
 

                                                      
       

 
 
 
 
 
 
 
Keyword(s):   
 
 
 
Abstract: 
 

 

 

 
                                                                                                      
                                                                                                                      
 

  

   

                                                       

©  

Efficient Detection of Large Scale Redundancy in Enterprise File Systems

George Forman, Kave Eshghi, Jaap Suermondt

HP Laboratories
HPL-2008-30R2

data mining, min-hashing, set sketches, directory similarity and deduplication, file systems, scalability,
storage management.

In order to catch and reduce waste in the exponential demand for disk storage, we have developed a
technology based on set sketches that enables enterprise storage managers to efficiently detect approximate
duplication of large directory hierarchies, e.g. unnecessary mirroring by uncoordinated employees or
departments. Identifying these duplicate or near duplicate hierarchies allows appropriate action to be taken
at a high level, e.g. coordinate and consolidate multiple copies in one location.

External Posting Date: December 18, 2008 [Fulltext]          Approved for External Publication
Internal Posting Date: December 18, 2008 [Fulltext]

To be published in Operating Systems Review, journal, January 2009, vol.31 (1)

Copyright Operating Systems Review



 

Efficient Detection of Large-Scale Redundancy  
in Enterprise File Systems 

George Forman 
Hewlett-Packard Labs 

Palo Alto, CA, USA 
+1-650-857-1501 

ghforman@hpl.hp.com 

Kave Eshghi 
Hewlett-Packard Labs 

Palo Alto, CA, USA 
+1-650-857-1501 

kave.eshghi@hp.com 

Jaap Suermondt 
Hewlett-Packard Labs 

Palo Alto, CA, USA 
+1-650-857-1501 

jaap.suermondt@hp.com 
  

ABSTRACT 
In order to catch and reduce waste in the exponentially increasing 
demand for disk storage, we have developed very efficient 
technology to detect approximate duplication of large directory 
hierarchies. Such duplication can be caused, for example, by 
unnecessary mirroring of repositories by uncoordinated 
employees or departments. Identifying these duplicate or near-
duplicate hierarchies allows appropriate action to be taken at a 
high level. For example, one could coordinate and consolidate 
multiple copies in one location.   

Categories and Subject Descriptors 
H.4 [Information Systems Applications]: decision support. 
I.5 [Pattern Recognition]: Design Methodology. 

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
data mining, min-hashing, set sketches, directory similarity and 
de-duplication, file systems, scalability, storage management. 

1. INTRODUCTION 
Driven by issues of cost, risk, and lost productivity, centralized 
information management has come to the forefront of CIO 
concerns. Despite continually falling prices and rapidly growing 
capacity of individual disks, the number one pain point reported 
by IT storage professionals at large enterprises is the management 
of storage growth, according to repeated annual surveys [6]. This 
is partly because the cost of storing and managing files comprises 
much more than the cost of the media—it includes office and data 
center real estate, headcount for system management, power, 
cooling, the network impact of moving data, backup, information 
lifecycle management (archiving, retention and deletion policies, 
etc.) and the rapidly growing costs of e-discovery for litigation, 
combined with substantial legal and financial risk for sloppiness. 

In this paper we restrict our attention to file system data, i.e., we 
exclude databases and backup storage. File system data, because 
of its unstructured, ad-hoc nature, can be most problematic to 
manage. This so-called unstructured information (file storage on 
managed desktops and network attached storage) is the largest 
and fastest-growing segment of storage, estimated to be at 80% of 
all enterprise bytes [5].  

A good portion of data growth is duplicated data, rather than new  
file generation by employees.  While not all duplication is pure 

waste (there could be intentional duplication for data protection or 
caching), much of it is. For example, several employees on a 
timesharing system may individually download, unpack and build 
their own private version of the latest Java J2EE JDK (~400 MB), 
before the overworked system administrator gets around to 
making a shared copy available to everybody. And when they do 
get around to it, the other copies do not naturally get garbage 
collected or even detected. Such wasteful duplication is rampant 
in many different forms. The greatest duplication occurs when 
whole directories are duplicated, rather than individual files.  In 
the example above, no individual duplicated file may be 
particularly large, but the aggregate duplication exceeds the 
largest individual files.  Also note that detecting duplication at the 
whole-directory level yields much larger “units of discovery” than 
the largest individually duplicated files, making it much less 
laborious to review the findings.  

To remove this waste, the first step is to have an approximate 
picture of its extent and of where the duplication occurs from a 
global perspective. Such assessments are valuable in the IT 
industry because they help map problem areas and determine the 
cost-effectiveness of potential solutions—such as shared file 
systems, content-addressable archive storage, tools for individual 
users to manage their own storage and backup quotas, etc. 

This opens up an interesting and high-value assessment problem 
for storage administrators and industry consultants: for an 
enterprise that has petabytes of distributed file storage, can we 
easily and cheaply identify the degree of large-scale duplication 
in distributed file systems, and identify the biggest contributors to 
the duplication?  

We have developed a set of algorithms and protocols that perform 
duplication assessment on very large, distributed file systems with 
minimal impact on the systems being analyzed, while providing 
the level of accuracy that is required for decision making. We 
have also built a user interface that allows effective navigation of 
the file space, highlighting consolidation opportunities. 

It is essential that such a tool should have as little performance 
impact as possible on the enterprise file systems. To enable 
assessments in most existing systems without bringing enterprises 
to their knees, we need to do so in the least intrusive way 
possible—i.e., without forcing the installation of agents on all 
assessable systems (a system management nightmare), without 
creating a centralized infrastructure that indexes all files, without 
having to read all files, and with minimal bandwidth 
requirements.  



 

One approach to the duplicated file problem is to use a Single 
Instance Storage (SIS) system, as Windows SIS [1] or the 
research effort Farsite [3].  There are two primary problems with 
this approach. The first problem is that most single instance file 
systems are local; they are based on centralized servers that do 
not scale well to globally distributed computing infrastructures. 
For example, the Windows Single Instance Storage system does 
not eliminate duplicates across multiple file systems.  The second 
problem is that the vast majority of existing commercially viable 
file storage systems are not single instanced. Converting an entire 
enterprise to single instanced would be a major undertaking.  
Large enterprises typically have a variety of different operating 
systems and legacy file systems deployed. 

By contrast, our goal is to find duplication easily across multiple, 
heterogeneous, and potentially geographically distributed file 
systems, e.g., two separate department servers inadvertently 
mirroring a large, remote resource. Figure 1 shows an example. 
Using the duplication assessment method and tool presented in 
this paper, an IT department can make an argument for deploying 
the most appropriate duplicate removal solution, which might 
indeed be a single instance storage system. 

From a data mining research perspective, this paper extends 
similarity detection or de-duplication methods to hierarchical 
structures, which pose a self-similarity problem among ancestors. 
Existing literature focuses on detecting near duplicates among 
many individual files, rather than detecting similarity among 
hierarchical abstractions (provided by directories).  We contribute 
a method that is highly scalable and is also an anytime algorithm, 
providing results incrementally and designed to discover the best 
findings first.  Although the exposition in this paper addresses file 
systems, the techniques generalize to other hierarchical structures, 
and even DAG structures. 

The sections of the paper are structured as follows:  First, we 
discuss two inadequate strawmen, and then review the 
mathematical machinery we leverage. Then we describe the two 
major phases of our algorithm in Sections 4 and 5.  In Section 6 
we describe the data mining utility tool we implemented. In 
Section 7 we describe an experience verifying that its scalability 
is sufficient to handle real-world enterprise data on the order of 
22 terabytes; as this work is the first of its kind, there are no 
competing methods with which to compare efficiency or 
accuracy. Finally, we conclude with future work. 

2. ILLUSTRATIVE STRAWMEN 
The most obvious way of detecting duplicated files is to create a 
signature for each file in the system (for example, by hashing the 
contents of the file), and send all of the signatures to a central 
server where duplicates are detected using standard techniques, 
e.g. by detecting collisions in an enormous hash table. The 
problem with this simple approach is that it consumes too much 
disk, CPU and network resources. For example, in a large scale 
corporate network that we have studied, there are 350 million 
files, totaling 22 terabytes of data. Every one of these files would 
have to be read off the disk, its hash calculated using the local 
CPU, and the hashes transmitted to the central site for 
comparison. This would put an unacceptable burden on the 
corporate computer infrastructure.  Moreover, even if this hash 
data could be computed freely, the personnel labor to then do 
something about each of millions of such pairs of files would be 
tremendous, and in most cases would make the return on 
investment of the endeavor unacceptable. By contrast, instead of 
dealing with individual files, if one can deal with whole directory 
hierarchies that have identical or near-identical content, then one 
has 1000+ fold leverage for the time spent reviewing duplication 
reports to make actionable decisions. 
Our basic observation is that large-scale data duplication in file 
systems occurs when whole directories are duplicated, and when 
this happens the filenames and the structure of the duplicated 
directories remain more or less intact. Thus, rather than looking 
for duplicated files, we look for large directories that are 
duplicates or near duplicates of each other.  
One alternative approach might seem to be to hash together all 
filenames that fall beneath each directory, giving a unique 
signature for each set of files.  Two directories with identical 
contents would have an identical hash, and the collision could 
easily be detected via a large hash table.  This analysis would 
certainly be lightweight, but if even a single filename does not 
match within the copied directory, then the hash will not match.  
We would like an analysis that is both lightweight and robust to 
slight perturbations. 

3. MATHEMATICAL MACHINERY 
The trick is to treat directories as sets of files they contain, and to 
use set sketches to efficiently estimate overlap in the full set of 
files, without having to compare every constituent file. The set 
sketch algorithm we use is based on the results by Broder, et al. 

 

Figure 1.  Duplication Assessment in Globally Distributed Enterprise 



 

[2].  First we describe the mathematical results that underpin our 
method, and then we lay out the practical aspects of its 
application following this section. 

Preliminaries: 
U: a universe from which all sets of interest are drawn 
Permutation of U: a function h is a permutation of U if it is a 
bijective function from U to U 
Min-wise-independent family of permutations: a set of 
permutations of U that have a special “fairness” property (see [2] 
for definition) 
Jaccard Measure of set similarity: Given two sets S1 and S2, the 
Jaccard measure of their similarity, ρ(S1,S2), is defined as follows: 

||
||),(

21

21
21 SS

SSSS
∪
∩

=ρ  

Sketch of length n: the sketch of a set is a vector of integers of 
length n, computed using the algorithm specified below. 
Min(S): for the set of integers S, min(S) denotes the smallest 
element of S. 
h(S): for the set of integers S={s1,s2,…} and permutation h, h(S) 
is the set {h(s1),h(s2),…} 
Hamming Similarity: for two vectors V=[v1,v2,…,vn] and 
V′=[v1′,v2′,…,vn′], the Hamming similarity of the two vectors, 
sim(V,V′)  is the number of positions i where vi=vi′. In other 
words, |}':{|)',( ii vviVVsim ==  

Sketch Algorithm: Let H be a min-wise independent family of 
permutations over the universe U. Select uniformly, at random, 
and without replacement, n functions h1,h2,…,hn from H. Then the 
sketch of a set S is the vector  

[min(h1(S)), min(h2(S)), …, min(hn(S))]. 
Notice that the functions h1,h2,…,hn are chosen once and for all, 
and the same functions are used for computing the sketches of all 
sets. Using the results of Broder, et al. [2], it is easy to show: 

Theorem 1 [2]. Consider two sets S1 and S2. Let V1 and V2 be the 
sketches of the two sets, according to the algorithm above. Then 

),()],([ 2121,..,, 21
SSnVVsimE Hhhh n

ρ=∈   

So the set sketches can be used for estimating the degree of 
overlap between the two sets. 
An extremely important property of the set sketches used in this 
paper is incrementality, by which we have the following in mind: 
given the sketches of two sets S and S′, it is very easy to compute 
the sketch of the set S∪S′ using the following lemma, the proof of 
which routinely follows from the definition of the sketch 
algorithm. 
Lemma 1 Let [k1,k2,…kn] be the sketch of S, and [k′1,k′2,…kn′] 
the sketch of S′. Then [min(k1,k1′),min(k2,k2′),…,min(kn,kn′)] is 
the sketch of S∪S′. 

 

4. PHASE 1:  DIRECTORY SKETCHES 
Now we discuss the practical aspects of efficiently computing 
lightweight sketches for file system directories, and in the 
following section we discuss the analysis of this metadata. 
As mentioned above, we consider directories to be the set of their 
constituent files. We need to answer the following three 
questions: 

1. How do we represent a file as an integer? 
2. How do we compute min-wise-independent hashes? 
3. How do we compute the directory sketches, given that 

directories are hierarchical structures? 
We answer each of these questions in turn, and follow with an 
additional opportunity for optimization. 

4.1 File Representation 
As stated previously, we wish to estimate the overlap between 
directories, where a directory is considered to be a set of files. To 
fit in the framework described in the previous section, we need to 
map files to integers in a finite universe, such that identical file 
copies are mapped to the same integer, and different files are 
mapped to different integers. We could use a strong hash function 
such as SHA1 or MD5 on the file contents, which would almost 
guarantee the one-to-one mapping of files to integers. But doing 
so would impose an unacceptable burden on the local system, 
since the contents of all files would need to be read from the 
storage systems and the CPU burdened to compute the hashes. 
Instead, we compute the MD5 hash of the string formed by 
concatenating the size of the file and its name (but excluding the 
file path, which would certainly differ between two copies). By 
excluding the actual file contents from the hash, we eliminate the 
need to read the vast majority of each disk. Of course, two files 
with the same name and same number of bytes may actually hold 
different contents. While this does allow for some false positive 
matches, in practice, a few false positives at the file level do not 
adversely impact the accuracy of our results, since we are only 
interested in large scale directory duplication that involves many 
other files.   
Our detection relies on copies preserving their original filenames, 
which is typical, though not always the case.  Any empirical study 
to verify how typical this behavior is would be specific to the data 
sample studied. In our anecdotal experience, when a large 
directory is duplicated, directory names are renamed more often 
than the individual files, e.g., appending a software version 
indicator to the top-level directory. 

4.2 Min-wise-Independent Permutations 
In general, true min-wise-independent permutation functions are 
very expensive to compute on large universes. The MD5 hashing 
algorithm is expensive, and computing n separate hashes with 
varied salt appended to the content would multiply the workload.  
We used an approximation that works well in practice when the 
elements of the set are already strong hashes. We describe this 
technique for the case when the elements of the universe are 
outputs of the MD5 hash function. Recall that MD5 hashes are 16 
bytes. In this scheme, the permutation function h is represented by 
a random permutation of the set I16={1,2,3,…,16}.  Here is the 
algorithm: 



 

• Choose, uniformly and at random, a permutation p of I16  

• Represent 16-byte integers as a vector of bytes [b1,b2,…,b16] 

• Then h([b1,b2,…,b16])=[bp(1),bp(2),…,bp(16)] 

This algorithm is extremely fast to compute and in practice 
satisfies the requirements of min-wise independence. 
Using all 128 bits for each hash would be overkill for our 
application, since we can tolerate an occasional hash collision.  
Hence, we select only the first eight bytes of each permutation, 
yielding a 64-bit long integer for each of the n hashes.  

4.3 Computing Directory Sketches 
For the purposes of duplication assessment, we consider a 
directory to comprise the set of files accessible beneath it, 
irrespective of subdirectory structure.  In reality, directories are 
hierarchical, each containing a number of files and sub-
directories. In computing the sketch of a directory, it is essential 
that we re-use the effort spent computing the sketches of the sub-
directories. Here Lemma 1 comes to our rescue: a bottom-up scan 
of a directory structure allows the sketch of all of the directories 
in that structure to be computed while every node in the structure 
(a file or sub-directory) is only touched once. 
Hence, we perform a depth-first, post-order traversal of the file 
system, processing each directory after all of its contents.  As 
each file is encountered, we compute the MD5 hash of its file 
name and size, and then update its parent directory sketch. When 
each directory is completed, we output its final sketch and then 
integrate it into its parent’s directory sketch, leveraging the 
incrementality property.  In addition, we also record the total 
number of files beneath each directory, as well as the cumulative 
content size of all of its files. 
Ideally, the directory sketches are computed as locally as possible 
to each file system in order to eliminate network load and 
minimize the latency for the many round-trip communications 
that are needed to list an entire file system.  For example, each 
file server could run several sketch-generation threads in parallel 
to distill the contents of its locally mounted file systems, perhaps 
spanning multiple disk drives.  Afterwards, these distillations, 
which are much smaller than even a file listing, can be easily 
brought together to a central place for joint analysis. Figure 1 
depicts this mechanism 
It is important that n is the same for all distillations that are 
analyzed together.  We set n=16 as a constant.  The computation 
and distillation size scales linearly with n.  Greater values lead to 
finer granularity in estimating set overlap, but often we find the 
most interesting pairs of directories are nearly perfect duplicates, 
which have all sketch hashes in common regardless of n.  That is, 
when looking for highly similar directory pairs, we find little 
incentive to use larger n.  

5. PHASE 2:  INTER-SKETCH ANALYSIS 
Given two specific directories of interest, we can now efficiently 
estimate the level of similarity in their sets of files by comparing 
their n hashes.  But we don’t know which directories to compare 
from the outset, and comparing each directory to every other 
directory is certainly infeasible.   
In the first subsection, we describe a pruning technique that can 
optionally be used to eliminate most of the sketch metadata, 
allowing the fraction that remains to be analyzed entirely in 
RAM.  This analysis is the subject of the second subsection. 

5.1 Optional Pruning of Unique Hashes 
Most directories are not duplicates, and if we can determine that 
their sketch hashes will uncover no useful duplicates, then we can 
eliminate the majority of the hashes from consideration, greatly 
improving scalability.  We can detect a lack of duplicates for a 
directory only after we have gathered the various file system 
distillations in a central location. When we learn of a new 
distillation summary, we may discover that a directory previously 
considered unique now has a duplicate.  It would not be sufficient 
to identify those hashes that have only a single occurrence in the 
distillations, since a subdirectory U/V/W/ and its ancestors U/ and 
U/V/ often have hashes in common, especially when U/ has few 
direct child files and U/V/W/ contains most of its files.  Refer to 
Figure 2.  
The proper procedure for determining the hashes of interest is as 
follows: we make a single pass through each distillation, which 
was generated naturally in post-order.  We output each sketch 
hash to a temporary file when it fails to propagate to its parent’s 
sketch, or else when it propagates all the way to the root.  For 
example, if a particular hash X first appears in the sketch of a 
subdirectory U/V/W/ and it propagates up to the sketch of U/V/ 
and also U/, then these three occurrences stem from only a single 
origin and X is output only once in the temporary file—when it 
fails to propagate to the parent of U/ or else when it reaches the 
root /.  On the other hand, if that same hash X later occurs in a 
sketch of a different branch U′/V/W/ of the listing, perhaps in a 
separate distillation, then it would be output a second time.1   
Note that the procedure to construct the temporary file emulates 
the original computation to obtain the initial sketches.  But the 
workload is much less because at most n sketch hashes are 
considered per directory, rather than all of the files.  If instead one 
were to output the unique hashes during the initial computation, 
then additional files of roughly the same size as the distillations 
would need to be managed and moved across the network to the 
central location, which we deem an inferior design. Furthermore, 
each distillation can be processed in parallel, and their temporary 
output merged arbitrarily.  
The temporary file of hashes is then sorted via a high-quality, 
external-memory merge-sort, such as provided by the UNIX or 
DOS sort utility program.  Any sketch hash that occurs more 

                                                                 
1 This algorithm also works correctly for the case where a 

directory U/V/ has a copy in a sibling directory U/V′/:  the hash 
X propagates from U/V/ to its parent U/, but the same hash X in 
U/V′/ fails to propagate to its parent U/ because X is not strictly 
less than the previous X installed by the sketch of U/. So, X is 
correctly output again, marking the multiple originations. 

somewhere/U/ 
somewhere/U/V/ 
somewhere/U/V/W/ 
 … 
elsewhere/U′/ 
elsewhere/U′/V/ 
elsewhere/U′/V/W/ 

Figure 2.  Example: directory U′ is a copy of U. 



 

than once in the sorted output represents a file that appears in 
multiple subdirectories, and may contribute to discovering 
substantially similar directories.  By far, most hashes originate 
from a single location and can be disregarded henceforth.  Any 
directory whose n sketch hashes are completely eliminated is also 
omitted from further processing.  Although this step is optional, it 
has the advantage of greatly improving the scalability of the 
remaining analysis—using memory and computation only for the 
relatively few directories that do have some degree of duplication. 

5.2 Incremental Indexing 
To discover the interesting pairs of duplicates, we could build a 
reverse index of the hashes pointing back to the directories from 
which they come, i.e., a bi-partite graph of directories and their 
hashes. It could then be analyzed to discover each pair of 
directories and their percentage of sketch hashes in common (as in 
[4]).  But this approach does not scale well for hierarchical 
directory information, since there can be a very large number of 
directories with some degree of similarity—for example, ancestor 
chains are self-similar—and many subordinate directories may be 
discovered first, overwhelming the discovery process.  For 
example, in Figure 3, we see that directory A/, which contains 
subdirectories 1…m, has been copied to another location A′/.  
Ideally, we would like to discover the pair A/ = A′/ first, and 
avoid the overhead of discovering the many subordinate pairs of 
duplicate subdirectories.  
We accomplish this by sorting all of the directories by their 
cumulative content size, largest first (favoring shallower depth in 
case of ties, which are surprisingly common), and then building 
up the directory-hash graph incrementally.  In the example above, 
A/ may be registered first, with no duplicate directories 
discovered at this time, and later when A′/ is registered, its sketch 

hashes will connect it with A/, and the pair will be discovered 
before their subdirectories are linked in.  At this point, one may 
consider the option of not processing any subdirectories of A/ or 
A′/.  But this would be overly hasty.  It may be that the 
subdirectory A/1/ is relatively large and has a duplicate copy in 
some other location D/1/.  If we were to omit registering A/1/, 
then this duplication could not be detected.  We have encountered 
exactly this scenario in analyzing real data. 
Instead, we do eventually register A/1/, but when later registering 
A′/1/ and thereby discovering its mate A/1/, we omit this 
duplication pair from the pool of interesting findings because their 
mutual parents A/ and A′/ already cover this finding.  Thus, the 
ordering of the directories from largest to smallest leads to 
discovering the largest (highest) pairs of similarity first, and also 
serves to filter the pairs reported later on in the discovery process.  
If the number of similar pairs of directories is overwhelmingly 
large, at least we have an anytime algorithm that finds the largest 
such pairs first.  Our graphical user interface described in the next 
section takes advantage of this, allowing the user to examine 
initial findings while the analysis continues in the background to 
post additional findings. 
There are two additional complications.  First, many directories 
naturally share self-similar hashes with their parents and higher 
ancestors.  When each such pairing is discovered, the ancestor 
relation is tested to omit it from the pool of interesting findings.  
Second, it may be that two directories U/ and U′/ share some level 
of similarity, say, 14 of 16 sketch hashes in common, and their 
subdirectories U/V/ and U′/V/ share a greater level of similarity, 
e.g., 16 hashes in common.  The filtering as described so far 
would filter away the latter pair because it is covered by the prior 
pair.  The additional detail is that we specialize the filter for each 
level of similarity.  That is, once a pair is discovered with s 
hashes in common, it will be used to filter any pairs it covers with 
≤ s hashes in common, but not pairs with greater similarity.  
Table 1 summarizes the overall algorithm. 
 

6. OUR DATA MINING UTILITY TOOL 
While the algorithm described above is at the heart of our 
software, any actual application must address concerns and 
practical features that are useful in real-world deployment.  
We built the tool in Java for portability, and made it available (for 
HP-internal use) via WebStart, which lets one install and run the 
application directly from a web page. This is intended to make it 
easy for administrators on different systems to run the distillations 
on each file server locally.  The user interface enables one to scan 

somewhere/A/ 
somewhere/A/1/ 
somewhere/A/2/ 
 … 
somewhere/A/m/ 
 … 
elsewhere/A′/ 
elsewhere/A′/1/ 
elsewhere/A′/2/ 
 … 
elsewhere/A′/m/ 

Figure 3.  Example: directory A′ is a copy of A. 

Table 1.  Overall Algorithm 
1. For each distributed file system in parallel: 
 Perform a depth-first post-order traversal:   [See 4.3] 
  Case file:  (if size > 0) 
   Compute MD5 digest of basename & size [4.1] 

For each of n 8-byte permutations, select the min-
hash for the parent directory’s sketch [4.2] 

  Case directory:  [4.3] 
   Output its sketch (if cumulative size > 10 MB) 
   Merge with parent’s sketch [Lemma 1] 
2. Gather the distributed distillations 
3. Optional: determine the sketch hashes that originate in more 

than one directory, greatly pruning the sketch data [5.1] 
4. For each directory D, sorted largest (& shallowest) first: [5.2] 
 Add it to the directory↔hash bi-partite graph 

Determine how many of D’s sketch hashes are common with 
previously registered directories for those hashes [Thm.1] 
For each such directory P: (except if P is an ancestor of D) 

Output D↔P unless their similarity is less than or equal 
to a previously output pair that covers D↔P 
 



 

one or more directory hierarchies in parallel threads, which can 
improve throughput, especially if multiple disk drives are 
involved. Alternately, it can list the contents of a compressed 
archive of a file system, or read a simple file listing thereof.   
A common type of duplication is to have a compressed project 
archive in addition to an unpacked version, perhaps with a few 
differences or the addition of some *.o compilation objects.  This 
happens, for example, when software is downloaded from the 
Internet, stored permanently, and also unpacked.  In order to catch 
this common use-case, there is an option when scanning a file 
system to also list the contents of compressed archives that it 
encounters.  Archive files are treated as pseudo-directories and 
expose the directory structure inside the archive; this requires no 
other special-case processing in the algorithm. Finally, for 
information security, there is an option to encrypt all recorded 
directory names. 
Each “*.dscan” distillation file is stored in compressed format; 
each line lists a directory path, the cumulative number of files and 
bytes it represents, and the n=16 hashes of its sketch. Despite the 
random hashes, gzip compression saves ~25%. As a practical 
option, we omit listing small directories with less than a minimum 
directory size—10 MB of file content is the default.  Furthermore, 
when building the sketches, we ignore files of size 0, which are 
surprisingly common in some file systems. This can greatly 
reduce the directory-hash graph connectivity, and thereby 
improve scalability without missing meaningful data duplication. 

After one has generated these *.dscan distillation files, perhaps on 
various remote servers, one gathers them together on a single 
computer for analysis.  Figure 4 shows an example screen shot of 
our tool.  The upper window pane shows a table of the various 
*.dscan files that are currently included in the project, totaling 
19 GB in 588K files in 43,114 directories (see status bar).  
Observe that the last column of the table shows the size of these 
distillation files. A few kilobytes represent hundreds of megabytes 
of file content (~ 1:25,000 ratio); this ratio depends on the nature 
of the data, as well as the minimum directory size. 
By activating Tools Analyze or the toolbar button, all of these 
files are jointly pruned of hashes that originate in only a single 
directory, and the remaining directory sketches are loaded into 
memory.  The analysis immediately opens the lower panel, and as 
the anytime algorithm generates findings incrementally, they are 
posted to the summary graph in the lower left pane.  Each blue 
dot indicates a pair of similar directories. The x-axis represents 
the degree of similarity, and the y-axis represents the number of 
megabytes that might be saved if the smaller of the two 
directories were deleted; in some cases, this reflects the size of the 
compressed archive copy.  An additional red curve gives a rough 
estimate of the cumulative savings if all such pairs were 
eliminated at each level of similarity.   
The similarity on the x-axis is primarily the number of sketch 
hashes in common.  But because we have additional information 
about the directories, we also know when a pair of similar 

 
Figure 4.   Screen shot of our utility tool. 



 

directories happens to contain the same number of files.  To 
visually distinguish such pairs as being more similar, we add 0.2 
to the similarity score. Likewise, by the cumulative contents 
counter, we also know when a pair of similar directories contains 
the identical number of content bytes. When this happens, we add 
an additional 0.3 to the similarity score.  Thus, perfect duplicates 
obtain a score of 16.5, and appear furthermost to the right. 
Although ad hoc, it proves useful in practice to distinguish at a 
glance these different degrees of similarity.  One could extend this 
idea to further analyze the similarity in structure of their 
subdirectories and their sketches, or go back to the original file 
system itself and verify whether all files are present. 
The user can zoom a portion of the graph by dragging the mouse. 
If the user clicks near a blue dot, the pair of similar directories is 
shown in the detail pane in the lower right, along with a drill-
down view of their mutual subdirectory structure in the bottom 
right tree-table.  For each subdirectory name in common, we 
determine the union set of sketch hashes we have available under 
the two directories.  The first two columns in the lower tree-table 
show the percentage of hashes covered by the A directory and 

respectively the B directory—often 100% even if the exact 
number of files or content bytes does not match identically. 
The user may right-click on a directory to open it in a file 
explorer, or to compare the two directories via an external 
directory comparison tool, such as the open-source WinMerge 
utility, which performs comparisons on both file contents and 
(recursive) directory listings.   

7. AN EXAMPLE LARGE ANALYSIS 
We had available a large NFS trace listing the distributed file 
systems of a large enterprise customer.  The filenames and path 
names were encrypted for security, and completely inscrutable to 
us.  The file listing contained 350 million files in 16 million 
directories, totaling 22 terabytes of cumulative file data.  
Compressed, the text file listing totals 3.9 GB. 
Our tool distilled this listing into a *.dscan file in 37 minutes.  For 
comparison, simply uncompressing the whole file listing and 
passing it to the ‘wc’ word counter takes 6 minutes, and listing 
directly from the file systems would take much longer.  Our 
resulting *.dscan file includes 753,306 directories of >10 MB, and 

 
Figure 5.  Sample finding from analyzing 22 TB of files. 



 

its compressed format consumes just 69 MB, i.e. 1:319,000 
compared to the 22 TB file content or 1:56 compared to the 
compressed file listing.  We ignored 4.5 million files (1%) having 
zero size (prior to this enhancement, the analysis phase became 
swamped with a highly interconnected graph). 
Loading and analyzing the *.dscan file took less than one minute.  
The system stops analyzing after it finds the largest 9000 similar 
directory pairs over a specified minimum similarity; we generally 
look for just a few large opportunities for consolidation.  Figure 5 
shows a sample screen shot; the directory names have all been 
encrypted to hexadecimal strings for customer privacy. The 
summary graph has been zoomed in to show several pairs 
exceeding 20 GB of duplication.  Whether these are essential for 
data backup or caching is unclear to us because of the filename 
encryption, and would require further investigation with the 
customer, who is unavailable to us.  By clicking on a dot, the 
lower right panel drills down on a particular pair having roughly 
10 GB of duplication.  The file paths are inscrutable to us for 
customer privacy, but in practice an administrator can often 
determine what the nature of the duplication is or at least can find 
out which file owners to blame. The point of this large customer 
analysis here is not what was found in particular or how much 
total duplication was found globally, but rather to validate that the 
design of the analysis software enables one to mine the data for 
large-scale directory duplication easily and efficiently. 
Typical findings in our file systems include multiple versions of 
large software packages that have been both downloaded and 
installed (e.g. the Java JDK), directories of photos or music that 
have been duplicated as a form of manual backup or tagging (e.g., 
copying an album to a “favorites” directory), daily versions of 
large virus definitions that are automatically downloaded by virus 
checkers, and mirrored copies of repositories. Some copies are 
made simply to rename the navigation path for user convenience 
or to attempt to ensure longevity of one’s access to shared files.  
Depending on the cost and benefit to an organization, the 
duplication may be deemed worthwhile; the aggregate cost of 
many uncoordinated duplicates, however, may not. 

8. CONCLUSION & FUTURE WORK 
All in all, we find our algorithm and implementation highly 
scalable.  The remaining bottleneck has to do with user attention, 
and ultimately social incentives may be needed to get people to 
actually consolidate, once the best opportunities have been found.  
This is an eternal struggle between the IT storage managers and 
the employee users. 
There are two main avenues for deploying this technology: the  
lightweight consulting assessment scenario, which has a large 
discovery component and in which privacy and invasiveness 
considerations dominate, and the continuous monitoring scenario, 

which is more performance-focused.  The latter scenario suggests 
future work to remember prior decisions made on large directory 
pairs, e.g., “this is an important mirror of that,” or “only this copy 
is sanctioned; other copies that come into being should have their 
owners notified.”  Finally, supervised and unsupervised data 
mining technologies may also be brought to bear in order to 
quicken the repeated review process. 

9. ACKNOWLEDGMENTS 
Our thanks to Eric Anderson and Brad Morrey of HP Labs for 
obtaining and sharing the large, encrypted NFS traces. We also 
wish to thank the anonymous customer enterprise for graciously 
sharing their data for file systems research such as this.  
Additional thanks to Janet Wiener and Ken Braly for improving 
this manuscript. 

10. REFERENCES 
[1] Bolosky, W. J., Corbin, S., Goebel, D., and Douceur, J. R. 

2000. Single instance storage in Windows® 2000. In 
Proceedings of the 4th Conference on USENIX Windows 
Systems Symposium - Volume 4 (Seattle, Washington, Aug. 
3-4, 2000). USENIX Association, Berkeley, CA, 2-2. 

[2] Broder, A. Z., Charikar, M., Frieze, A. M., and 
Mitzenmacher, M. 2000. Min-wise-independent 
permutations. Journal of Computer and System Sciences. 60, 
3 (Jun. 2000), 630-659. 

[3] Douceur, J., Adya, A., Bolosky, W., Simon, D., Theimer, M. 
2002. Reclaiming Space from Duplicate Files in a Serverless 
Distributed File System.  In the 22nd IEEE International 
Conference on Distributed Computing Systems (ICDCS′02). 

[4] Forman, G., Eshghi, K., and Chiocchetti, S. 2005. Finding 
similar files in large document repositories. In the 11th ACM 
SIGKDD International Conference on Knowledge Discovery 
in Data Mining (Chicago, Illinois, USA, August 21 - 24, 
2005). KDD ′05. ACM, New York, NY, 394-400. 

[5] Gantz, J. F. et al.  2007.  The Expanding Digital Universe: A 
Forecast of Worldwide Information Growth Through 2010.  
IDC White Paper, Framingham, MA. June 22, 2007. 
www.idc.com 

[6] Simpson, D., and Hatcher, J.  TIP survey reveals storage 
trends.  InfoStor Europe, Dec. 2006. www.infostor.com 

 
 

 


