
 

                                                      
       

 
Data Weaving: Scaling Up the State-Of-The-Art in Data Clustering 
 
Ron Bekkerman and Martin Scholz 
HP Laboratories 
HPL-2008-38R2 
 
Keyword(s):   
Information-theoretic clustering, multi-modal clustering, parallel and distributed data mining 
 
Abstract: 
The enormous amount and dimensionality of data processed by modern data mining tools require 
effective, scalable unsupervised learning techniques. Unfortunately, the majority of previously 
proposed clustering algorithms are either effective or scalable. This paper is concerned with 
information-theoretic clustering (ITC) that has historically been considered the state-of-the-art in 
clustering multi-dimensional data. Most existing ITC methods are computationally expensive 
and not easily scalable. Those few ITC methods that scale well (using, e.g., parallelization) are 
often out-performed by the others, of an inherently sequential nature. First, we justify this 
observation theoretically. We then propose data weaving--a novel method for parallelizing 
sequential clustering algorithms. Data weaving is intrinsically multi-modal--it allows 
simultaneous clustering of a few types of data (modalities). Finally, we use data weaving to 
parallelize multi-modal ITC, which results in proposing a powerful DataLoom algorithm. In our 
experimentation with small datasets, DataLoom shows practically identical performance 
compared to expensive sequential alternatives. On large datasets, however, DataLoom 
demonstrates significant gains over other parallel clustering methods. To illustrate the scalability, 
we simultaneously clustered rows and columns of a contingency table with over 120 billion 
entries. 

 

 
                                                                                                      
                                                                                                                      
 

External Posting Date: April 6, 2009 [Fulltext]                                                             Approved for External Publication 

Internal Posting Date: August 21, 2008 [Fulltext]   

Published in ACM CIKM, Conference on Information & Knowledge Management, Napa, CA Oct 27, 2008 

© Copyright 2008 ACM CIKM, Conference on Information & Knowledge Management 



Data Weaving: Scaling Up the State-Of-The-Art
in Data Clustering

Ron Bekkerman
HP Laboratories

Palo Alto, CA 94304, USA
ron.bekkerman@hp.com

Martin Scholz
HP Laboratories

Palo Alto, CA 94304, USA
scholz@hp.com

ABSTRACT
The enormous amount and dimensionality of data processed
by modern data mining tools require effective, scalable un-
supervised learning techniques. Unfortunately, the majority
of previously proposed clustering algorithms are either effec-
tive or scalable. This paper is concerned with information-
theoretic clustering (ITC) that has historically been con-
sidered the state-of-the-art in clustering multi-dimensional
data. Most existing ITC methods are computationally ex-
pensive and not easily scalable. Those few ITC methods
that scale well (using, e.g., parallelization) are often out-
performed by the others, of an inherently sequential na-
ture. First, we justify this observation theoretically. We
then propose data weaving—a novel method for paralleliz-
ing sequential clustering algorithms. Data weaving is intrin-
sically multi-modal—it allows simultaneous clustering of a
few types of data (modalities). Finally, we use data weaving
to parallelize multi-modal ITC, which results in proposing
a powerful DataLoom algorithm. In our experimentation
with small datasets, DataLoom shows practically identical
performance compared to expensive sequential alternatives.
On large datasets, however, DataLoom demonstrates signif-
icant gains over other parallel clustering methods. To illus-
trate the scalability, we simultaneously clustered rows and
columns of a contingency table with over 120 billion entries.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Clustering; D.1 [Programming
Techniques]: Concurrent Programming—Parallel program-
ming

General Terms
Algorithms

Keywords
Information-theoretic clustering, multi-modal clustering, par-
allel and distributed data mining
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1. INTRODUCTION
It becomes more and more apparent that processing gi-

gabytes and terabytes of information is a part of our every-
day routine. While data mining technology is already ma-
ture enough for tasks of that magnitude, we—data mining
practitioners—are not always prepared to use the technology
in full. For example, when a practitioner faces a problem of
clustering a hundred million data points, a typical approach
is to apply the simplest method possible, because it is hard
to believe that fancier methods can be feasible. Whoever
adopts this approach makes two mistakes:
• Simple clustering methods are not always feasi-

ble. Let us consider, for example, a simple online clustering
algorithm (which, we believe, is machine learning folklore):
first initialize k clusters with one data point each, then it-
eratively assign the rest of points into their closest clusters
(in the Euclidean space). Even for small values of k (say,
k = 1000), such an algorithm may work for hours on a mod-
ern PC. The results would however be quite unsatisfactory,
especially if our data points are 100,000-dimensional vectors.
• State-of-the-art clustering methods can scale well,

which we aim to show in this paper.
With the deployment of large computational facilities (such

as Amazon.com’s EC2, IBM’s BlueGene, HP’s XC), the
parallel computing paradigm is probably the only currently
available option for addressing gigantic data processing tasks.
Parallel methods become an integral part of any data pro-
cessing system, and thus gain special importance (e.g., some
universities are currently introducing parallel methods to
their core curricula [19]).

Despite that data clustering has been in the focus of the
parallel and distributed data mining community for more
than a decade, not many clustering algorithms have been
parallelized, and not many software tools for parallel clus-
tering have been built (see Section 3.1 for a short survey).
Apparently, most of the parallelized clustering algorithms
are fairly simple. There are two families of data clustering
methods that are widely considered as very powerful:
•Multi-modal (or multivariate) clustering is a frame-

work for simultaneously clustering a few types (or modali-
ties) of the data. Example: construct a clustering of Web
pages, together with a clustering of words from those pages,
as well as a clustering of URLs hyperlinked from those pages.
It is commonly believed that multi-modal clustering is able
to achieve better results than traditional, uni-modal meth-
ods. The two-modal case (usually called co-clustering or
double clustering) has been widely explored in the litera-
ture (see [14, 12]), however, a more general m-modal case



has only recently attracted close attention of the research
community (see [17, 1]), probably because of its computa-
tional cost.
• Information-theoretic clustering (ITC) (see, e.g. [30])

is an adequate solution to clustering highly multi-dimensional
data, such as documents or genes. ITC methods perform
global optimization of an information-theoretic objective func-
tion. For the details, see Section 2.

Many global optimization methods are greedy—those meth-
ods are sequential in their essence, and therefore are diffi-
cult to parallelize. In contrast, local optimization methods
are often easily parallelizable. Many popular clustering al-
gorithms, such as k-means, belong to the latter category.
Unfortunately, most of them are not very effective on large
multi-dimensional datasets. In the text domain, for exam-
ple, k-means usually ends up with one huge cluster and a
few tiny ones.1

One approach to solving a global optimization problem is
to break it down into a set of local optimizations. Dhillon
et al. [12] applied this approach to perform an information-
theoretic co-clustering (IT-CC). In Section 3.2, we show a
fairly straightforward way of parallelizing their algorithm.
The IT-CC algorithm turns out to be very conservative in
optimizing the (global) clustering objective, such that it gets
often stuck in local optima. In Section 3.3, we discuss a se-
quential co-clustering (SCC) method, and show analytically
that it is more aggressive in optimizing the objective.

In Section 4, we propose a new scheme for parallelizing
sequential clustering methods, called data weaving. This
mechanism works as a loom: it propagates the data through
a rack of machines, gradually weaving a “fabric” of clusters.
We apply this mechanism to parallelizing the SCC method,
which leads to constructing a highly scalable, information-
theoretic, multi-modal clustering algorithm, called DataLoom.

In the experimentation part of our paper (Section 5) we
first compare DataLoom with its original, non-parallel ver-
sion (SCC), as well as with IT-CC and two more baseline
methods on four small datasets (including the benchmark
20 Newsgroups). We show that the parallelization does not
compromise the clustering performance. Finally, we apply
DataLoom to two large datasets: RCV1 [22], where we clus-
ter documents and words, and Netflix KDD’07 Cup data,2

where we cluster customers and movies. If represented as
contingency tables, both datasets contain billions of entries.
On both of them, DataLoom significantly outperforms the
parallel IT-CC algorithm. To our knowledge, co-clustering
experiments of that scale have not been reported previously.

2. INFORMATION-THEORETIC
CLUSTERING

Over the past decade, information-theoretic clustering meth-
ods have proven themselves to be the state-of-the-art in clus-
tering highly multi-dimensional data. In this paper, we focus

1The traditional k-means assigns instances to clusters based
on the Euclidean distances between points and centroids.
Since text is usually sparse and high-dimensional, docu-
ments typically have only few terms in common. As a conse-
quence, the l2 norms of terms and centroids often dominate
in the calculation of their Euclidean distances. Since the
l2 norms of centroids naturally decrease with increasing the
cluster size, instances tend to be re-assigned to clusters that
are already large, and smaller clusters disappear over time.
2http://cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html

on hard clustering (a many-to-one mapping of data points
to cluster identities), as opposed to soft clustering (a many-
to-many mapping, where each data point is assigned a prob-
ability distribution over cluster identities). Hard clustering
can be viewed as a lossy compression scheme—this observa-
tion opens a path to applying various information-theoretic
methods to clustering. Examples include the application
of the minimum description length principle [6] and rate-
distortion theory [9].

The latter led to proposing the powerful Information Bot-
tleneck (IB) principle by Tishby et al. [34], and then to
dozens of its extensions. In Information Bottleneck, a ran-
dom variable X is clustered with respect to an interact-
ing variable Y : the clustering X̃ is represented as a low-
bandwidth channel (a bottleneck) between the input signal
X and the output signal Y . This channel is constructed
to minimize the communication error while maximizing the
compression:

max
[
I(X̃; Y )− βI(X̃; X)

]
, (1)

where I is a Mutual Information (MI), and β is a Lagrange
multiplier. A variety of optimization procedures have been
derived for the Information Bottleneck principle, including
agglomerative [31], divisive [2], sequential (flat) [30] meth-
ods, and a hybrid of them [1].

Friedman et al. [16] generalize the IB principle to a multi-
variate case. In its simplest form, for clustering two variables
X and Y , the generalization is relatively straightforward: a
channel X ↔ X̃ ↔ Ỹ ↔ Y is constructed to optimize the
objective

max
[
I(X̃; Ỹ )− β1I(X̃; X)− β2I(Ỹ ; Y )

]
. (2)

When more than two variables are clustered, the mutual
information I(X̃; Ỹ ) is generalized into its multivariate ver-
sion, called multi-information. The complexity of computing
multi-information grows exponentially while adding more
variables, and is therefore restrictive in practical cases even
for only three variables.

Information-theoretic co-clustering (IT-CC) was proposed
by Dhillon et al. [12] as an alternative to multivariate IB, for

the two-variate case when the numbers of clusters |X̃| and

|Ỹ | are fixed. In this case, it is natural to drop the compres-

sion constraints I(X̃; X) and I(Ỹ ; Y ) in Equation (2), and
directly minimize the information loss:

min
[
I(X; Y )− I(X̃; Ỹ )

]
= max I(X̃; Ỹ ), (3)

when I(X; Y ) is a constant for a given dataset. To optimize
this objective, Dhillon et al. proposed an elegant optimiza-
tion method that resembles the traditional k-means, while
the latter has a less powerful l2 objective.

Bekkerman et al. [1] generalize IT-CC to the multivari-
ate case, while avoiding the trap of multi-information: they
approximate it with a (weighted) sum of pairwise MI terms:

max


 ∑

eij∈E
wijI(X̃i; X̃j)


 ,

where the data variables {X1, . . . , Xm} are organized in an
interaction graph G = (X , E),3 with edges eij corresponding
3Lauritzen [21] presents the interaction graph as a general-
ization of a graphical model.
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Figure 1: Difference between ICM (upper) and
CWO (lower) optimization methods (nodes that are
being optimized are unshaded bold). ICM iterates
over G’s nodes (in round-robin) and optimize each
of them based on its Markov blanket. CWO iter-
ates over cliques in G (edges, in the simplest case)
and locally optimizes the corresponding model while
ignoring the rest of the interaction graph.

to pairs of interacting variables (Xi, Xj). Weights wij are
chosen to bring MI terms to the same scale. Bekkerman
et al. propose a complex optimization method that utilizes
the Iterative Conditional Modes (ICM) [4] for traversing the
graph G, and then performs a hybrid hierarchical/sequential
clustering step for each of G’s nodes. An illustration of ICM
is given in Figure 1 (upper).

We notice that the extra parametrization (through weights
wij) can be avoided by changing the graph traversal scheme:
instead of iterating over nodes (as in ICM), we can iterate

over edges eij and maximize only one MI term I(X̃i; X̃j) at
a time (see the lower part of Figure 1). We call our method
Clique-Wise Optimization (CWO)—it is analogous to pair-
wise training [33] in a supervised learning setup.

3. PARALLEL CLUSTERING
Parallel and distributed data mining is a very active field

of research [23] that covers a variety of disciplines, so we
want to narrow down the scope of this section. Although
our methods are vaguely related to distributed clustering,
we would like to point out that this paper does not address
problems such as mining geographically distributed data,
privacy preservation due to using insecure networks, or as-
pects of fault recovery. Instead, we are “just” concerned
with scaling up state-of-the-art clustering algorithms to the
very large amounts of data we deal with, while we assume a
“shared nothing” cluster of computers connected via a high
bandwidth local area network. Note that the clustering
problem can be large-scale along several dimensions. Often
not only the number of data instances is very large, but data
is also of very high dimensionality; for example, ten thou-
sands of features is common even for small text corpora.
Whenever the task of clustering data collections requires to
capture the underlying structure of a dataset at a fine level,
using a very large number of clusters is also common. Our
goal is to reduce the total computational costs to a tractable
level in order to get the best possible clustering results on
very large data collections.

3.1 Goals and Related Work
Among the early approaches explicitly mentioning and

addressing the scalability problem along all three of these
dimensions is Canopy [26], a non-distributed clustering al-
gorithm that avoids many expensive distance computations

by aggregating objects at a coarse level; only objects in a
common “Canopy” are assumed to be close enough to po-
tentially be in the same cluster. Scaling up drastically may
compromise the data mining results, however, (and unlike
ITC) the method requires an underlying distance metric.

Several authors addressed the scalability issue of cluster-
ing by parallelizing specific algorithms, most prominently
k-means [20, 13] including its generalizations [15] that cover
e.g., the EM algorithm. The parallelization strategies ex-
ploit the stage-wise nature and mathematical properties that
allow to compute global from local solutions: Each node is
responsible for a subset of the data. It computes the clos-
est cluster for each of its instances, computes the new local
cluster means (or parameters for EM, respectively), commu-
nicates these means to a master who aggregates them, and
distributes the aggregated centroids (or parameters) for the
next iteration. This parallelization procedure yields algo-
rithms that compute identical results as their non-parallel
counterparts.

On the technical side, the literature usually shows that
these algorithms can be realized on top of a specific low-
level communication framework [15, 13, 18] running on a
“shared nothing” cluster, but they clearly are not limited to
this kind of architecture. It has recently been discussed that
the same kind of parallelization works very well in combi-
nation with the popular MapReduce paradigm [10]. Paral-
lelizing the clustering algorithms k-means and EM (mixture
of Gaussians) via MapReduce is covered in [8].

Parallelization of clustering algorithms is still an active
field of research. As discussed above, in some fields, like
density-based clustering, a good understanding of how to
parallelize has already been gained, so the research focuses
on rather specific cases like spatial aspects and structured
data, with a clear bias towards distributed (as opposed to
parallel) data mining [35, 7]. For information-theoretic clus-
tering this research is still in its infancy. A clustering algo-
rithm for specific distributed data problems that employs
information-theoretic objectives has recently been proposed
by [11], but it does not discuss efficient parallelization of
ITC. To the best of our knowledge, a systematic study of
the practically highly relevant parallelization of information-
theoretic clustering is still lacking. As we will see in Sec-
tion 3.2, adopting the strategies sketched above already al-
lows for a straightforward parallelization of an important
ITC algorithm.

3.2 Parallel IT-CC
Dhillon et al.’s information-theoretic co-clustering (IT-

CC) [12] is a k-means-style algorithm that locally optimizes
the global information-theoretic objective function (3). We
first briefly sketch the formal background of IT-CC, before
proposing its parallelization.

The goal of IT-CC is to approximate a given joint prob-
ability distribution p over two modalities X and Y with a
“simpler” distribution q, where the statistical dependencies
are captured in a lower-dimensional cluster space:

q(x, y) := p(x) · p(y) · p(x̃, ỹ)

p(x̃) · p(ỹ)
, (4)

where x ∈ X, y ∈ Y , p(x) and p(y) denote marginals; x̃
and ỹ are the corresponding clusters of x and y, respec-
tively; and p(x̃) and p(ỹ) are marginals of these clusters.
Dhillon et al. show that optimization of the objective func-



tion (3) is equivalent to the minimization of the KL diver-
gence DKL(p(X, Y )||q(X, Y )) between the joint distribution
p and its approximation q.

Like many other co-clustering algorithms, IT-CC alter-
nates iterations that update the clustering assignments X̃
and Ỹ . The reason we think of IT-CC as a k-means-style
algorithm is that it first assigns all data points to their clos-
est clusters, and then it recomputes cluster representatives
based on the data points now contained in each cluster.

Let us focus on a IT-CC iteration where the clustering
X̃ is updated given the clustering Ỹ (the opposite case is
symmetric.) Unlike the traditional k-means that uses the
Euclidian distance metric, IT-CC defines the proximity of a
data point x to a cluster x̃ in terms of the KL divergence
between p(Y |x) and q(Y |x̃), where the latter is computed
using

q(y|x̃) = q(y|ỹ) · q(ỹ|x̃). (5)

During the data point assignment process, the conditionals
q(Y |x̃) do not change, thus playing the role of the centroids.

Dhillon et al. prove that the co-clustering strategy of as-
signing data points x to clusters x̃ by minimizing the local
objective DKL(p(Y |x)||q(Y |x̃)), monotonically decreases the
global objective function, which guarantees the algorithm’s
convergence. The following transformations illustrate how
to simplify computations without changing the optimization
problem, that is, without changing the total order of its so-
lutions. We remove terms that are constants in the context
of optimizing cluster assignment X̃, and rewrite

arg min
x̃

DKL(p(Y |x)||q(Y |x̃))

= arg min
x̃

∑
y

p(y|x) log
p(y|x)

q(y|x̃)

(substituting Equation (5) for q(y|x̃):)

= arg max
x̃

∑
y

p(y|x) log(q(y|ỹ)q(ỹ|x̃))

= arg max
x̃

∑
ỹ

p(ỹ|x) log q(ỹ|x̃)

= arg max
x̃

∑
ỹ

p(ỹ|x) log p(ỹ|x̃). (6)

The above transformation shows that rather than computing
the centroids q(Y |x̃), the algorithm only needs to compute
q(x̃, ỹ) = p(x̃, ỹ) for each cluster pair x̃ and ỹ at each round.

We argue that the same simplification allows to select an
optimal clustering X̃opt from a set of candidate clusterings
X̃ ⊂ 2X (given Ỹ ) by only referring to cluster joints p(x̃, ỹ).
Let q(X̃,Ỹ ) be the distribution q induced by a specific pair

of clusterings X̃ and Ỹ . We have:

X̃opt = arg min
X̃∈X̃

DKL(p(X, Y )||q(X̃,Ỹ )(X, Y ))

= arg min
X̃∈X̃

∑
x∈X,y∈Y

p(x, y) log
p(x, y)

q(X̃,Ỹ )(x, y)

= arg max
X̃∈X̃

∑

x̃∈X̃

p(x̃)
∑

ỹ∈Ỹ

p(ỹ|x̃) log q(ỹ|x̃)

= arg max
X̃∈X̃

∑

x̃∈X̃

p(x̃)
∑

ỹ∈Ỹ

p(ỹ|x̃) log p(ỹ|x̃) (7)

as our new, equivalent formulation of the IT-CC optimiza-
tion problem. The function in Equation (7) preserves even

the correct total order of the candidate clusterings with re-
spect to the mutual information (3).

Following the outline of parallel k-means (Section 3.1) and
the description above, we can adapt IT-CC to the parallel
case as follows: We alternate the optimization of X̃ and
Ỹ . During each of these optimizations the parallel pro-
cesses hold disjoint subsets of the data. We will just de-
scribe the case of computing a new clustering of X; clus-
tering Y works analogously. Process i will hold the data
for elements X(i) ⊂ X. All cluster “centroids” p(x̃, ỹ) are
distributed to all nodes, where the new cluster assignments
are computed based on the KL divergence (6). Given the
new assignments, each process i computes the local joints
q(i)(x̃, ỹ) =

∑
x∈x̃∩X(i) p(x, ỹ) for each (new) cluster x̃, and

broadcasts them to a master node. The master computes
the new global “centroids” q(x̃, ỹ) =

∑
i q(i)(x̃, ỹ). They can

then be broadcasted to the nodes again to start the next
round of refining X̃, or the algorithm can switch to re-cluster
Y instead. Note that this process yields exactly the same
results as in the non-parallelized case.

We consider the parallel IT-CC algorithm as a strong
baseline for the DataLoom algorithm proposed in a Sec-
tion 4. Before moving on, let us discuss the potential of Dat-
aLoom by taking a closer look at the difference between IT-
CC and the (non-parallelized) sequential information bot-
tleneck.

3.3 Sequential Co-clustering
DataLoom originates from a multi-modal version of the

sequential Information Bottleneck (sIB) algorithm [30]. In
sIB, at its initialization step, all data points are uniformly
at random assigned into clusters. Then, a random permu-
tation of all the data points is constructed, each element of
which is pulled out of its cluster and iteratively assigned into
any other cluster. It is finally left in the cluster such that
the objective function (1) is maximized. The algorithm is
executed until its full convergence.

We consider the multi-modal variation of sIB (we call it
sequential co-clustering (SCC)), which iterates over the data
modalities organized in an interaction graph (see Section 2).
At each iteration, it applies the sIB’s optimization procedure
to maximize the co-clustering objective (3). It improves
clusterings by continuously updating cluster memberships
of individual data points. To decide whether to change a
cluster membership, it directly evaluates the objective.

Proposition 3.1. The set of clustering pairs (X̃, Ỹ ) that
are local optima of SCC are a subset of the clustering pairs
that are local optima of IT-CC.

Proof. It is sufficient to show that, whenever IT-CC
reads a pair of clusterings (X̃, Ỹ ) and outputs a pair of clus-

terings (X̃ ′, Ỹ ′) with a higher score of the objective function,

SCC will improve the objective function on (X̃, Ỹ ) as well.
We will just discuss this for the case of re-clustering X; the
case of re-clustering Ỹ can be shown analogously.

By design, the only case in which SCC fails to improve the
objective is the case in which it does not change any cluster
memberships. Let us show that this cannot happen for any
input that is not a local optimum of IT-CC. Whenever the
output (X̃∗, Ỹ ) of IT-CC improves the objective function

over the input (X̃, Ỹ ), we know that IT-CC has changed the
cluster membership of at least one element x′, say, from x̃′ to



x̃∗. In terms of the local objective function (Equation (6)),
this implies that

∑

ỹ∈Ỹ

p(ỹ|x′) log q(ỹ|x̃′) <
∑

ỹ∈Ỹ

p(ỹ|x′) log q(ỹ|x̃∗). (8)

We define the clustering X̃∗ identically to X̃, except for mov-
ing x′ to x̃∗. Let q := q(X̃,Ỹ ) refer to the approximation of p

induced by (X̃, Ỹ ), and q∗ := q(X̃∗,Ỹ ) be the corresponding
distribution based on the clustering in which x‘ was moved.
We will show, using a similar technique as in [12], that SCC
cannot be stuck in a local optimum at this point, because its
objective function favors (X̃∗, Ỹ ) over (X̃, Ỹ ), so SCC would
at least also move x′ from x̃′ to x̃∗. We will use the follow-
ing notation that always returns the old cluster “centroids”
based on (X̃, Ỹ ), although it already considers x′ part of x̃∗:

q̂(ỹ|x) :=

{
q(ỹ|x̃), if x 6= x′, x̃ being the cluster of x
q(ỹ|x̃∗), if x = x′

For x̃ ∈ X̃∗, all x ∈ x̃ share the same value q̂(ỹ|x), so we can
refer to this common value by writing q̂(ỹ|x̃) in this case.

Let us start with the value of the SCC’s global objective
function (Equation (7)) for the clustering pair (X̃, Ỹ ), and
show that it can be increased by moving x′ into x̃∗:

∑

x̃∈X̃

p(x̃)
∑

ỹ∈Ỹ

p(ỹ|x̃) log q(ỹ|x̃) (9)

=


∑

x̃∈X̃

∑

x∈x̃\{x′}
p(x)

∑

ỹ∈Ỹ

p(ỹ|x) log q(ỹ|x̃)




+p(x′)
∑

ỹ∈Ỹ

p(ỹ|x′) log q(ỹ|x̃′)

<


∑

x̃∈X̃

∑

x∈x̃\{x′}
p(x)

∑

ỹ∈Ỹ

p(ỹ|x) log q(ỹ|x̃)




+p(x′)
∑

ỹ∈Ỹ

p(ỹ|x′) log q(ỹ|x̃∗)

=
∑

x̃∈X̃

∑
x∈x̃

p(x)
∑

ỹ∈Ỹ

p(ỹ|x) log q̂(ỹ|x)

=
∑

x̃∈X̃∗

∑

ỹ∈Ỹ

p(x̃, ỹ) log q̂(ỹ|x̃)

=
∑

x̃∈X̃∗
q∗(x̃)

∑

ỹ∈Ỹ

q∗(ỹ|x̃) log q̂(ỹ|x̃)

≤
∑

x̃∈X̃∗
q∗(x̃)

∑

ỹ∈Ỹ

q∗(ỹ|x̃) log q∗(ỹ|x̃)

=
∑

x̃∈X̃∗
p(x̃)

∑

ỹ∈Ỹ

p(ỹ|x̃) log q∗(ỹ|x̃) (10)

The first inequality holds due to Equation (8), the follow-
ing steps just rearrange the summation over all cluster pairs
and exploit the identity of joint cluster distributions p(x̃, ỹ)
and q∗(x̃, ỹ). The second inequality holds due to the non-
negativity of the KL divergence. The last step just rear-
ranges terms again.

Together this proves that SCC would reassign at least x′,
because the value of the objective function after moving the
single example x′ (Equation 10) is strictly higher than the

original value for X̃ (Equation 9).

Figure 2: An illustration to the difference between
IT-CC and SCC optimization procedures, used in
Proposition 3.2.

Proposition 3.2. The subset relationship described in
Proposition 3.1 is strict.

Proof. We prove this by presenting an example where
IT-CC gets stuck in a local optimum which SCC is able to
overcome. We look at three documents with the following
sets of words: d1 = {w1}, d2 = {w2}, and d3 = {w1, w2, w3}.
Initially, the first two documents are in cluster d̃1, while the
third one is in another cluster d̃2. For simplicity, we assume
that each word is in a separate cluster over the“word modal-
ity” W . Figure 2 shows the joint probability matrix p (left)
and the initial aggregation to clusters (middle). The condi-

tional distributions are hence p(W̃ |d̃1) = (0.2, 0.2, 0) (upper

cluster) and p(W̃ |d̃2) = (0.2, 0.2, 0.2) (lower cluster). It can
easily be verified by applying Equation (6) that IT-CC will
not move any document. However, SCC will move either
d1 or d2 into the second cluster. By applying this modifi-
cation, SCC will almost double the mutual information (3)
from about 0.17 (middle) to about 0.32 (right).

Propositions 3.1 and 3.2 reveal that IT-CC gets stuck in
local minima more often than SCC. Moreover, from the
proofs we can conclude that generally, at the level of up-
dating individual cluster memberships, IT-CC is more con-
servative. More specifically, this result suggests that the
sequential strategy might both converge faster (because in
every iteration it will do a number of updates that IT-CC
misses) and to a better local optimum. We leave the verifi-
cation of this conjecture to the empirical part of this paper.

4. THE DATALOOM ALGORITHM
Parallelization of sequential co-clustering (SCC) is allowed

based on the following fairly straightforward consideration:
mutual information I(X̃; Ỹ ), which is the objective function
of SCC, has the additive property over either of its argu-
ments. That is, when SCC optimizes X̃ with respect to Ỹ ,
and a data point x′ ∈ x̃′ asks to move to cluster x̃∗, only
the portion of the mutual information that corresponds to
clusters x̃′ and x̃∗ is affected. Indeed, by definition,

I(X̃; Ỹ ) =
∑

x̃

∑
ỹ

p(x̃, ỹ) log
p(x̃, ỹ)

p(x̃)p(ỹ)

=
∑

x̃6=x̃′∧x̃6=x̃∗

∑
ỹ

p(x̃, ỹ) log
p(x̃, ỹ)

p(x̃)p(ỹ)
+

∑
ỹ

[
p(x̃′, ỹ) log

p(x̃′, ỹ)

p(x̃′)p(ỹ)
+ p(x̃∗, ỹ) log

p(x̃∗, ỹ)

p(x̃∗)p(ỹ)

]
.

To check whether or not moving x′ into x̃∗ increases our ob-
jective function, it is sufficient to compute the delta between



Input:
G – interaction graph of nodes {X1, . . . , Xm} and edges E
p(Xi, Xj) – pairwise joint distributions, for each edge eij

l – number of optimization iterations
Output:
Clusterings {X̃1, . . . , X̃m}

Initialization:
For each node X do

Assign values x to clusters x̃ uniformly at random
Main loop:
For each iteration (1, . . . , l) do

For each edge eij = (Xi, Xj) do
For each ordering (X, Y ) ∈ {(Xi, Xj), (Xj , Xi)} do

For each random restart do
Compose pairs of clusters (x̃, x̃′) uniformly at
random
Assign each pair (x̃, x̃′) to a slave process

Build input {p(x, Ỹ )|x ∈ (x̃, x̃′)} for each slave
Repeat

Run slave processes
Wait and monitor
If system failure then kill all slave processes

Until all slave processes successfully completed
Compute I(X̃; Ỹ )

Choose clustering X̃ with maximal I(X̃; Ỹ ) among
all random restarts

Algorithm 1: Master process.

its value before the move and after the move. Again, only
terms that correspond to x̃′ and x̃∗ are involved in the delta
computation. Also, the marginals p(ỹ) cancel out:

∆I(X̃; Ỹ ) = Iafter(X̃; Ỹ )− Ibefore(X̃; Ỹ )

=
∑

ỹ

[
p

(
x̃′ \ {x′}, ỹ)

log
p (x̃′ \ {x′}, ỹ)

p (x̃′ \ {x′}) +

p
(
x̃∗ ∪ {x′}, ỹ)

log
p (x̃∗ ∪ {x′}, ỹ)

p (x̃∗ ∪ {x′}) −

p(x̃′, ỹ) log
p(x̃′, ỹ)

p(x̃′)
− p(x̃∗, ỹ) log

p(x̃∗, ỹ)

p(x̃∗)

]
. (11)

This brings us to the idea that probing the moves x′ → x̃∗

can be performed in parallel if all the clusters of X̃ are split
into disjoint pairs. Each probing like that can be then ex-
ecuted using a separate process, after which the processes
can exchange their data. Since the communication is gen-
erally expensive, it is beneficial to test all elements of both
x̃′ and x̃∗. If the probe shows that the objective can be in-
creased, the element is immediately moved from its cluster
into another. Using this approach, we lose one ingredient
of SCC: data points do not necessarily move into the clus-
ter such that the objective function is maximized, but only
increased. Despite that, intuitively, such a loss might look
crucial, Bekkerman et al. [3] empirically show that both ap-
proaches are comparable, as soon as the number of optimiza-
tion steps is about the same. The latter can be achieved by
iterating over all the cluster pairs.

The DataLoom algorithm consists of a master process and
k
2

slave processes (where k is the number of clusters). The
master’s algorithm is shown in Algorithm 1, the slave’s in
Algorithm 2. After constructing the initial set of cluster

Input:
(x̃, x̃′) – two clusters from X̃

p(x, Ỹ ) – rows of probability table p(X, Ỹ ) for ∀x ∈ (x̃, x̃′)
l – overall number of slave processes
r ∈ [0..(l − 1)] – my process ID

Output:
New clusters (x̃, x̃′)
Main loop:
For each iteration (1, . . . , l − 1) do

Build a random permutation Ψ of all values x ∈ (x̃, x̃′)
For each x ∈ Ψ do

Move x from its cluster into another if this leads to
∆I(X̃; Ỹ ) > 0 (from Eq. (11))

If iteration number is odd then
If r == 0 then swap clusters x̃ and x̃′

Send cluster x̃ to process with ID (r + 1)%l
Receive cluster x̃ from process with ID (l + r − 1)%l

Else
Send cluster x̃′ to process with ID (l + r − 1)%l
Receive cluster x̃′ from process with ID (r + 1)%l

Synchronize with all the other slave processes

Algorithm 2: Slave process.

pairs and sending them to the slave processes, the master
node switches to the wait state, while the slave processes
work autonomously, communicating with each other. Each
slave process receives two clusters and shuffles them while
optimizing the objective. After the shuffling task is com-
pleted, the slave is ready to send and receive clusters. It is
enough to send (and receive) only one cluster of each pair—
by which the communication cost is kept at its minimum.

Figure 3 illustrates our communication protocol, where
(for simplicity) we assume that k is even. As each slave
process holds two clusters at each time point, we can enu-
merate the “seats” for clusters as shown in the figure, where
the upper row defines process numbers at the same time.
The protocol is to alternate sending the upper of the clus-
ters to the right and then the lower one to the left. So in
general, each cluster will move in just one direction, and
be moved every second iteration. Node number 0 is an ex-
ception, in that it keeps the cluster initially sitting in seat
number k − 1 all the time in that place, and hence always
sends the other cluster. It thereby inverts the direction in
which a cluster is moving. To clarify the order: without the
termination criterion, a cluster starting from seat 0 would
follow the cyclic seat sequence 1, 1, 2, 2, . . . , (k/2−1), (k/2−
1), 0, k/2, k/2, (k/2 + 1), . . . , (k − 2), (k − 2), 0. The case of
an odd number of clusters is treated analogously, where the
seat labeled with k − 1 in Figure 3 is kept unoccupied.

Proposition 4.1. The DataLoom communication proto-
col guarantees that every pair of clusters meets exactly once.

Proof. Two clusters meet at a node iff the sum of their
seat numbers modulo (k−1) is 0. If we start with an iteration
that moves clusters in the upper row to the right, then every
two iterations later the new seat number of every cluster will
be increased by 1 modulo (k− 1). This can easily be shown
inductively. The sum will hence increase by 2 every two
iterations. Similarly, if the sum of seat numbers (modulo
k − 1) is (k − 2), then the clusters will meet in the next
iteration. It is easy to see that by adding 2 modulo (k−1) it
takes at most (k−1) iterations until any two regular clusters



Figure 3: An illustration to the deterministic mes-
sage passing algorithm.

(without the stationary one) meet, and it is also clear that
every cluster will hit node 0 and meet the stationary cluster
from either seat (k/2− 1) or (k − 2) when moving into the
same direction for (k − 1) iterations.

Together with the deterministic communication protocol,
we propose a stochastic one, in which, after the cluster shuf-
fling is completed, a slave process sends one cluster to an-
other process chosen randomly. The exact protocol is pre-
computed by the master and then distributed to the slaves.
It keeps track of the cluster transfers such that at each point
of time each slave node has two clusters to process. The
stochastic protocol overcomes the problem of the determin-
istic protocol, which preserves the initial ordering of clus-
ters that may presumably be disadvantageous. However,
the stochastic protocol does not provide the completeness
guarantee given in Proposition 4.1.

A schematic summary of the DataLoom algorithm is given
in Figure 4. The collection of slave processes operates as a
loom, that uses the communication protocol as a shuttle
to weave clusters. When the cluster “fabric” is woven, the
master process collects all the clusters and switches to op-
timizing another modality. Obviously, our method can be
generalized to process any number of modalities organized
in an interaction graph, to be traversed by the master. The
method’s complexity increases only linearly with increasing
the number of edges in the interaction graph.

Note that, regarding the computational complexity (with-
out communication), DataLoom is no more expensive than
parallel k-means. At each slave process, DataLoom probes
whether moving a data point to the other cluster on that
machine increases the objective. Totalling the number of
these comparisons, we find that on average we probe each
cluster exactly once per data point, so we probe as many
point-cluster pairs as parallel k-means and parallel IT-CC.

5. IMPLEMENTATION AND
EXPERIMENTATION

In our implementation of the DataLoom algorithm, the
communication is based on the Massage Passing Interface
(MPI) [32]. We decided to apply the traditional MPI instead
of a currently more popular MapReduce scheme because an
iterative application of MapReduce has a substantial disad-
vantage: backpropagating the data from a reducer to the
next mapper requires a disk access, which is very expensive
in our setup. The DataLoom algorithm is deployed on a
Hewlett Packard XC Linux cluster system that consists of
62 eight-core machines with 16Gb RAM each.

As a baseline for our large-scale experiments, together
with the parallelized IT-CC algorithm, we used a paral-
lelized version of the double k-means algorithm (see, e.g.
[28]). Double k-means is basically the IT-CC optimization
procedure that minimizes the traditional k-means objective
function (the sum of Euclidian distances of data points to

Figure 4: The DataLoom algorithm.

their centroids). We parallelized it analogously to the IT-CC
parallelization (see Section 3.2).

5.1 Comparison with sequential co-clustering
Our first objective is to show that the performance of the

DataLoom algorithm is comparable to the one of its sequen-
tial ancestor. To meet this objective, we replicate the ex-
perimental setup of Bekkerman et al. [1], who test ITC al-
gorithms on six relatively small textual datasets. Our eval-
uation measure is micro-averaged accuracy that is defined
as follows. Let C be the set of ground truth categories. For
each cluster x̃, let µC(x̃) be the maximal number of elements
of x̃ that belong to one category. Then, the precision of x̃
with respect to C is defined as Prec(x̃, C) = µC(x̃)/|x̃|. The

micro-averaged precision of the entire clustering X̃ is:

Prec(X̃, C) =
∑

x̃

µC(x̃)/
∑

x̃

|x̃|, (12)

which is the portion of data points that belong to dominant
categories. If the number of clusters is equal to the number
of categories, then Prec(X̃, C) equals micro-averaged recall
and thus equals clustering accuracy.

For simplicity, we choose four out of the six datasets used
by Bekkerman et al. [1]—the ones that have an even number
of categories. Three of those datasets (acheyer, mgondek,
and sanders-r) are small collections of 664, 297, and 1188
email messages, grouped into 38, 14, and 30 folders, respec-
tively. The fourth dataset is the widely-used benchmark 20
Newsgroups (20NG) dataset, that consists of 19,997 postings
submitted to 20 newsgroups. About 4.5% of the 20NG docu-
ments are duplications—we do not remove them, for better
replicability. For all the four datasets, we simultaneously
cluster documents and their words. For email datasets, we
also cluster the third modality, which is the names of email
correspondents. For the 3-way clustering, we use our CWO
optimization scheme (see Section 2).

The summary of our results is given in Table 1. Besides
comparing to SCC and IT-CC, we compared DataLoom



Table 1: Clustering accuracy on small datasets. The standard error of the mean is given after the ± sign.

Dataset k-means LDA IT-CC SCC 2way DataLoom 2way DataLoom 3way DataLoom
(deterministic) (stochastic) (stochastic)

acheyer 24.7 44.3± 0.4 39.0±0.6 46.1±0.3 43.7±0.5 42.4±0.5 46.7±0.3
mgondek 37.0 68.0± 0.8 61.3±1.5 63.4±1.1 63.3±1.8 64.6±1.2 73.8±1.7
sanders-r 45.5 63.8± 0.4 56.1±0.7 60.2±0.4 59.8±0.9 61.3±0.8 66.5±0.2

20NG 16.1 56.7± 0.6 54.2±0.7 57.7±0.2 55.1±0.7 55.6±0.7 N/A

against the standard uni-modal k-means, as well as against
Latent Dirichlet Allocation (LDA) [5]—a popular generative
model for representing document collections. In LDA, each
document is represented as a distribution of topics, and pa-
rameters of those distributions are learned from the data.
Documents are then clustered based on their posterior dis-
tributions (given the topics). We used Xuerui Wang’s LDA
implementation [25] that applies Gibbs sampling with 10000
sampling iterations.

As we can see in the table, the empirical results approve
our theoretical argumentation from Section 3.3—sequential
co-clustering significantly outperforms the IT-CC algorithm.
Our 2-way parallelized algorithm demonstrates very reason-
able performance: only in two of the four cases it is infe-
rior to the SCC. It is highly notable that our 3-way Data-
Loom algorithm achieves the best results, outperforming by
more than 5% (on the absolute scale) all its competitors on
mgondek. When comparing the deterministic and stochas-
tic communication protocols, we notice that they perform
comparably. For the rest of our experiments, we use the
stochastic version.

5.2 The RCV1 dataset
The RCV1 [22] dataset is by far the largest fully labeled

text categorization dataset available to the research commu-
nity. It consists of 806,791 documents each of which belongs
to a hierarchy of categories. The top level of the hierarchy
contains only four categories, while the second level contains
55 categories. In our experiment, we ignore the top level and
map categories from all the lower levels onto their parents
from the second level (using this scheme, 27076 documents
are not assigned into any category, and therefore are always
considered as wrongly categorized). We remove stopwords
and low frequency words (leaving 150,032 distinct words
overall). Represented as a contingency table, the resulting
data contains over 120 billion entries. We are aware of only
one previous work [29] where the entire RCV1 collection was
clustered. Following this work, we use the clustering preci-
sion measure, given in Equation (12). We built 800 docu-
ment clusters and 800 word clusters. We plot the precision
over the clustering iterations and compare DataLoom with
the parallelized IT-CC, as well as with parallelized double
k-means. The results are presented in Figure 5 (left), where
DataLoom has a clear advantage over the other methods.
We also plot the mutual information I(X̃; Ỹ ) after each it-
eration, and show that DataLoom is able to construct clus-
terings with 20% higher mutual information.

5.3 The Netflix dataset
Another data set we used in our experiments was taken

from the Netflix challenge. It contains the ratings of 17,770
movies given by 480,189 users. We did not consider the
actual value of ratings, but wanted to predict for a number

of given user-movie pairs whether or not this user rated this
movie. This resembles one of the tasks of KDD’07 Cup, and
we used the evaluation set provided as part of that Cup. We
built 800 user clusters and 800 movie clusters.

Our prediction method is directly based on the the nat-
ural approximation q (defined in Equation (4)) of our (nor-
malized) boolean movie-user rating matrix p. The quality
of this approximation is prescribed by the quality of the
co-clustering. The intuition behind our experiment is that
capturing more of the structure underlying this data helps
in better approximating the original matrix. We ranked all
the movie-user pairs in the hold-out set with respect to the
predicted probability of q. Then we computed the Area
Under the ROC Curves (AUC) for the three co-clustering
algorithms. To establish a lower bound, we also ranked
the movie-user pairs based on the pure popularity score
p(x)p(y). The results are shown in Figure 5 (right). In
addition to that, as in the RCV1 case, we directly compared
the objective function values of the co-clusterings produced
by DataLoom and IT-CC. As for RCV1, DataLoom shows
an impressive advantage compared to the other methods.

6. CONCLUSION
This paper comes as an attempt to dramatically scale up

a strong data clustering method, while applying paralleliza-
tion. The resulting algorithm is applied to two large labeled
data corpora, RCV1 and Netflix, of hundreds of thousands
data instances each. The algorithm is, by all means, appli-
cable to datasets orders of magnitude larger than that, but
we decided on these two datasets for the evaluation purposes
only.

As far as the speedup is concerned, on small datasets (see
Section 5.1) the DataLoom method is not gaining partic-
ularly impressive advantage over non-parallelized methods.
Naturally, small datasets can be clustered using sequential
clustering as is. On large datasets, however, the paral-
lelization is vital. Basically, SCC is not applicable to the
large datasets: on RCV1, for example, it would have run for
months (assuming that it can fit the RAM). Thus, applying
the data weaving parallelization makes real what would have
been infeasible otherwise.

Our immediate future work goal is to apply DataLoom
to large-scale multi-modal data with more than two modal-
ities. A possible candidate is the Netflix data, where the
movies are associated with their textual descriptions (the
third modality), and the full cast (the fourth modality). Ex-
tensions of our method to constrained co-clustering [27] and
to relational clustering [24] are also being considered.
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Figure 5: Clustering results on RCV1 (left) and Netflix (right)




