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Atmospheric Turbulence Degraded Image
Restoration by Kurtosis Minimization

Dalong Li and Steven Simske, Senior Member, IEEE

Abstract— Atmospheric turbulence is caused by the random
fluctuations of the refraction index of the medium. It can lead
to blurring in images acquired from a long distance away. Since
the degradation is often not completely known, the problem is
viewed as blind image deconvolution or blur identification. Our
previous work has observed that blurring increases kurtosis and
introduced a new blur identification method based on kurtosis
minimization. In this letter, this observation has been studied
using phase correlation. The kurtosis minimization method is
compared with two other signal processing methods. The limita-
tion of the method is also discussed.

Index Terms— blur identification, atmospheric turbulence, im-
age restoration, kurtosis.

I. INTRODUCTION

Random fluctuations of the refraction index cause atmo-
spheric turbulence degradation. These phenomena have been
observed in long-distance surveillance imagery and astronomy.
The fluctuations in atmospheric turbulence can be modeled
as a dynamic random process that perturbs the phase of
the incoming light. The restoration of atmospheric turbulence
degraded images has been actively studied [1]. From the
refraction index structure functions, Hufnagel and Stanley [2]
derived a long-exposure optical transfer function (OTF)

H(u, v) = e−λ(u2+v2)5/6
(1)

to model the long-term effect of turbulence in optical imag-
ing. Here u and v are the horizontal and vertical frequency
variables and λ parameterizes the severity of the blur. The
refraction index fluctuation is a random process and the
blurring parameter λ is dependent on many factors and in
practise it is unknown. In such situations, it is formulated as
a blur identification problem since the functional form of the
blur is known but the parameter is not given. Besides blur
identification methods, blind image deconvolution does not
assume an atmospheric turbulence OTF [3], [4].

Blur identification methods often use parametric models.
One of them is the Auto-Regressive Moving Average (ARMA)
model, where the image is modeled as an autoregressive
process and the blur is modeled as a moving average pro-
cess. Maximum likelihood (ML) [5] and generalized cross-
validation (GCV) [6] are two well-known examples that use
this ARMA formulation. The ML algorithm estimates the
image so that the likelihood of obtaining the observed im-
age given the parameter is maximized. GCV identifies the
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parameter by minimizing a weighted sum of predictive errors.
Restoration algorithms based on the ARMA model might
converge to a local maximum when the parameter is high-
dimensional. The two algorithms have been compared in [6]
and the comparative studies favor GCV on real degraded im-
ages. In this letter, GCV based blur identification is compared
with the proposed method.

Recently, Caron [4] introduced the Self-deconvolving Data
Re-construction Algorithm (SeDDaRA), a blind image decon-
volution method that first estimates OTF directly from the
degraded image in the frequency domain and then uses Wiener
filter to restore it. For comparison, the restoration results using
SeDDaRA are also provided.

Based on an observed statistics, we had briefly reported the
kurtosis minimization (KM) based blur identification method
in [7]. In this letter, we analyze this observed statistics by
phase correlation and compare with other blind image de-
convolution algorithms. The limitation of the method and a
possible solution is also discussed. This letter is organized
as follow. Section II, the relationship between blurring and
kurtosis is interpreted by phase correlation. KM based blur
identification algorithm is briefly reviewed in section III.
In section IV, the implementations, the comparative results
and limitation of the method are reported. Some concluding
remarks are in section V.

II. KURTOSIS AND SMOOTHING

The kurtosis of a random variable is defined as the normal-
ized fourth central moment

k =
E((x− µ)4)

σ4
(2)

where µ is the mean of x, σ is its standard deviation, and
E(x) represents the expectation of the variable. Previous
research has noticed the non-Gaussian statistics of natural
images. Particularly, it is shown that the histograms of fil-
tered images tend to have single modes with heavy tails,
characteristic of leptokurtic distributions. These statistics have
been observed for derivative filters, Gabor filters, wavelets and
even small random kernel filters [8]. Gluckman [9] used the
phase structure to interpret the observed statistical regularities.
Correlations in the phase angle of an image are used to explain
the non-Gaussian statistics of natural images. Here we use the
phase structures to analysis how blurring changes kurtosis.

A bandlimited signal f(x) can be represented using a finite
Fourier series

f(x) =
n∑

i=1

micos(uix + φi), (3)
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where mi and φi are the magnitude and phase angle associated
with integer frequency ui. For simplicity, we consider the 1D
case and assume f(x) is zero-mean. Since a symmetric image
can always be created by reflection, the Fourier transform
of the signal is real. Thus, the phase of each frequency is
either 0 or π, and is represented by the signed magnitudes
si ∈ {−1, 1}. The signal can be represented as a sum of low-
frequency components fl(x) and high-frequency components
fh(x). fl(x) and fh(x) are abbreviated as fl and fh in some
of the following equations.

fl(x) =
n∑

i=1

ml,icos(ul,ix + φl,i) (4)

fh(x) =
m∑

i=1

mh,icos(uh,ix + φh,i) (5)

The kth central moment of f is:

µk(f) =
1
|Ω|

∫

Ω

fk(x)dΩ (6)

where Ω is the image domain.
The 4th order moment of f is

µ4(f(x)) = µ4(fl(x) + fh(x)) (7)

=
1
|Ω|

∫

Ω

(fl(x) + fh(x))4dΩ

= µ40 + 4µ31 + 6µ22 + 4µ13 + µ04

µ31 =
3
4

∑

i,j,r,v

{(ml,iml,jml,rmh,v)(sl,isl,jsl,rsh,v)

I(i, j, r, v)}
µ13 =

3
4

∑

i,j,r,v

{(ml,imh,jmh,rmh,v)(sl,ish,jsh,rsh,v)

I(i, j, r, v)}
µ22 = µ20µ02

+
1
2

∑

i,j,r,v

{(ml,iml,jmh,rmh,v)(sl,isl,jsh,rsh,v)

I(i, j, r, v)}

where I(i, j, r, v) is an indicator function[9]

I(i, j, r, v) =
{

1 if (ui − uj) = (ur − uv)
0 otherwise (8)

The moments µ13 ≈ 0 and µ31 ≈ 0 because (ui − uj) =
(ur−uv) usually does not hold when 3 of the four frequencies
{i, j, r, v} are in a single band (low or high).

The kurtosis of f(x) is then

kf =
µ4(f)
µ2

2(f)

=
µ40(fl) + µ40(fh) + 6(µ20(fl)µ02(fh)) + 3C

(µ20(fl) + µ20(fh))2
(9)

where C =
∑

i,j,r,v{(ml,iml,jmh,rmh,v)(sl,isl,jsh,rsh,v)
I(i, j, r, v) and µ20(fh) refers to the µ20 of the high frequency

component, other µ follows the same manner. The kurtosis of
fl(x) and fh(x) are:

kfl
=

µ40(fl)
µ2

20(fl)

kfh
=

µ40(fh)
µ2

20(fh)
(10)

From Eq. (9) and Eq. (10), the condition for kfl
> kf is

3C < µ20(fl)µ20(fh)(2kfl
− 6) + (kfl

− kfh
)µ2

20(fh) (11)

A blurring PSF is a low pass filter. Therefore, for some
natural images, blurring will increase kurtosis. The smoothed
(blurred) image has higher kurtosis than the original image.
In general, this is not true for binary image.

III. KURTOSIS MINIMIZATION FOR BLUR IDENTIFICATION

Given a noisy blurred image g with a known functional form
for the blur, we estimate the blur parameter λ. The search
space Ω is set manually on a trial-and-error basis. If the upper
limit of λ is too large, then the corresponding restored image
would be very degraded.

At each step in the search loop, the image is deblurred
using a Wiener filter G(u, v) or any other non-blind restoration
algorithm and the kurtosis of the deblurred image f̂(λ) is
computed and recorded. Then the deblurred image with the
minimal kurtosis is chosen as the final restored image and the
corresponding parameter is regarded as the identified blurring
parameter. The kurtosis minimization based blur identification
can be summarized as

λk = arg{min
λ∈Ω

k(f̂(λ))}. (12)

The non-blind restoration algorithm used in this work is the
practical form of the Wiener filter:

G(u, v) =
H∗(u, v)

|H(u, v)|2 + nsr
(13)

where nsr is the noise to signal ratio. Since the signal is
unknown, in practice, the noise-to-signal ratio is approximated
by the noise-to-blurred-signal ratio, which can be estimated
either in the spatial domain or in the frequency domain.The
Wiener filter behaves as a mid-band emphasis filter. In the
region where signal is very strong relative to the noise,
Pn(u, v)/Pf (u, v) ≈ 0 and the Wiener filter approximates
H−1(u, v) (the inverse filter). In the region where signal is
very weak, Pn(u, v)/Pf (u, v) → ∞ and G(u, v) → 0 to
prevent noise amplification. Such characteristics of the Wiener
filter are critical to the kurtosis minimization based blur iden-
tification. If noise is amplified in the restoration, for example,
by an inverse filter, the kurtosis of the corresponding restored
image will be low and the kurtosis minimization will not find
the correct restored image. In that case, kurtosis minimization
might fail because the non-blind restoration algorithm does
not provide a reasonable candidate.
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TABLE I
PSNR (DB) COMPARISONS OF THE THREE IMAGE RESTORATION

METHODS.

Image degraded KM GCV SeDDaRA
aerial 20.33 21.12 21.05 19.94
tree 20.62 22.91 22.11 16.36

peppers 25.54 26.51 26.62 18.87
boat 22.67 23.97 23.35 20.02
Lena 24.68 25.72 25.01 22.13

IV. EXPERIMENTS ON REAL AND SIMULATED
ATMOSPHERIC TURBULENCE BLURRED IMAGES

Example on a real atmospheric turbulence degraded image
is shown here. For both GCV and KM, the parameter search
space Ωλ = {λ : 0.0004i|i = 0, 1, 2, . . . , 25}. The upper limit
is set by trial and error. In SeDDaRA, the tuning parameter α is
set as 0.4. Fig. 1 shows the results. The λ identified by GCV is
0.0004. The image appears to be “under-deblured”. KM iden-
tified it as 0.0012. High frequency components are amplified
and the image is effectively “sharpened”. The SeDDaRA result
appears to be “over-deblurred” and the image looks unnatural.
However, in terms of complexity, among the three, SeDDaRA
has the lowest complexity as it is non-iterative in nature. The
size of the image is 240 by 240, on a 1.4GHz Intel Pentium
laptop computer with 768 MB of RAM, it took 0.55 seconds to
restore the image. Both GCV and KM have higher complexity.
GCV took 11.76 seconds and KM took 8.98 seconds.

Several test images were selected from the USC-SIPI image
database [10] for the experiments of restoring the simulated
atmospheric turbulence blur. Since the ground-truth images are
available, the Peak signal-to-noise ratio (PSNR) can be used
to measure the quality of the restored images. PSNR is defined
as:

PSNR = 10 log10

∑M
i=1

∑N
j=1 2552

∑M
i=1

∑N
j=1(f(i, j)− f̂(i, j))2

(14)

where f̂(i, j) is the restored image, and f(i, j) is the ground-
truth image. The size of the images are M × N . In the
simulation experiments, the ground-truth images were blurred
with the Hufnagel and Stanley model (λ = 0.004) and
Gaussian random noise (σ2 = 0.001) was added to the blurred
images. Table I shows the results of the comparisons. KM has
slightly lower PSNR on the PEPPERS image. For all other
images, KM results are the best. The SeDDaRA results have
the lowest PSNR since the method is not robust to noise and
the parameter α might need to be chosen manually.

If the parameter space is estimated properly, the kurtosis
profile is expected to be concave. Since KM is built upon
an observed statistics of images (blurred image has higher
kurtosis), it is possible for some images not to follow the
statistics. One possible way to overcome the limitation is to
subdivide the image into overlapped sub-images. The statistics
of sub-images are different from the whole image. From the
sub-images that follow the kurtosis statistics, the parameter can
be estimated. To identify such sub-image, we can first blur it
with the Hufnagel and Stanley model (λ can be set as 0.004)
and then compute its kurtosis and compare with the kurtosis

of the sub-image before the blurring. If the kurtosis increases,
then the sub-image is believed to be proper for the kurtosis
minimization based blur identification. In case there are more
than one such sub-images, the identified λs are averaged to
give the over-all estimation. An example is shown in Fig. 2.
The image is blurred by atmospheric turbulence blur at λ =
0.01. Then Gaussian noise is added at σ2 = 0.0006. Though
the kurtosis profile of the entire image is not concave, that of
the sub-image is concave and the minimum is located very
close to the true blurring λ.

(a) A simulated blurred image.

0 0.005 0.01 0.015 0.02 0.025 0.03
1.55

1.6

1.65

1.7

(b) The kurtosis profile as a function of λ.

Fig. 2. Example of the sub-image approach.

V. CONCLUSION

We furthered the kurtosis minimization based blur identi-
fication work. The observed kurtosis statistics is analysized
theoretically in frequency domain by phase correlation. Its
application in restoring image degraded by atmospheric turbu-
lence is highlighted in this letter. The restoration of such image
is viewed as a blind deconvolution or a blur identification
problem in image processing. Since blur identification methods
use a model for the OTF, they tend to achieve better results
than blind deconvolution methods which do not consider the
functional form of OTF. Comparisons with other methods
suggest that KM is competitive in restoring images degraded
by atmospheric turbulence blur. KM is built upon statistics
and there is no guarantee that it will work on any given image.
Sub-image approach is an attempt to overcome this limitation.
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(a) The blurred image. (b) The restored image with kurtosis minimization identified λ =
0.0012.

(c) The restored image with kurtosis minimization identified λ =
0.0004.

(d) The image restored by the SeDDaRA (α = 0.4).

Fig. 1. Comparative results on a real turbulence degraded image.
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