

SmartFrog and Data Centre Automation
Patrick Goldsack, Paul Murray, Andrew Farrell, Peter Toft
HP Laboratories, Bristol
HPL-2008-35
April 17, 2008*

Automation,
Next
Generation
Data Centre,
Declarative
Modelling,
Workflow,
Orchestration

If we are to facilitate service provision in next generation data centres
then we need to tackle a number of challenges which lie at the heart of the
automation problem for these data centres, including: scale, reliability,
security, and service heterogeneity.

In this position paper, we consider the requirements for a solution to these
challenges which entail a shift in philosophy from imperative to
declarative models for data centres. An important aspect of such a shift is
the replacement of workflow as a mechanism for automation. In its place,
we propose a declarative approach based on modelling individual
components of a system together with their possible configuration states.
Dependencies may be specified between components which guard how
components may change configuration states. We determine the actions
that may be performed to dynamically achieve target states for the system
from these models. We have built an experimental system around these
concepts and describe this approach in outline.

 Internal Accession Date Only Approved for External Publication

To be presented at the Rise and Rise of the Declarative Datacentre (R2D2), Microsoft/HP Joint Workshop, May
2008, Cambridge, United Kingdom.

© Copyright 2008 Hewlett-Packard Development Company, L.P.

SmartFrog and Data Centre Automation

Patrick Goldsack, Paul Murray, Andrew Farrell, Peter Toft
HP Laboratories, Bristol, UK

patrick.goldsack@hp.com, pmurray@hp.com, andrew.farrell@hp.com, peter.toft@hp.com

Abstract
If we are to facilitate service provision in next generationdata
centres then we need to tackle a number of challenges which lie
at the heart of the automation problem for these data centres,
including: scale, reliability, security, and service heterogeneity.

In this position paper, we consider the requirements for a solu-
tion to these challenges which entail a shift in philosophy from im-
perative to declarative models for data centres. An important aspect
of such a shift is the replacement of workflow as a mechanism for
automation. In its place, we propose a declarative approachbased
on modelling individual components of a system together with their
possible configuration states. Dependencies may be specified be-
tween components which guard how components may change con-
figuration states. We determine the actions that may be performed
to dynamically achieve target states for the system from these mod-
els. We have built an experimental system around these concepts
and describe this approach in outline.

Keywords Automation, Next Generation Data Centre, Declara-
tive Modelling, Workflow, Orchestration

1. Background
If we are to facilitate service provision in next generationdata
centres then we need to tackle a number of challenges which lie
at the heart of the automation problem for these data centres,
including: scale, reliability, security, and service heterogeneity.

We need to consider how to build and manage very large data
centres, capable of running very large numbers of heterogeneous
services that are designed and implemented by different customers
with appropriate levels of security, reliability and flexibility. This
heterogeneity both in terms of the nature of the service and the
range of ownership, makes the task far more complex than running
sets of relatively homogenous services or where ownership is ver-
tically integrated from hardware through to end service.

A principal benefit of next generation data centres (NGDCs) is
the democratization of services. This would allow small to medium
enterprises or even individuals to deliver services to the world
in the same way as the web has democratized the delivery of
information. For such an ambition, we need to find ways to allow
these individuals to develop and run systems securely within well-
connected infrastructure without the need to own significant capital
assets. This requires that service providers support infrastructure
on which these services may be delivered. An early entrant into the
space of democratized service platforms is Amazon with its EC2
(Amazon EC2) and S3 (Amazon S3) offerings. However, although
these infrastructural services show the way to a certain degree,
and illustrate the possibilities for the future, they do notyet go
far enough towards providing the levels of security, reliably or
flexibility required for solid service delivery.

We enumerate the following challenges for NGDCs.

• Scale: simple back-of-the-envelope calculations show that it is
perfectly reasonable to envisage data centres that run 105 dif-
ferent service instances on roughly an order of magnitude more
virtual machines. Systems of this scale have many implications
for the architecture of management systems: failure becomes
common place, transactions across the system become impos-
sible, global views or optimizations become problematicaland
centralized decision making becomes intractable.

• Heterogeneity: since the services will be of an arbitrary nature,
decided on by the service owners and not the operators of the
data centre, simplifications of aspects such as resource manage-
ment that come from homogeneity or single ownership cannot
be assumed. The data centre management system cannot have
accurate knowledge of the services as these are not pre-defined
and may change on the fly.

• Security: since in most cases the service code cannot be trusted
by the data centre, nor by other services running on the same
infrastructure, strong boundaries will need to be put in place
between the services and the infrastructure. However, there will
still be the need for the services to be managed (including
autonomically) and to interact with the core system to achieve
end goals. Effectively, therefore, a complete system is defined
by the potential interactions of 105 individual management
entities with limited visibility of the other entities and their
states.

• Reliability: With failure being common-place, both of physical
components and software, reacting to failure and taking prompt
corrective action is necessary within the management system.
Furthermore, it is impossible to build systems of this scalewith-
out bugs. Consequently self-repair is vital, as is the handling of
the failure across the many independent management systems
which may be competing to ‘fix’ the failures within their own
sphere of influence.

• Churn: systems of that scale will always suffer churn including
the coming and going of services, service reconfigurations due
to changing circumstances and requirements, temporary rescal-
ing of a service due to load, short-term overload and conges-
tion, and so on. All of these are occurring asynchronously with
respect to each other and to changes in the underlying infras-
tructure (failure and repair of components, the addition ofnew
and the retiring of old equipment, etc).

These properties make the design of management systems par-
ticularly challenging. In this work, we are principally concerned
with the orchestration of management actuators, which effect low-
level or primitive actions on system components.

2. The Imperative Data Centre
Large-scale management systems traditionally depend onworkflow
execution engines that are triggered in response to an administrator

1

first second third

create(first) � create(second) � create(third) �

remove(third) � remove(second) � remove(first)

Figure 1. Management Workflow for Simple Scenario

request or, in the case of autonomic systems, some set of internal
events. These actions range from provisioning one or more servers
or storage volumes, through to the deployment and configuration
of software packages. In many cases the actions will range over a
number of devices, via interaction with a number of low-level ac-
tuators, with complex ordering requirements to ensure thatsystem
properties are not violated.

A workflow, according to (The Workflow Management Coali-
tion February 1999), is “[t]he automation of a business process, in
whole or part, during which documents, information or tasksare
passed from one participant to another for action, according to a set
of procedural rules”. The sense of this definition is very much an
imperative or procedural one: work passes from one agent to the
next for actioning. Thus, a workflow entails an ordering of actions
to be carried out by agents – a recipe for getting a task done.

It is useful to make a further distinction between localisedand
distributed workflow. Traditionally, with its root in automating pro-
duction lines and latterly being used for the automation of office
procedures, workflow has been principally characterised bya sin-
gle controller co-ordinating the passing of work between agents.
This is a highly localised view of workflow.

In more recent times, there has been a tendency to associate the
term workflow with a collection of distributed procedures, where
each procedure is the logic associated with effecting the workflow
within any one of the participating entities – an end-point perspec-
tive. This distributed view of workflow is grounded within the Re-
mote Procedure Call (RPC) paradigm, where communication be-
tween agents is prescriptively synchronised (Alonso et al.2004).
Web Services Composition Languages such asWS-BPEL (OASIS)
andWS-CDL (WS-CDL W3C Working Group) have been defined
with the purpose of respectively capturing localised and distributed
aspects of this RPC view of distributed workflow.

Unfortunately, distributed workflow-based control of dynamic
systems is substantially flawed. Many of these flaws are rooted in
the fundamental characteristic of workflow-based systems that they
are concerned with prescribing orderings or recipes of actions to be
carried out on/by a number of agents or system components. The
alternative, as we shall describe, would be to describe the system
components themselves as well as relationships between them and
have the recipes of actions organically emerge from the declara-
tive models of components. This promotes a much more loosely-
coupled approach to federation of distributed system components.

A very simple example is the following. Let’s say that there is a
system of three managed entities, on which we wish to orchestrate
management actions. Each managed entity may be ‘created’ and
subsequently ‘removed’. The initial state for each entity is that it
is neither created nor removed. Consider also that the second may
not be created until the first has been created. Similarly, the third
may not be created until the second has been created. Conversely,
the second may not be removed until the third has been removed.
Similarly, the first may not be removed until the second has been re-
moved. This scenario is captured in Figure 1. If we were to capture
the behaviour described (there may be other possible behaviours
not described) as a workflow, it would be as a single six-action se-

quence of actions for creating and removing the managed entities,
as depicted in the figure.

Workflow-based management systems typically suffer from the
following issues:

• Workflows are hard to analyze, manipulate, and reason about.
In just capturing recipes of actions, the state of components is
only implied. It’s hard to see which action belongs to which
component, and it is hard to reason about the states of individual
components.

• Capturing the full range of procedures for managing a sys-
tem of components may require a large number of workflows,
which may or may not be aggregated into one or more super-
workflows. The overhead in maintaining such workflows is
huge because of the nature of what you are representing, namely
recipes/procedures for management actions.

• In a system the size of a large data centre there may be hun-
dreds of workflows active at any time: provisioning systems,
deploying software, and so on. Each of these is competing for
resources and interfering over required interactions withthe en-
tities they are attempting to control.

• Workflows are very fragile to changes in the underlying as-
sumptions about a system, such as when a new technology is
introduced. Such changes generally force either refactoring or
outright abandonment of existing workflows.

• Workflows can be very long-lived - each action taking from
seconds to weeks (as would be the case if the steps involve the
aspects such as the ordering of new equipment). It is essential to
be able to assess the current state of the workflow, but as state is
only captured in the steps of a workflow, it is hard to understand
the current overall state.

• Error handling usually dominates the structure of a workflow:
even the failure recovery can fail, often leaving the systemin an
unknown state. The fundamental issue is that workflows spec-
ify idealized or default behaviour, given their roots in specify-
ing the operation of manufacturing production lines. The orig-
inal workflows were never meant to be subject to exceptional
behaviour (van der Aalst and Weske 2005; Casati et al. 1999).
If ever there was something that is more ill-suited to the mod-
elling/specification of dynamic data centres it is workflow!Er-
ror handling has been put in place as an afterthought in work-
flow systems, and it is not particularly effective. It is hardto
model behaviour, hard to understand behaviour and hard to
know whether you have it right.

• Workflow composition is hard: one can either assume indepen-
dence thus allowing parallel execution, or impose a specificse-
quence. It is hard to generate more subtle compositions and
interleaving, since it is impossible to reason about the depen-
dencies between the steps of the workflows. After all, how can
you effectively compose workflows when you are composing
recipes? Fundamentally you need to reason over state.

These, and other problems, lead us to consider an alternative
approach to the design of the orchestration of actuators - one which
provides a more robust framework for the development of large
systems.

3. The Declarative Data Centre
We need to find an approach that is more robust for managing these
systems – one which promotes a much more loosely-coupled ap-
proach to federation of system components. Such an approachis es-
sential for resolving issues of scale, reliability and fault-tolerance,
composition and service heterogeneity in next generation data cen-

2

created

removed

created

removed

created

removed

removed
removed

created created

first second third

Figure 2. Management Orchestration for Simple Scenario, using
Declarative Modelling Approach

tres. Fundamentally, this means moving away from the RPC-based
model for distributed workflows, where the operations of compo-
nents is rigidly and prescriptively synchronised, to a model where
components and their states are explicitly modelled and individ-
ual components may decide what to do next based on thestates
of other components. Decision making is kept local, rather than it
being prescribed on a global/distributed level.

By explicating components’ states and grounding decision mak-
ing on relationships between states, the know-how for managing
systems is captured declaratively. This leads to models of systems
which are more intuitive and more easily maintained. From these
declarative models, we may deduce a number of possible work-
flows for carrying out particular management tasks. In this sense,
the meaning of such declarative models is mutiplicious in entail-
ing a number of allowable procedures or recipes. Whereas anyone
workflow would be singular in meaning, in prescribing a single pro-
cedure. A declarative model for orchestrating management actions
on systems is typically more intuitive and simple than an imperative
one.

Returning to the previous example, we would capture the given
scenario simply as three components whose modelled state ischar-
acterised as containing attribute/value pairs for ‘created’ and ‘re-
moved’. We would specify dependencies between components,as
captured by the arrows in Figure 2. These dependencies enforce the
ordering prescribed in the example narrative. However, anyman-
agement workflow, such as the one presented in the previous sec-
tion, is simply an entailment of this model. There is no absolute pre-
scription regarding the behaviour for individual components, and in
this sense their management is much more loosely-coupled. That is,
we model whatcouldbe done and not whatshouldbe done.

We have been experimenting with an approach which accom-
modates our view and which is based on a number of simple con-
cepts:

• Each entity within the system is self-managed, working on lo-
cal visibility of the global state - its local model which repre-
sents aspects such as desires and current actualities drivethe
automation of the entity. These entities include the service do-
mains (representing the services and their owners), as wellas
major components in the core system such as physical nodes or
essential services such as DNS.

• We define distributed interaction through ‘model exchange’be-
tween entities. Protocols are provided that allow the exchange
of model data between these entities with well-understood se-
mantics regarding consistency and timeliness, such as Anubis
(Paul Murray 2005). Based around a discovery and group mem-
bership protocol, we can provide a highly recoverable and re-
liable layer that is the core of the system: models that get out
of synchrony for some reason will get resynchronized within
some ‘reasonable’ time. Failure is recovered by automatically
repopulating the models and driving the local system again to
the required state.

The architecture is designed so that inconsistencies between
local views will eventually be eliminated (if nothing else changes)

and so the overall data centre will tend towards a correct and
consistent state. The architecture is also such that any interim
inconsistencies do not cause any significant or lasting problems,
and in the specific case of security properties, we ensure that at no
time is security jeopardised.

The approach does mean that we cannot be certain that the entire
data centre is configured correctly for the sum of all requirements
from the services that run upon it. However this is impossible in
any case with a system of such size, as stability is in practice never
reached. Furthermore, optimization is hard to achieve across the
extent of the data centre with fully decentralised action and models.
However, the truth is that this is also a vain expectation when it
comes to such large and dynamic systems.

The advantages of having an explicit declarative statementof
the desired state at each entity and the degree to which these
desires have been achieved, and a clear semantics so far as the
consistency of this information within the extended distributed
system is concerned, have been significant. It has made building
and debugging our experimental systems much easier than might
have been expected. We have far greater separation of concerns,
better isolation of specific problems, and a more straight-forward
compositional approach to adding new features.

4. SmartFrog and Live-State Dependency Models
Our approach to orchestrating management actions for next gener-
ation data centres is based on defining declarative models ofman-
aged entities/components and their states, and defining dependen-
cies between the components that prescribe how they may change
state. Put simply, the dependencies are requirements of onepart of
state on another: for example ‘service running’ requires ‘operat-
ing system installed’. Thus an assertion that the system desires the
service to be running will result in the operating system being in-
stalled, and only then will it be deemed possible to install and start
the service to achieve the desired state.

The system (Andrew Farrell, Paul Murray and Patrick Gold-
sack) we have built to support this style of automation consists
of three major elements: a comprehensive modelling environment
based on the concepts contained in the SmartFrog (AutomatedIn-
frastructure Laboratory, HP Labs) notation; a way of defining re-
lationships and dependencies over the models; and a runtimeenvi-
ronment based on the SmartFrog runtime which provides a means
by which the models may be animated.

We consider a managed entity to consist of the sum of a large
number of ‘fine-grained’ state models each representing some min-
imal aspect of the entity, for example the operating system on a
specific node, or a software package, or a volume, and so on. The
modelling can be described at whatever level is required. Actions
are attached to these partial state models - actions that know how to
create, terminate or modify the ‘real-life’ equivalent of that aspect
in response to changes in the model. These models are known as
live-state models: as the model changes the actions ensure that the
state of the live system follows, and vice-versa.

We define dependencies between these state models (or indeed
arbitrary groupings of these models - known as composite state
models). These dependencies are parameterized by the states them-
selves and may be active or passive dependant on the current state.
Actions for states that need to be achieved will then be evaluated in
an order satisfying the dependencies.

Parameterizable templates can be written and instantiated, caus-
ing desired states to be defined, and actions triggered to satisfy
these desires according to these dependencies. Many simultaneous
or interleaved changes to the overall system model simply implies
that a greater number of states need to be achieved, and theirorder
determined by a larger set of dependencies.

3

A representation in the SmartFrog modelling language for the
scenario presented in Figure 2 is as follows.

#include "org/smartfrog/components.sf"
#include "org/.../services/dependencies/statemodel/components.sf"

#include "org/.../services/dependencies/threadpool/components.sf"

ManagedEntity extends State {
sfClass "org.smartfrog.services.dependencies.examples.ManagedEntity";

created false;

removed false;
sink false;

}

createdDependency extends Dependency {
enabled LAZY on:created;
relevant (! LAZY by:created);

}

removedDependency extends Dependency {
enabled LAZY on:removed;
relevant LAZY by:created;

}

sfConfig extends Model {

first extends ManagedEntity;

second extends ManagedEntity;
third extends ManagedEntity;

firstCreated extends createdDependency {
on LAZY first;

by LAZY second;
}

secondCreated extends createdDependency {
on LAZY second;

by LAZY third;
}

thirdRemoved extends removedDependency {
on LAZY third;
by LAZY second;

}

secondRemoved extends removedDependency {
on LAZY second;
by LAZY first;

}

}

In this SmartFrog model, we define three instances of a ‘Man-
agedEntity’: first, second, and third. We also define the fourde-
pendencies previously described between these managed entities.
There is also an implementation (in Java) of the ‘ManagedEntity’
component, which may be found in (Andrew Farrell, Paul Murray
and Patrick Goldsack). At the current, formative stage of our work
the state transitions that a component may make are hard-coded.
This aspect should be captured by the orchestration model, and we
are maturing our approach to make this possible. This is essential
as the model author should have control over it, and it is appropri-
ate that we are able to reason over the transitions that a component
may make.

We are currently characterising the semantics of our orchestra-
tion approach mathematically, in order to provide a robust account
of its features. We are also considering how we may provide ver-
ification and simulation support for orchestration models.An ex-
ample issue that we would typically seek to verify is anabsenceof
locking, i.e. deadlock and livelock. Under normal circumstances,
we would seek to avoid deploying models which have a capacityto
exhibit deadlock. However, it is not necessarily inappropriate that
models exhibit livelock, as long as the model author is awareof the
ways in which a model may be subject to such locking. Indeed, it
is consistent with the very nature of our approach that components
may loop through states an unbounded number of times.

From a mathematical perspective, our modelling approach is
very simple. This is an advantage in itself in being simple for
a model author to understand. It is not inconceivable for work-
flow authoring that a model author may not fully understand the
complexities and subtleties of the modelling approach. Worse still,
workflow models are often deployed without any checks made with
respect to their structural and behavioural integrity (vander Aalst
2004). A real benefit of our work will lie in the tools that willbe
developed to assist a model author to understand the true nature of
what they are authoring.

5. Current Status
The system outlined is currently a prototype, developed in HP Labs
based on the open source SmartFrog system. We have used it in a
number of experiments, including in the context of managingvery
large data centres. We are sufficiently encouraged by the initial
experiments to start exploring how best to enhance the current
pragmatic programming model with a more sound theoretical basis.

References
Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web

Services, ISBN: 3540440089. Springer, 2004.

Amazon EC2. Amazon Elastic Compute Cloud.http://aws.amazon.
com/ec2.

Amazon S3. Amazon Simple Storage Service.http://aws.amazon.
com/s3.

Andrew Farrell, Paul Murray and Patrick Goldsack. Guide to Orchestra-
tion in SmartFrog. http://smartfrog.svn.sourceforge.net/
viewvc/*checkout*/smartfrog/trunk/core/smartfrog/docs/
SFOrchestration.pdf.

Automated Infrastructure Laboratory, HP Labs. SmartFrog:Smart Frame-
work for Object Groups.http://www.smartfrog.org.

Fabio Casati, Stefano Ceri, Stefano Paraboschi, and Guiseppe Pozzi. Spec-
ification and Implementation of Exceptions in Workflow Management
Systems.ACM Trans. Database Syst., 24(3):405–451, 1999. ISSN 0362-
5915.

OASIS. Web Services Business Process Execution Language Version
2.0, OASIS Standard, 11th April 2007, at:http://www.oasis-open.
org/apps/org/workgroup/wsbpel.

Paul Murray. A Distributed State Monitoring Service for Adaptive Appli-
cation Management. In2005 International Conference on Dependable
Systems and Networks (DSN 2005), 28 June - 1 July 2005, Yokohama,
Japan, pages 200–205, 2005.

The Workflow Management Coalition. Workflow Management Coalition
Terminology & Glossary. Document Number: WFMC-TC-1011. Docu-
ment Status: Issue 3.0. February 1999.

W.M.P. van der Aalst. Business Process Management Demystified: A
Tutorial on Models, Systems and Standards for Workflow Management,
BPM Center Report BPM-04-03. Technical report, BPMcenter.org,
2004.

W.M.P. van der Aalst and Mathias Weske. Case Handling: a New Paradigm
for Business Process Support.Data Knowledge Engineering, 53(2):129–
162, 2005. ISSN 0169-023X.

WS-CDL W3C Working Group. Web Services Choreography Descrip-
tion Language Version 1.0 W3C Working Draft 17 December 2004, at:
http://www.w3.org/TR/ws-cdl-10.

4

