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The least-square optimization problem in multi-channel echo control is severely ill-conditioned. Methods
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by studying the trade-off between the approximation error, i.e. the error of reducing the dimension of the
search space, and estimation error, i.e. the error caused by observation noise, as function of the reduction in
dimension. Simple expressions are derived to determine the optimal dimension as a function of
signal-tonoise ratio and condition number of the normal equations.

External Posting Date: December 18, 2008 [Fulltext]          Approved for External Publication
Internal Posting Date: December 18, 2008 [Fulltext]

Copyright 2008 Hewlett-Packard Development Company, L.P.



ON OPTIMAL DIMENSION REDUCTION IN LEAST-SQUARE SYSTEM IDEN TIFICATION

Majid Fozunbal

Hewlett-Packard Laboratories
Palo Alto, CA 94304, USA

majid.fozunbal@hp.com

ABSTRACT
The least-square optimization problem in multi-channel

echo control is severely ill-conditioned. Methods to miti-
gate this problem by decorrelating input signals result in
undesired audio distortion. Recently, we demonstrated this
approach can be tackled by dimension reduction [1]. In
this paper we extend our results by studying the trade-off
between the approximation error, i.e. the error of reducing
the dimension of the search space, and estimation error, i.e.
the error caused by observation noise, as function of the
reduction in dimension. Simple expressions are derived to
determine the optimal dimension as a function of signal-to-
noise ratio and condition number of the normal equations.

Index Terms— Dimension reduction, echo control, least-
square methods, manifold learning, and regularization.

I. INTRODUCTION

Manifold learning [2] is a collection of techniques to
estimate a low dimensional (non-linear) model from a set
of noisy observations. This low dimensional model is repre-
sented as a low-dimensional (linear or non-linear)manifold
embedded in a higher dimensional linear embedding space
[3]. Figure 1 depicts an example where a one-dimensional
helix in R

3 models a noisy data set of three dimensional
vectors.

In this paper we study manifold learning in the context
of regularizing least square problems. In particular, we
study manifold learning as a method to mitigate thenon-
uniqueness problem in multi-channel echo control (MEC)
[1], [4]. MEC systems seek to minimize the energy of echo,
typically expressed as a minimization problem of the form

inf
x∈RD

‖Ax − b‖2. (1)

Here,A denotes an excitation matrix formed by the signals
sent to the loudspeakers,b is a vector of microphone signals,
and x is a candidate estimate of the echo path impulse
responses. Because of the spatial correlation of excitation
signals, (1) is typically under-determined and ill-conditioned.

A variety of approaches have been proposed to tackle
this problem, mostly by makingA better conditioned using
non-linear and time-varying decorrelation techniques [5],

[6]. The major drawback of these methods is the incurred
distortion of the audio signals: effectively, echo control
quality performance is improved at the cost of other non-
linear distortions.

In [1], we proposedmanifold learning approach to reg-
ularize (1), allowing a physically relevant well-conditioned
solution. The procedure of this approach is as follows. Let
the underlying search space (for impulse responses in a given
room) be ad-dimensional linear manifoldM embedded
in R

D, where d < D. This assumption is supported by
experimental observations that show a major portion of the
search space lies within a minor portion of dimensions. Since
the knowledge ofM is not available, we use a data set
of (noisy) samplesDn = {x1, · · · , xn} ⊂ R

D to form an
approximationM̂ of M. More specifically, given a (noisy)
sampleDn = {x1, · · · , xn} ⊂ R

D, we first compute the
empirical correlationΛ = 1

n

∑

i xix
′
i. Then, an appropriate

numberd of largest eigenvectors ofΛ are computed and
used as the basis for̂M. Finally, instead of (1), we solve

inf
x∈M̂

‖Ax − b‖2. (2)

The details of this algorithm are given in [1]. In this
paper we extend the analysis of [1] by studying the optimal
reduction in dimension. We start with an average total error
analysis for the solution of (2). We then derive an upper-
bound on the average total error. Consequently, we factorize
this bound into two additive terms: theapproximation error
and theestimation error, respectively. The approximation
error is a measure of deviation between̂M andM, whereas
the estimation error measures the deviation due to additive
noise and the ill-conditioning of the system matrixA.

We continue by deriving expressions for the trade-off be-
tween the approximation and estimation error terms. We find
that as the manifold dimensiond increases, the estimation er-
ror increases linearly, but the approximation error drops more
super-linearly. We derive a closed form expression to find the
optimal value ford for a minimum total error. It is shown
that at this value the marginal decrease in approximation
error equals the marginal increase in estimation error. This
condition is further expressed in terms of cumulative sum of
eigenvalues of the correlation matrixΛ, the signal-to-noise
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Fig. 1. Example of a one-dimensional helix(sin t, cos t, t)
that models a noisy collection of points inR3.

ratio, denoted byγ, and the (aggregated) condition number
of A′A, denoted byχ(A′A). In one particular case we find
that optimal value ford equals the number of eigenvalues
of Λ that are larger than

χ(A′A)

γD2
.

In the following sections, we first introduce the technique
of linear dimension reduction. We then derive expressions
for the approximation error and the estimation error, re-
spectively. Finally, we derive and numerically illustratethe
optimality conditions ford.

II. LINEAR DIMENSION REDUCTION

Several techniques exist for manifold learning and dimen-
sion reduction [2]. These techniques are divided into two
main classes, viz. linear and non-linear techniques. More
precisely, givenDn, the problem can be expressed as finding
a contiuous1 immersion function

f : N → M

whose inverse, referred to assubmersion,

f−1 : M → N

is also continuous. Here,N ⊂ R
d and d < D denotes the

dimension of manifold. Note thatf−1 is a projection on the
manifold andf is an embedding in the ambient space. Thus,
f−1 is only a left inverse.

Let define

ρ =
d

D
(3)

as therelative dimension. Given a relative dimension and
a class of candidate functions, the functionf is found
by minimizing the average error betweenxi ∈ Dn and
its corresponding output̃xi resulting from the process, as

1Not necessarily the Euclidean topology.

follows. Let f andf−1 be given by

f−1(x) = U ′x (4)

f(y) = Uy (5)

whereU is a d×D orthogonal matrix such thatU ′U = Id.
The optimal choice forU is found by minimizing

1

n

∑

xi∈Dn

‖xi − UU ′xi‖
2. (6)

Solving this equation forU , U is a matrix formed by thed
largest eigenvectors of the empirical correlation matrix

Λ =
1

n

∑

xi∈D

xix
′
i. (7)

Let

Λ = [U V ]

[

Σ 0
0 ∆

] [

U ′

V ′

]

.

denote the singular value decomposition ofΛ whereΣ and
∆ are diagonal matrices containing thed largest eigenvalues
and D − d lowest eigenvalues in descending order. The
minimum of (6) is

1

n

∑

xi∈Dn

‖V ′xi‖
2 = tr (∆) . (8)

A key observation obtained from experimental results is
that tr (∆) is a small percentage oftr (Λ). Figure 2 depicts
the accumulative sum of the eigenvalues of 2000 acoustic
impulse responses between random pairs of locations in a
5×10×3 meters room. These impulse response are computed
using the image method [7] for a sampling frequency of
8KHz. Thex-axis isρ (3), the relative dimension. They-axis
represents the normalized accumulative sum of the⌊ρD⌋
eigenvalues, more precisely given as

Q(ρ) =

∑⌊ρD⌋
i=1 λi

∑D
i=1 λi

(9)

that is a measure of accuracy in approximatingΛ by trun-
cating its lowestD − d eigenvalues. In (9),λi denotes the
i-th largest eigenvalue ofΛ.

From Figure 2, it is quite noticeable that about 84% of
the norm ofΛ lies in 10% of its eigenvalues. Moreover, we
conclude from (9) and from Figure 2 that asρ increases,
accuracy improves. However, this increase in approximation
accuracy comes at the expense of an increased estimation
error, to be discussed below. In Section IV, we derive an
expression for the optimal value ofρ.

III. ERROR ANALYSIS

Let denote the approximation forM by

M̂ = {x ∈ R
D : V ′x = 0}. (10)
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Fig. 2. Cumulative portion ofk largest eigenvalues. A
number of 2000 impulse responses are generated via a
simulation model [Allen & Berkley, ’79]. Absorption value
is .2, sampling frequency 8 KHz, and room’s dimensions are
5 × 10 × 3 meters.

Now, we can express (2) as

inf ‖Ax − b‖2

s.t. V ′x = 0. (11)

Suppose the true underlying element isxo, and let

b = Axo + ν

whereν denotes the additive noise term. Solving (11) forx
we need to satisfy

(U ′A′AU)U ′x = U ′A′Axo + U ′A′ν. (12)

Figure 3 attempts to depict the geometry of this solution for
a hypothetical example inR2 where‖ν‖ = 0. The deviation
between the estimated solutionx and the true solutionxo

can be expanded by

‖x − xo‖
2 = ‖V ′xo‖

2(1 +
‖U ′(x − xo)‖

2

‖V ′xo‖2
).

In this equation, the second multiplicative term is a measure
of an angular alignment between the estimated manifoldM̂
and the space of solutionsA(x − xo) = 0. For the example
in Figure 3, this term is1+tan2 θ. Thus, fixing‖V ′xo‖ the
minimum error is whenθ = 0.

With some algebraic manipulation, it turns out that

‖x − xo‖
2 ≤ 2‖V ′xo‖

2(1 + ‖(U ′A′AU)−1U ′A′AV ‖2)

+ 2‖(U ′A′AU)−1U ′A′ν‖2.

The first term of this inequality is the effect of approximating
M and the second term is the effect of the additive noise.

x

x
o

V
′xo

U
′ (x − xo)

θ

M̂ = {x : V
′x = 0}

A(x− x
o ) = 0

‖x − xo‖2 = ‖V ′xo‖2(1 + tan2 θ)

Fig. 3. A hypothetical example to illustrate the geometry of
error in terms of the angular alignment between̂M and the
space of solutionsA(x − xo).

Assume thatxo is a random point inDn drawn using
the empirical density ofDn. Moreover, assume a uniform
distribution over all matrices similar2 to A′A. Now, taking
the expectation with respect toxo andA′A, we obtain

E
(

‖x − xo‖
2
)

/ C(ρ)

where

C(ρ) , 2(1−Q(ρ))tr (Λ) (1 + tr
(

(A′A)−1
)

ρ)

+ 2
χ(A′A)

D γ
ρ (13)

denotes an upper-bound on total error in terms ofaverage
signal-to-noise ratio per dimension

γ =
tr (A′A)

D‖v‖2

and theaggregated condition number of matrix A′A

χ(A′A) = tr (A′A) tr
(

(A′A)−1
)

.

Note thatχ(A′A) is a lower bound of the commonly used
notion of condition number that is the ratio of maximum
eigenvalue to the minimum eigenvalue.

IV. OPTIMAL DIMENSION

The expression for total (bound on) errorC(ρ) has two
additive terms. The first term represents (an upper bound)
on the average approximation error that occurs by approxi-
matingM with M̂. Let denote this term by

Capp(ρ) , 2(1 − Q(ρ))tr (Λ) (1 + tr
(

(A′A)−1
)

ρ). (14)

The other additive term in (13) represents the estimation
error caused by the additive noise. The second term is an
upper bound on estimation error, denoted by

Cest(ρ) , 2
χ(A′A)

γD
ρ. (15)

2A matrix B is similar to A′A if there exists a non-singular matrixS
such thatB = S−1A′AS.



0 50 100 150 200 250
Time

A

L

C

Fig. 4. Approximation error and estimation error and the
overall error are depicted forγ = 10dB, D = 2000, and
three different values forχ(A′A). As χ(A′A) decreases or
γ increases the optimal choice forρ shifts to the right.

Figure 4 demonstrates the behavior of these two error
terms for γ = 10dB and D = 2000. As ρ increases, the
approximation errorCapp(ρ) decreases but the estimation
error increases. It is seen that the optimalρ shifts to the right
asγ increases or the condition number ofA′A decreases.

The extremum point of (13) can be found by considering
ρ as a continuous variable and taking derivatives with respect
to ρ. We then obtain the following optimality condition

∂Capp(ρ)

∂ρ
= −

∂Cest(ρ)

∂ρ
. (16)

The condition (16) implies that the optimalρ is the point
in which the marginal reduction in approximation error is
offset by the marginal increase in estimation error. With
some straightforward manipulation of (16), we obtain

∂Q(ρ)

∂ρ
=

1 − Q(ρ) + χ(A′A)
γDtr(Λ)tr((A′A)−1)

ρ + 1/tr ((A′A)−1)
. (17)

This equation expresses the condition for optimal choice of
ρ with respect to the normalized accumulative sum of the
eigenvalues ofΛ along withγ and the condition number of
A′A. It can be solved numerically to find a thresholdη such
that the number of eigenvalues no smaller thanη determines
d.

We can further simplify (17) iftr
(

(A′A)−1
)

≪ 1. If this
condition holds true, (17) boils down to

∂Q(ρ)

∂ρ
≈

χ(A′A)

γD tr (Λ)
(18)

Equivalently, by substituting forQ(ρ) from (9), we obtain
the optimal dimensiond as the number of eigenvalues ofΛ
that are no smaller than the cutoff threshold

η ,
χ(A′A)

γD2
. (19)

We conclude that the optimald increases asχ(A′A) de-
creases or asγ increases, a behavior which is also observed
in Figure 4.

V. CONCLUSION

We considered optimal linear dimension reduction to reg-
ularize ill-conditioned least square problems in multichannel
echo control. We observed that a significant part of the
impulse-response search space lies in a lower dimensional
subspace. This motivated the use of dimension reduction
techniques to regularize the echo control problem. We
have analyzed the total error in terms of approximation
and estimation errors, resulting in a simple expressions for
the optimal subspace dimension. In future work we will
experimentally verify optimal dimension reduction in actual
real-time multi-channel echo control systems.
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