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Abstract:

The least-square optimization problem in multi-channel echo control is severely ill-conditioned. Methods
to mitigate this problem by decorrelating input signals result in undesired audio distortion. Recently, we
demonstrated this approach can be tackled by dimension reduction [1]. In this paper we extend our results
by studying the trade-off between the approximation error, i.e. the error of reducing the dimension of the
search space, and estimation error, i.e. the error caused by observation noise, as function of the reduction in
dimension. Simple expressions are derived to determine the optimal dimension as a function of
signal-tonoise ratio and condition number of the normal equations.
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ABSTRACT [6]. The major drawback of these methods is the incurred

The least-square optimization problem in multi-channedistortion of the audio signals: effectively, echo control
echo control is severely ill-conditioned. Methods to miti- quality performance is improved at the cost of other non-
gate this problem by decorrelating input signals result irlinear distortions.
undesired audio distortion. Recently, we demonstratesl thi |n [1], we proposedmanifold learning approach to reg-
approach can be tackled by dimension reduction [1]. Irularize (1), allowing a physically relevant well-conditied
this paper we extend our results by studying the trade-ofolution. The procedure of this approach is as follows. Let
between the approximation error, i.e. the error of reducinghe underlying search space (for impulse responses in a give
the dimension of the search space, and estimation error, i.eoom) be ad-dimensional linear manifold\{ embedded
the error caused by observation noise, as function of thgy RP, whered < D. This assumption is supported by
reduction in dimension. Simple expressions are derived texperimental observations that show a major portion of the
determine the optimal dimension as a function of signal-tosearch space lies within a minor portion of dimensions. &inc
noise ratio and condition number of the normal equations.the knowledge ofM is not available, we use a data set

Index Terms— Dimension reduction, echo control, least- ©f (N0isy) sampleD,, = {z,--- ,2,} C R” to form an
square methods, manifold learning, and regularization. ~ @PproximationM of M. More specifically, given a (noisy)
sampleD,, = {x1,---,2,} C RP, we first compute the
I. INTRODUCTION empirical correlatiold = 1 3~ z;2/. Then, an appropriate

numberd of largest eigenvectors ok are computed and

Man|fold 'ear”'f‘g [2].'8 a coIIec_uon of techniques to used as the basis fo¥1. Finally, instead of (1), we solve
estimate a low dimensional (non-linear) model from a set

of noisy observations. This low dimensional model is repre- inf ||Az — b||%. (2)
sented as a low-dimensional (linear or non-lineaanifold zEM
embedded in a higher dimensional linear embedding space The details of this algorithm are given in [1]. In this

[3]. Figure 1 depicts an example where a one—dimensionfaper we extend the analysis of [1] by studying the optimal
helix in R®> models a noisy data set of three dimensionateduction in dimension. We start with an average total error
vectors. analysis for the solution of (2). We then derive an upper-
In this paper we study manifold learning in the contextpound on the average total error. Consequently, we faetoriz
of regularizing least square problems. In particular, we this bound into two additive terms: themproximation error
study manifold learning as a method to mitigate @  and theestimation error, respectively. The approximation
uniqueness problem in multi-channel echo control (MEC) error is a measure of deviation betwegf and M, whereas
[1], [4]. MEC systems seek to minimize the energy of echothe estimation error measures the deviation due to additive
typically expressed as a minimization problem of the form nojse and the ill-conditioning of the system matrix

inf ||Az — b||2. (1) We continue by deriving expressions for the trade-off be-
z€RP tween the approximation and estimation error terms. We find
Here, A denotes an excitation matrix formed by the signalsthat as the manifold dimensiehincreases, the estimation er-
sent to the loudspeakeisis a vector of microphone signals, ror increases linearly, but the approximation error dropsan
and z is a candidate estimate of the echo path impulsauper-linearly. We derive a closed form expression to fired th
responses. Because of the spatial correlation of exaitatiooptimal value ford for a minimum total error. It is shown
signals, (1) is typically under-determined and ill-coramtied.  that at this value the marginal decrease in approximation
A variety of approaches have been proposed to tacklerror equals the marginal increase in estimation errors Thi
this problem, mostly by makingl better conditioned using condition is further expressed in terms of cumulative sum of
non-linear and time-varying decorrelation techniques [5]eigenvalues of the correlation matrix, the signal-to-noise



follows. Let f and f~! be given by
fi @) =U" (4)
fly) =Uy 5)

whereU is ad x D orthogonal matrix such thdf'U = I,.
The optimal choice fol/ is found by minimizing

1
~ > i - UU' % (6)
;€D

Solving this equation fot/, U is a matrix formed by thel
largest eigenvectors of the empirical correlation matrix

Fig. 1. Example of a one-dimensional helixin ¢, cost, t) A= 1 , 7
that models a noisy collection of points . n Z:DI“TZ 7
Ti€
Let ,
ratio, denoted byy, and the (aggregated) condition number A=[UV] E g] [‘[i,] .

of A’A, denoted byy(A’A). In one particular case we find
that optimal value ford equals the number of eigenvalues denote the singular value decompositionfofvhere¥ and
of A that are larger than A are diagonal matrices containing ttidargest eigenvalues
; and D — d lowest eigenvalues in descending order. The
x(A’A) o .
5 minimum of (6) is
~vD

1
In the following sections, we first introduce the technique - Z [V ;]2 = tr (A). (8)
of linear dimension reduction. We then derive expressions z;€Dy,

for the approximation error and the estimation error, re- A ey observation obtained from experimental results is
spe_ctlvgly. Flna_ll_y, we derive and numerically illustratee ot ¢, (A) is a small percentage of (A). Figure 2 depicts
optimality conditions ford. the accumulative sum of the eigenvalues of 2000 acoustic
impulse responses between random pairs of locations in a
Il. LINEAR DIMENSION REDUCTION 5x10x 3 meters room. These impulse response are computed

Several techniques exist for manifold learning and dimeny>N9 the |mage_method [7] for_ a Samp“r.]g frequen_cy of
. . . L . 8KHz. Thex-axis isp (3), the relative dimension. Theaxis
sion reduction [2]. These techniques are divided into two 4 .

. S . . represents the normalized accumulative sum of [th® |
main classes, viz. linear and non-linear techniques. More; . :

. . .. €igenvalues, more precisely given as
precisely, giverD,,, the problem can be expressed as finding

a contiuou’ immersion function LeD] y,
Qlp) = =5 9)
PN =M Zi:l Ai
whose inverse, referred to asbmersion, that is a measure of accuracy in approximatingdpy trun-
cating its lowestD — d eigenvalues. In (9)); denotes the
M= N i-th largest eigenvalue of.

is also continuous. Here\y’ c R% andd < D denotes the From Figure 2, it is quite noticeable that about 84% of
dimension of manifold. Note that~! is a projection on the the norm ofA lies in 10% of its eigenvalues. Moreover, we

manifold andf is an embedding in the ambient space. Thusconclude from (9) and from Figure 2 that asincreases,
#~Lis only a left inverse. accuracy improves. However, this increase in approxm_1at|o_
Let define accuracy comes at the expense of an increased estimation
d error, to be discussed below. In Section IV, we derive an
r=5 (3) expression for the optimal value pf

as therelative dimension. Given a relative dimension and

a class of candidate functions, the functighis found lll. ERROR ANALYSIS

by minimizing the average error between € D, and

its corresponding output; resulting from the process, as  |et denote the approximation fovt by
M={zeRP:V'z=0}. (10)

INot necessarily the Euclidean topology.



|z — 20| = |[V'2,]|%(1 + tan? 6)
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o

0.9" .
94% accuracy by 20% of EVs

£ 84% accuracy by 10% of EVs

Fig. 3. A hypothetical example to illustrate the geometry of
error in terms of the angular alignment betwektand the
space of solutions\(x — x,).

Assume thatr, is a random point inD,, drawn using
the empirical density ofD,,. Moreover, assume a uniform
Fig. 2. Cumulative portion ofk largest eigenvalues. A distribution over all matrices similarto A’ A. Now, taking
number of 2000 impulse responses are generated via tAe expectation with respect 1o, and A’A, we obtain

p

simulation model [Allen & Berkley, '79]. Absorption value E 12y <o
is .2, sampling frequency 8 KHz, and room'’s dimensions are
5 x 10 x 3 meters. where
C(p) £ 2(1-Q(p))tr (A) (1 + tr ((A"A)71) p)
!/
Now, we can express (2) as 4 QX(;l A) (13)
Y
. 2
inf ”Aj: — 0] denotes an upper-bound on total error in termsaerage
s.t.Viz=0. (11)  signal-to-noise ratio per dimension
Suppose the true underlying elementzis and let _ tr(A'A)
~ Dlv|?
b= Az, +v
and theaggregated condition number of matrix A’ A
wherer denotes the additive noise term. Solving (11) for dore
we need to satisfy X(A'A) = tr (A A)tr (AA)71).
(UAADU 'z =U'A"Az, + U’ A'v. (12)  Note thaty(A’A) is a lower bound of the commonly used

notion of condition number that is the ratio of maximum

Figure 3 attempts to depict the geometry of this solution foréigenvalue to the minimum eigenvalue.

a hypothetical example iR? where||v|| = 0. The deviation
between the estimated solutianand the true solutiorx,,

can be expanded by IV. OPTIMAL DIMENSION
= Ve U (z — x,)]? Th_e expression for_ total (bound on) errG¥(p) has two
|z — 2o||” = [[V'zo*(1 + _||V’:1:0||2 )- additive terms. The first term represents (an upper bound)

on the average approximation error that occurs by approxi-

In this equation, the second multiplicative term is a measurmating/\/l with M. Let denote this term by

of an angular alignment between the estimated manifald
and the space of solution$(z — z,) = 0. For the example  Capp(p) £ 2(1 — Q(p))tr (A) (1 + tr ((A"A)~") p). (14)
in Figure 3, this term id +tan? §. Thus, fixing||V'x,|| the
minimum error is wherg = 0.

With some algebraic manipulation, it turns out that

The other additive term in (13) represents the estimation
error caused by the additive noise. The second term is an
upper bound on estimation error, denoted by
Iz — 2o |* < 2[[V'ao|*(1 + ||(U"A’AU) U A AV %) o 2 X(A4)
+2(U'A’AU) U Alv2. est(p) = ~D

(15)

The first term of this inequ_a"ty is the effect of apprﬁ)Xi”mJi 2A matrix B is similar to A’ A if there exists a non-singular matrig
M and the second term is the effect of the additive noise.such thatB = S~ A’AS.



Equivalently, by substituting fo€(p) from (9), we obtain

‘ the optimal dimensiol as the number of eigenvalues &f
that are no smaller than the cutoff threshold
5 X(4'4)

vD? -
We conclude that the optimal increases ag(A’A) de-
creases or as increases, a behavior which is also observed
in Figure 4.

" (19)

E 3

V. CONCLUSION

We considered optimal linear dimension reduction to reg-
ularize ill-conditioned least square problems in multichel
echo control. We observed that a significant part of the
impulse-response search space lies in a lower dimensional

w w w subspace. This motivated the use of dimension reduction
0 %0 100 Time 150 200 25ioechniques to regularize the echo control problem. We

have analyzed the total error in terms of approximation
Fig. 4. Approximation error and estimation error and the@nd estimation errors, resulting in a simple expressions fo
overall error are depicted foy = 10dB, D = 2000, and the optimal subspace dimension. In future work we will
three different values fog(A’A). As y(A’A) decreases or exper_imentall;_/ verify optimal dimension reduction in aatu
~ increases the optimal choice fprshifts to the right. real-time multi-channel echo control systems.
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