this purpose.

5. Related work

Versioning is extensively addressed within the context

of software development, but the compatibility of the

deltas extracted from service descriptions and their effect

in the whole configuration is not addressed in prior

literature [3]. Most existing work in web service

versioning (e.g. [1], [2], [5], [10], [13]) discusses design

patterns and best practices within the context of relating

service descriptions and implementation. They also

provide a framework to evaluate backward compatibility.

In a more restricted way, forward and backward

compatibility of XML documents updates is discussed by

Moro et al. [11] with the goal of helping designers to

understand the resilience to changes of XML schemas and

respective queries.

Registry solutions (e.g. UDDI v3.0.2, Systinet, [7])

provide mechanisms for registering and documenting

releases of the same service (e.g. for discovery or

governance purposes), but they make assumptions about

compatibility (e.g. convention on version numbers, only

backward compatible releases). Functional components for

embedding versioning into the SOA are discussed by Fang

et al. [6] and Frank et al. [8], notably with the proposal of

service redirection based on compatibility. However, no

support is provided for assessing such compatibility other

than guidelines to be followed by service developers. A

design technique is proposed by Kaminski et al. [9], in

which a chain of adaptors deal with the (in)compatibility

between the current and the previous releases of a service.

However, they do not discuss how to assess the

differences as an input to the adaptor design.

6. Conclusions and future work

In this paper, we described a framework for

automatically assessing backward compatibility between

two revisions of a service as it undergoes evolution as a

result of lifecycle management. This is important because

within SOA, the development lifecycles of services and

clients are de-coupled, and it is important that services

continue to support older clients. Compatibility

assessment is error-prone if done manually, especially for

service descriptions that are complex.

The distinctive features of our approach are: a) It

implements automatic detection of type and service

schema compatibility, which in related work is limited to a

set of (loose) guidelines; b) It allows loose coupling

between type versions and their usage to define service

descriptions. The latter is a more flexible and

comprehensive solution for service description evaluation

in the presence of integration issues for services

composition. We implemented our framework within a

SOA case study, and shown benefits for clients and

providers of exploring automatically compatibility

information. Early performance tests have shown

satisfactory results, which can be improved by the

introduction of optimization techniques to reduce the

combinatorial effect. We are currently undertaking is the

insertion of version derivation meta-information (e.g. type

2.0 modifies type 1.0), such that type versions are

organized in a tree [3], where the edges represent

derivation relationship labeled with compatibility verdict.

In this way, we can infer about the compatibility of

versions in the same derivation path, and significantly

reduce the number of comparison within type versions.

We are currently developing a more comprehensive

study of semantic compatibility, using OCL constraints.

As future work, we plan to generalize compatibility rules

to other services description approaches, notably semantic

ones such as WSDL-S, OWL-S or SML. We will add

subscription/notification mechanisms in the Directory such

that clients can become aware of the lifecycle stage of the

versions they use, as well as the availability of newer

versions. We will consider performing automated re-

direction of compatible messages, so that they can reach a

compatible service in case the originally intended service

version becomes unavailable. Finally, we plan automated

creation of translation adapters, to minimize human

engagement in the upgrade.

References

[1] Bachmann, R. “Challenges of Web Service Change

Management,”

https://www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/librar

y/uuid/4e1d4d29-0801-0010-159b-f8d51a04bbbd

[2] Brown, K.; Michael, E. “Best practices for web services

versioning,

www.ibm.com/developerworks/webservices/library/ws-version

[3] Conradi, R. and Westfechtel, B. Version models for

software configuration management”. ACM Computing Surveys,

vol. 30, no. 2, pp.232-282, 1998.

[4] DMTF. “Common Information Model (CIM)

Specification”, version 2.2. 1999,.

http://www.dmtf.org/standards/cim/cim_spec_v22.

[5] Endrei, M. et al. “Moving forward with web services

backward compatibility”. http://www-

128.ibm.com/developerworks/java/library/ws-soa-backcomp/

[6] Fang, R. et al. “A version-aware approach for web service

client application”. 10th IFIP/IEEE International Symposium on

on Integrated Network Management, 2007. pp. 401 – 409.

[7] Fang, R. et al. “A version-aware approach for web service

directory”. ICWS 2007. pp. 406 – 413

[8] Frank, D. et al. "An Approach to Hosting Versioned Web

Services". IEEE SCC 2007: pp. 76-82

[9] Kaminski, P., Litoiu, M., Müller, H. A design technique for

evolving web services. CASCON 2006. pp. 303-317.

[10] Lublinsky, B. “Versioning in SOA”. Microsoft Architect

Journal. msdn2.microsoft.com/en-us/arcjournal/bb491124.aspx

[11] Moro, M., Malaika, S., Lim, L. Preserving XML queries

during schema evolution. WWW 2007. pp. 1341-1342

[12] Murta, L. et al. Odyssey-SCM: An integrated software

configuration management infrastructure for UML models. Sci.

Comput. Program. Vol. 65, No. 3. pp. 249-274, 2007.

[13] Narayan, A. and Singh, I.. Designing and versioning

compatible Web services.

http://www.ibm.com/developerworks/websphere/library/techartic

les/0705_narayan/0705_narayan.html

[14] OMG, OMG Unified Modeling Language (OMG UML) -

Infrastructure (V2.1.2).

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

[15] Singhal, S.; Machiraju, V.; Pruyne, J. “Picasso: A Services

Oriented Architecture for Model based Automation,” HP Labs

Technical Report HPL-TR-2007-50R1.

[16] Oracle Berkley DB Java Edition.

http://www.oracle.com/technology/products/berkeley-

db/je/index.html

[17] OSGi Alliance http://www.osgi.org/Main/HomePage.

