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Automation, If we are to facilitate service provision in next generation data centres
Next then we need to tackle a number of challenges which lie at the heart of the
Generation automation problem for these data centres, including: scale, reliability,
Data Centre, security, and service heterogeneity.
Declarative
Modelling, In this position paper, we consider the requirements for a solution to these
Workflow, challenges which entail a shift in philosophy from imperative to
Orchestration declarative models for data centres. An important aspect of such a shift is

the replacement of workflow as a mechanism for automation. In its place,
we propose a declarative approach based on modelling individual
components of a system together with their possible configuration states.
Dependencies may be specified between components which guard how
components may change configuration states. We determine the actions
that may be performed to dynamically achieve target states for the system
from these models. We have built an experimental system around these
concepts and describe this approach in outline.

Internal Accession Date Only Approved for External Publication

To be presented at the Rise and Rise of the Declarative Datacentre (R2D2), Microsoft/HP Joint Workshop, May
2008, Cambridge, United Kingdom.

© Copyright 2008 Hewlett-Packard Development Company, L.P.



SmartFrog and Data Centre Automation

Patrick Goldsack, Paul Murray, Andrew Farrell, Peter Toft

HP Laboratories, Bristol, UK
patrick.goldsack@hp.com, pmurray@hp.com, andrew.farrell@hp.com, peter.toft@hp.com

Abstract e Scale: simple back-of-the-envelope calculations showiths
perfectly reasonable to envisage data centres that rtimlif0
ferent service instances on roughly an order of magnitude mo
virtual machines. Systems of this scale have many impboati

for the architecture of management systems: failure besome
common place, transactions across the system become impos-
sible, global views or optimizations become problematial
centralized decision making becomes intractable.

If we are to facilitate service provision in next generatidata
centres then we need to tackle a number of challenges wléch li
at the heart of the automation problem for these data centres
including: scale, reliability, security, and service hetgeneity.

In this position paper, we consider the requirements forla so
tion to these challenges which entail a shift in philosopioyTim-
perative to declarative models for data centres. An impbeapect
of such a shift is the replacement of workflow as a mechanism fo e Heterogeneity: since the services will be of an arbitranyre

automation. In its place, we propose a declarative apprbaskd decided on by the service owners and not the operators of the
on modelling individual components of a system togetheh tieir data centre, simplifications of aspects such as resourcagaan
possible configuration states. Dependencies may be spebiie ment that come from homogeneity or single ownership cannot
tween components which guard how components may change con- be assumed. The data centre management system cannot have
figuration states. We determine the actions that may be npeeit accurate knowledge of the services as these are not preedefin

to dynamically achieve target states for the system frorsetineod- and may change on the fly.

els. We have built an experimental system around these ptsce
and describe this approach in outline.

Security: since in most cases the service code cannot edrus
by the data centre, nor by other services running on the same
infrastructure, strong boundaries will need to be put ircela
Keywords Automation, Next Generation Data Centre, Declara- between the services and the infrastructure. Howevee thigr

tive Modelling, Workflow, Orchestration still be the need for the services to be managed (including
autonomically) and to interact with the core system to ahie
end goals. Effectively, therefore, a complete system inddfi

1. Background by the potential interactions of 10individual management
. . S . entities with limited visibility of the other entities andhdir
If we are to facilitate service provision in next generatidata states

centres then we need to tackle a number of challenges wléch li
at the heart of the automation problem for these data centres

Reliability: With failure being common-place, both of pige

including: scale, reliability, security, and service egeneity. components and software, reacting to failure and takingipto

We need to consider how to build and manage very large data ~ corrective action is necessary within the management isyste
centres, capable of running very large numbers of hetesagen Furthermore, itis impossible to build systems of this seath-
services that are designed and implemented by differetbmess out bugs. Consequently self-repair is vital, as is the fingaif
with appropriate levels of security, reliability and fleiity. This the failure across the many independent management systems
heterogeneity both in terms of the nature of the service hed t which may be competing to ‘fix’ the failures within their own
range of ownership, makes the task far more complex tharimgnn sphere of influence.
sets of relatively homogenous services or where ownershipr e Churn: systems of that scale will always suffer churn inirigd
tically integrated from hardware through to end service. _ the coming and going of services, service reconfiguratiares d

A principal benefit of next generation data centres (NGDEs) i to changing circumstances and requirements, temporacgires
the democratization of services. This would allow small ediom ing of a service due to load, short-term overload and conges-
enterprises or even individuals to deliver services to theldv tion, and so on. All of these are occurring asynchronousti wi
in the same way as the web has democratized the delivery of  yegpect to each other and to changes in the underlying infras
information. For such an ambition, we need to find ways tonallo tructure (failure and repair of components, the additione
these individuals to develop and run systems securely mvitteil- and the retiring of old equipment, etc).
connected infrastructure without the need to own signiticapital
assets. This requires that service providers supportsimireture These properties make the design of management systems par-
on which these services may be delivered. An early entramtlie ticularly challenging. In this work, we are principally cmerned

space of democratized service platforms is Amazon with @ E  with the orchestration of management actuators, whictceltey-

(Amazon EC2) and S3 (Amazon S3) offerings. However, althoug level or primitive actions on system components.

these infrastructural services show the way to a certaimegeg

and illustrate the possibilities for the future, they do get go .

far enough towards providing the levels of security, rdiiabr 2. Thelmperative Data Centre

flexibility required for solid service delivery. Large-scale management systems traditionally depemebokflow
We enumerate the following challenges for NGDCs. execution engines that are triggered in response to an &irator



first second third

create(first) = create(second) = create(third) 2>
remove(third) 2 remove(second) = remove(first)

Figure 1. Management Workflow for Simple Scenario

request or, in the case of autonomic systems, some set afidhte
events. These actions range from provisioning one or moverse
or storage volumes, through to the deployment and configurat
of software packages. In many cases the actions will range @v
number of devices, via interaction with a number of low-lese-
tuators, with complex ordering requirements to ensuregistem
properties are not violated.

A workflow, according to (The Workflow Management Coali-
tion February 1999), is “[tjhe automation of a business gss¢in
whole or part, during which documents, information or tasks
passed from one participant to another for action, accgridira set
of procedural rules”. The sense of this definition is very maa
imperative or procedural one: work passes from one ageriteto t
next for actioning. Thus, a workflow entails an ordering diats
to be carried out by agents — a recipe for getting a task done.

It is useful to make a further distinction between localised
distributed workflow. Traditionally, with its root in autaating pro-
duction lines and latterly being used for the automation fé€®
procedures, workflow has been principally characterised bin-
gle controller co-ordinating the passing of work betweeardas.
This is a highly localised view of workflow.

In more recent times, there has been a tendency to assdmate t
term workflow with a collection of distributed procedureshewe
each procedure is the logic associated with effecting thexfiaov
within any one of the participating entities — an end-poiettgpec-
tive. This distributed view of workflow is grounded withinettiRe-
mote Procedure Call (RPC) paradigm, where communicatien be
tween agents is prescriptively synchronised (Alonso e2@d4).
Web Services Composition Languages sucissPEL (OASIS)
andws-CDL (WS-CDL W3C Working Group) have been defined
with the purpose of respectively capturing localised aistritiuted
aspects of this RPC view of distributed workflow.

Unfortunately, distributed workflow-based control of dyma
systems is substantially flawed. Many of these flaws are doiote
the fundamental characteristic of workflow-based systémisthey
are concerned with prescribing orderings or recipes obastfo be
carried out on/by a number of agents or system componentés. Th
alternative, as we shall describe, would be to describe b
components themselves as well as relationships betweenahd
have the recipes of actions organically emerge from theadacl
tive models of components. This promotes a much more loosely
coupled approach to federation of distributed system corapts.

A very simple example is the following. Let’s say that thesai
system of three managed entities, on which we wish to orcdtest

guence of actions for creating and removing the managetesti
as depicted in the figure.

Workflow-based management systems typically suffer froen th
following issues:

o Workflows are hard to analyze, manipulate, and reason about.
In just capturing recipes of actions, the state of compaent
only implied. It's hard to see which action belongs to which
component, and itis hard to reason about the states of cthdiVi
components.

Capturing the full range of procedures for managing a sys-
tem of components may require a large number of workflows,
which may or may not be aggregated into one or more super-
workflows. The overhead in maintaining such workflows is
huge because of the nature of what you are representing/yname
recipes/procedures for management actions.

In a system the size of a large data centre there may be hun-
dreds of workflows active at any time: provisioning systems,
deploying software, and so on. Each of these is competing for
resources and interfering over required interactions thighen-
tities they are attempting to control.

Workflows are very fragile to changes in the underlying as-
sumptions about a system, such as when a new technology is
introduced. Such changes generally force either refagaor
outright abandonment of existing workflows.

Workflows can be very long-lived - each action taking from
seconds to weeks (as would be the case if the steps involve the
aspects such as the ordering of new equipment). It is eastmti

be able to assess the current state of the workflow, but @sistat
only captured in the steps of a workflow, it is hard to undedta

the current overall state.

e Error handling usually dominates the structure of a workflow
even the failure recovery can fail, often leaving the systeam
unknown state. The fundamental issue is that workflows spec-
ify idealized or default behaviour, given their roots in cipe
ing the operation of manufacturing production lines. Thig-or
inal workflows were never meant to be subject to exceptional
behaviour (van der Aalst and Weske 2005; Casati et al. 1999).
If ever there was something that is more ill-suited to the mod
elling/specification of dynamic data centres it is workfldsrt
ror handling has been put in place as an afterthought in work-
flow systems, and it is not particularly effective. It is haad
model behaviour, hard to understand behaviour and hard to
know whether you have it right.

Workflow composition is hard: one can either assume indepen-
dence thus allowing parallel execution, or impose a spesdfic
guence. It is hard to generate more subtle compositions and
interleaving, since it is impossible to reason about theedep
dencies between the steps of the workflows. After all, how can
you effectively compose workflows when you are composing
recipes? Fundamentally you need to reason over state.

These, and other problems, lead us to consider an altegnativ
approach to the design of the orchestration of actuatore wrich

management actions. Each managed entity may be ‘creatdd’ an nrovides a more robust framework for the development ofelarg

subsequently ‘removed’. The initial state for each entityhat it
is neither created nor removed. Consider also that the davay
not be created until the first has been created. Similaréythird
may not be created until the second has been created. Celyyers

systems.

3. TheDeclarative Data Centre

the second may not be removed until the third has been removed We need to find an approach that is more robust for managisg the

Similarly, the first may not be removed until the second hanlve-
moved. This scenario is captured in Figure 1. If we were tawrap
the behaviour described (there may be other possible bmlvavi
not described) as a workflow, it would be as a single six-acti®

systems — one which promotes a much more loosely-coupled ap-
proach to federation of system components. Such an appi®ash
sential for resolving issues of scale, reliability and faolerance,
composition and service heterogeneity in next generatida cen-



created created created created created
removed removed removed
removed removed
~—
first second third

Figure 2. Management Orchestration for Simple Scenario, using
Declarative Modelling Approach

tres. Fundamentally, this means moving away from the RPsedba
model for distributed workflows, where the operations of pom
nents is rigidly and prescriptively synchronised, to a niadeere
components and their states are explicitly modelled anviohd
ual components may decide what to do next based orstites
of other components. Decision making is kept local, rathantit
being prescribed on a global/distributed level.

By explicating components’ states and grounding decisiak-m
ing on relationships between states, the know-how for magag
systems is captured declaratively. This leads to modelgsiéms
which are more intuitive and more easily maintained. Froes¢h
declarative models, we may deduce a number of possible work-
flows for carrying out particular management tasks. In tbissg,
the meaning of such declarative models is mutiplicious itaien
ing a number of allowable procedures or recipes. Whereasagy
workflow would be singular in meaning, in prescribing a sengto-
cedure. A declarative model for orchestrating managencitre
on systems is typically more intuitive and simple than anéragive
one.

Returning to the previous example, we would capture thengive
scenario simply as three components whose modelled stetialis
acterised as containing attribute/value pairs for ‘cré’adend ‘re-
moved'. We would specify dependencies between componasits,
captured by the arrows in Figure 2. These dependenciescertfue
ordering prescribed in the example narrative. However, map-
agement workflow, such as the one presented in the previads se
tion, is simply an entailment of this model. There is no absopre-
scription regarding the behaviour for individual compatseand in
this sense their management is much more loosely-coupled.ig,
we model whatould be done and not whahouldbe done.

We have been experimenting with an approach which accom-
modates our view and which is based on a number of simple con-
cepts:

e Each entity within the system is self-managed, working en lo
cal visibility of the global state - its local model which rep
sents aspects such as desires and current actualitiestlogive
automation of the entity. These entities include the serdio-
mains (representing the services and their owners), asasell

and so the overall data centre will tend towards a correct and
consistent state. The architecture is also such that amyirimt
inconsistencies do not cause any significant or lastinglenod

and in the specific case of security properties, we ensutethm
time is security jeopardised.

The approach does mean that we cannot be certain that the enti
data centre is configured correctly for the sum of all requésts
from the services that run upon it. However this is impossihl
any case with a system of such size, as stability is in practaver
reached. Furthermore, optimization is hard to achievesactbe
extent of the data centre with fully decentralised actioth isuodels.
However, the truth is that this is also a vain expectation wite
comes to such large and dynamic systems.

The advantages of having an explicit declarative stateroent
the desired state at each entity and the degree to which these
desires have been achieved, and a clear semantics so fag as th
consistency of this information within the extended disited
system is concerned, have been significant. It has madeirayild
and debugging our experimental systems much easier tham mig
have been expected. We have far greater separation of cancer
better isolation of specific problems, and a more straight+rd
compositional approach to adding new features.

4, SmartFrog and Live-State Dependency Models

Our approach to orchestrating management actions for reexrg
ation data centres is based on defining declarative modefsof
aged entities/components and their states, and definirgndep-
cies between the components that prescribe how they maygehan
state. Put simply, the dependencies are requirements qiarhef
state on another: for example ‘service running’ requirgsefat-
ing system installed’. Thus an assertion that the systelinegdethe
service to be running will result in the operating systermpen-
stalled, and only then will it be deemed possible to instadl atart
the service to achieve the desired state.

The system (Andrew Farrell, Paul Murray and Patrick Gold-
sack) we have built to support this style of automation csissi
of three major elements: a comprehensive modelling enwigort
based on the concepts contained in the SmartFrog (Autonated
frastructure Laboratory, HP Labs) notation; a way of defjnie-
lationships and dependencies over the models; and a rustimie
ronment based on the SmartFrog runtime which provides a snean
by which the models may be animated.

We consider a managed entity to consist of the sum of a large
number of ‘fine-grained’ state models each representingsain-
imal aspect of the entity, for example the operating systena o
specific node, or a software package, or a volume, and so @n. Th
modelling can be described at whatever level is requiredioAs
are attached to these partial state models - actions that kow to

major components in the core system such as physical nodes orcreate, terminate or modify the ‘real-life’ equivalent bt aspect

essential services such as DNS.

We define distributed interaction through ‘model excharige’
tween entities. Protocols are provided that allow the emgha
of model data between these entities with well-underst@ad s
mantics regarding consistency and timeliness, such asignub
(Paul Murray 2005). Based around a discovery and group mem-
bership protocol, we can provide a highly recoverable and re
liable layer that is the core of the system: models that get ou
of synchrony for some reason will get resynchronized within
some ‘reasonable’ time. Failure is recovered by automlgtica
repopulating the models and driving the local system again t
the required state.

The architecture is designed so that inconsistencies katwe
local views will eventually be eliminated (if nothing elskanges)

in response to changes in the model. These models are known as
live-state models: as the model changes the actions erimtrthe
state of the live system follows, and vice-versa.

We define dependencies between these state models (or indeed
arbitrary groupings of these models - known as compositee sta
models). These dependencies are parameterized by thetbete
selves and may be active or passive dependant on the cuiaignt s
Actions for states that need to be achieved will then be evetlin
an order satisfying the dependencies.

Parameterizable templates can be written and instantieaed-
ing desired states to be defined, and actions triggered igfysat
these desires according to these dependencies. Many airealts
or interleaved changes to the overall system model simppfias
that a greater number of states need to be achieved, anatteir
determined by a larger set of dependencies.



A representation in the SmartFrog modelling language fer th
scenario presented in Figure 2 is as follows.

#include "org/smartfrog/components.sf"
#include "org/.../services/dependencies/statemodel/components.sf"
#include "org/.../services/dependencies/threadpool/components.sf"

ManagedEntity extends State {
sfClass "org.smartfrog.services.dependencies.examples.ManagedEntity";
created false;
removed false;
sink false;

}

createdDependency extends Dependency {
enabled LAZY on:created;
relevant (! LAZY by:created);

}

removedDependency extends Dependency {
enabled LAZY on:removed;
relevant LAZY by:created;

}

sfConfig extends Model {

first extends ManagedEntity;
second extends ManagedEntity;
third extends ManagedEntity;

firstCreated extends createdDependency {
on LAZY first;
by LAZY second;

secondCreated extends createdDependency {
on LAZY second;
by LAZY third;

}

thirdRemoved extends removedDependency {
on LAZY third;
by LAZY second;

}

secondRemoved extends removedDependency {
on LAZY second;
by LAZY first;

In this SmartFrog model, we define three instances of a ‘Man-
agedEntity’: first, second, and third. We also define the fibexr
pendencies previously described between these managédsent
There is also an implementation (in Java) of the ‘Manageith=nt
component, which may be found in (Andrew Farrell, Paul Myrra
and Patrick Goldsack). At the current, formative stage ofwork
the state transitions that a component may make are haeticod
This aspect should be captured by the orchestration maahkvea
are maturing our approach to make this possible. This iméate
as the model author should have control over it, and it is@ppr
ate that we are able to reason over the transitions that aawenp
may make.

We are currently characterising the semantics of our otcdes
tion approach mathematically, in order to provide a robusbant
of its features. We are also considering how we may provide ve
ification and simulation support for orchestration moddals.ex-
ample issue that we would typically seek to verify isadosenceof
locking, i.e. deadlock and livelock. Under normal circuamtes,
we would seek to avoid deploying models which have a capézity
exhibit deadlock. However, it is not necessarily inappiaterthat
models exhibit livelock, as long as the model author is awétbe
ways in which a model may be subject to such locking. Indeed, i
is consistent with the very nature of our approach that corapts
may loop through states an unbounded number of times.

From a mathematical perspective, our modelling approach is
very simple. This is an advantage in itself in being simple fo
a model author to understand. It is not inconceivable forkwor
flow authoring that a model author may not fully understarg th
complexities and subtleties of the modelling approach.s#/atill,
workflow models are often deployed without any checks made wi
respect to their structural and behavioural integrity (den Aalst
2004). A real benefit of our work will lie in the tools that wile
developed to assist a model author to understand the trueerait
what they are authoring.

5. Current Status
The system outlined is currently a prototype, developedrriidbs

based on the open source SmartFrog system. We have used it in a

number of experiments, including in the context of managiexy
large data centres. We are sufficiently encouraged by thialini
experiments to start exploring how best to enhance the murre
pragmatic programming model with a more sound theoretizsilh
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