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Abstract. Though designing, deploying and operating a video surveillance sys-
tem in a public place is a relatively simple engineering task, equipping opera-
tional systems with privacy enhancing technology presents extraordinarily dif-
ficult technical challenges. We explore using mobile communications and loca-
tion tracking to enable individuals to assert a preference for privacy from video
surveillance. Rather than prohibit or defeat surveillance, our system –Cloak –
seeks to discourage surveillers from distributing video without the authorization
of the surveilled. We review the system architecture and operation, and demon-
strate how privacy can be enhanced while requiring no change to existing surveil-
lance technology. We use analysis and simulation to explore the solution’s fea-
sibility, and show that an individual’s video privacy can be protected even in the
presence of the many sources of error (e.g., dense crowds, unsynchronized clocks,
unreliable communications, location error, location signal loss) we anticipate in a
deployed system. Finally, we discuss the key technical, social, and legal barriers
to Cloak’s large-scale deployment, and argue that the pervasive use of camera
phones requires the focus of efforts on surveillance privacy technology to shift to
limiting dissemination rather than limiting video capture.

1 Introduction

We have become accustomed to the alarm bells sounding with the release of each new
report specifying the growth in the number of fixed video surveillance cameras and
associated closed circuit television systems operating in public spaces [1], [2]. Many of
the public surveillance systems are operated by municipal agencies and are sanctioned
to enhance routine operations including automobile and pedestrian traffic monitoring,
or permit relatively inexpensive remote policing in an effort to deter crime. Operators
of such systems frequently adhere to an acceptable use policy – often published – for
their CCTV system, addressing matters such as the proper storage and dissemination of
captured video content.

A large number of other video surveillance systems are privately owned and op-
erated, though in many cases these systems capture images of people and objects in
public spaces (e.g., building mounted perimeter security systems, sidewalk Automatic
Teller Machines). The intended purpose of these systems is typically the protection of
private property, and restrictions on the use of video captured by such systems tends
to be at the discretion of the system’s owner. Canada, however, has recently introduced
new guidelines to assist private organizations in maintaining surveillance privacy [3].



Concern about the threat to privacy associated with dedicated surveillance systems
seems warranted. Cases of misuse or unauthorized video dissemination are reported
with regularity. Many systems are far from secure, often relying on low cost analog
video technology and electronic transmission that is easily tapped. Worries about ‘al-
ternative use’ of recorded content remain unabated, and public discourse on privacy
issues seems slow to move forward [4].

But the threat to privacy of these conventional fixed position camera systems pales
in comparison to the threat posed by the proliferation of camera phones; approximately
370 million camera phones were sold in 2005 [5]. Such phones are not only pervasive in
both public and private spaces, but the combination of their mobility and operator (i.e.,
owner) control permits them uninhibited access to locations and targets unavailable to
conventional surveillance cameras. Though people are often the targets of surveillance,
we are equally concerned about photographing objects; an image of a sensitive docu-
ment bearing confidential information may require greater protection than an image of
its owner. Though in this chapter we will routinely refer to a person seeking privacy
while moving through a public space, the technology we discuss applies to arbitrary
mobile objects (e.g., automobile license tags, credit card transactions).

Though the primary purpose of a camera phone is not to serve as a privately owned
and operated surveillance device, it is quite capable of that role. The sophistication of
both cameras and video signal processing has grown enormously as computing power
has increased exponentially over time. And disseminating content has never been eas-
ier or more accessible; internet content hosting sites such asFlickr andYouTubehave
grown enormously popular.

To address these concerns this chapter presents technology that permits a person (or
object) to unambiguously assert a preference for video privacy [7]. A key insight which
forms the basis of this solution is that it is crucial to distinguish between two activities
– being surveilled, and subsequently having the captured video or images distributed.
That is, we make the following distinction; while being surveilled may present a po-
tential threat of privacy loss, the widescale public disclosure [8] or dissemination of
tangible evidence of one’s presence at a particular place and time is anactual loss of
privacy.

We take the presence of ubiquitous ‘dumb’ video surveillance systems to be im-
mutable. We believe that in many cases those concerned for personal privacy would
be satisfied with the assurance that their image is simply not distributed without their
permission. Our technology doesnotseek to prevent image acquisition, nor present any
technical barriers to captured image distribution. Instead the system seeks to permit
captured images and video segments to be reviewed and, if necessary, ‘sanitized’ prior
to public release, if this is desired by any person or object in the video itself. In effect,
we seek to extend to a very large scale the common courtesy of asking a party for per-
mission to take photographs. We believe that in many – but not all – cases this approach
will jointly satisfy the needs of both the surveillers and the surveilled.

The remainder of this chapter is organized as follows. Section 2 describes the oper-
ation of our proposed ‘privacy-enhanced surveillance’ system, and establishes the tech-
nical feasibility of the system for the case of stationary surveillance cameras. Section
3 introduces some basic detection schemes to identify privacy seekers in the presence



of crowds in surveillance footage, and presents simulation results that measure how re-
liably privacy seekers can be identified given the many potential sources of error (e.g.,
location uncertainty, clock error) that will arise in an actual deployment. We also dis-
cuss how our system can be extended to provide privacy from mobile camera phone
surveillance. Section 4 examines some closely related technologies to support surveil-
lance privacy, and the next section looks at the ever widening gap between technology
and law. In the final section we close with a summary of our investigation.

2 System Architecture and Operation

Our system, calledCloak, places the burden of sanitization on video owners seeking
public dissemination of content they own. It also places the burden ofassertingthe
preference for privacy on the individual interested in retaining privacy. We believe that
this division of labor is appropriate, based on the following assumptions:

– While many of those traversing public spaces might choose to cloak on an occa-
sional basis, relatively few will choose to cloak on a frequent or continuous basis.
Hence we propose a system where those seeking privacy must ‘opt-in’.

– The vast majority of captured surveillance video has little obvious value and will
not be disseminated. Hence, our system is designed to require no change to existing
infrastructure, nor require any action unless content is to be disseminated.

– A video segment selected for dissemination that contains an image of a person seek-
ing privacy and requiring sanitization will be an uncommon event; most individuals
captured in a video will not be seeking privacy protection.

– Even when sanitization is necessary it will often not interfere with the specific
content valued by the content owner. A privacy seeker in an image simply might
not be central to the reason an owner seeks dissemination. In this case both the
privacy objective of the surveilled and the dissemination objective of the surveiller
can be jointly met.

Beginning with this set of assumptions certainly seems non-intuitive. For instance,
why design a system for relatively light use? First, we suspect that while many people
are interested in obtaining increased privacy, few will be willing to bear any associated
cost or inconvenience, no matter how minimal, for an unfamiliar service that is difficult
to value. As we will see, Cloak does not depend on any of these assumptions, but certain
aspects of system design would likely change if alternative assumptions were made.

Our proposed privacy-enhanced surveillance system works as follows. A person
entering a public space potentially subject to surveillance elects to be in a Privacy As-
sertion (PA) state by carrying and activating a Privacy-Enabling Device (PED). A PED
is a mobile navigation and communications device containing

– a clock,
– a unique identifier,
– one or more location tracking devices, such as a Global Positioning System (GPS)

receiver,
– a wireless, mobile data communication link, and



– a non-volatile data storage device.

The bandwidth required for the communication link (e.g.,< 1 kilobit/second) is a
small fraction of that offered by current wireless, broadband, wide-area data services
(e.g., EV-DO). A PED should be equipped with a small amount of storage (e.g.,< 32
MB flash memory) to preserve location information during wireless link dropout pe-
riods. Tight synchronization between the PED clock and surveillance video recording
device clocks is not required. A PED should be inexpensive, as much of this func-
tionality is present in most mobile phones in use today. While certain existing cellular
telephone based location services are not sufficiently precise for this application (e.g.,
50 meter accuracy in Enhanced 911 Phase II handset-based solutions), they can serve as
useful redundant location systems when a primary GPS system loses signal acquisition.

Indeed, dedicated object location tracking devices and associated web-based infras-
tructure are already in use. One example is the Zoombak A-GPS Locator [11], which
provides ‘continuous’ location updates to a central location tracking site at a specified
interval between 5 minutes and 1 hour. Integrating both cellular and GPS location ser-
vice permits the device to continue to acquire location information in environments
where signal information is unavailable to one or the other location tracking technolo-
gies.

From a user’s perspective entering a PA state is as easy as toggling a ‘privacy switch’
on one’s PED. A PED in PA state periodically captures and timestamps its location co-
ordinates (e.g., 1 location per second) and either transmits them immediately or stores
them locally (for later transmission). A PED requires no manual intervention when ac-
tive and communicating in real-time. Note, however, that real-time transmission might
not be possible if the communications link connectivity is intermittent or the channel
is unreliable. Non real-time operation might require the PED operator to initiate up-
loading of locally stored location information when reliable communications become
available. Of course, timely delivery reduces the risk that surveillance video or images
are disseminated prior to upload.

A location clearinghousereceives communications from each active PED. The
clearinghouse indexes and stores received information by location. Note that main-
taining the complete uncompressed trajectory of a single PED consumes< 500 KB
of memory per PA hour; cleverly compressed trajectories would consume considerably
less. Though it might seem that recording paths would be storage-intensive, a typical
user only requires roughly the same amount of storage as would be consumed by taking
a single digital photo each day.

Suppose a surveiller (i.e., video content owner) wishes to disseminate a captured
video. The surveiller queries the clearinghouse to determine ifanyPED was active in
the field-of-view of its camera during the time interval the video was captured. For now
let’s limit our attention to fixed surveillance cameras rather than mobile camera phones;
we will return to a discussion of how the system can be extended to mobile cameras
later. For stationary-mount cameras, finding active PEDs in a camera’s field-of-view
requires that the surveiller know the camera’s location, and also be able to calculate
how each location in the camera’s 3-dimension field-of-view corresponds to its position
in the acquired 2-dimensional image; calculating such projections can be a one-time



event. We will discuss the effect of subsequent camera misalignment and other sources
of error later in this chapter.

A surveiller queries the clearinghouse via a communication protocol. For example,
a sequence of queries can be used to determine ifanyPED traversed the camera’s field
of view during the time interval of the video segment. An initial query may use only
coarse-grain location information (e.g, ”Were any PEDs within distanced of location
(x, y, z) during time interval [t1, t2]?”). We will later argue that even under a scenario
where the density of PEDs traversing surveilled spaces is high, the probability that a
randomly chosen video segment requires sanitization prior to dissemination (i.e., ahit)
is low.

In the event of a hit both the video segment from the surveiller and the associated
PED paths or trajectories from the clearinghouse are forwarded to a videosanitizer.
The sanitizer strives to modify the video segment to respect the privacy asserted by
the photographed PED users. We ideally envision this video processing to be entirely
automated, though the required level of sanitization and the sophistication of that pro-
cess depends on the specifics of the case, and can vary from trivial to implement to
extremely complex. We will discuss sanitization technologies again in Section 4. If the
sanitizer can modify the video clip to jointly meet the privacy requirements of the pho-
tographed PED carrier and the video owner, the resulting clip is returned to the owner
for dissemination. Figure 1 presents a sample of how a single image might appear after
sanitation.

Fig. 1. The privacy objective of the surveilled and the image dissemination objective of the
surveillers can often be jointly satisfied. In this image the identity of the man in the foreground
is protected, though the image’s commercial value might center on the second conversing couple
(background, right).



Before we begin a more detailed look at the range of technical, social and legal is-
sues associated with deploying Cloak, let’s take a moment to establish what Cloak is
not. Cloak does not seek to prevent or deter anyone from taking photographs or creat-
ing videos in public spaces. In particular, the system does not interfere with surveillance
systems engaging in authorized remote policing. Cloak does no ‘smart’ video process-
ing at video creation time; all video information is captured. Cloak places no burden
on those not seeking surveillance privacy. Cloak requires no change to existing cameras
or surveillance systems, save a requirement to time-stamp videos to facilitate off-line
processing. Finally, Cloak does not alter the video ownership rights of a surveiller.

2.1 Discussion

Is building Cloak even technically feasible? To answer this question, let’s begin with
a very simple example. Suppose we have a single fixed camera primarily trained on
a public space. We are given a sufficiently long duration video clip (e.g., 60 seconds)
which shows 2 people traversing the space, and for simplicity let’s say the 2 arrive and
depart the video at different times. Next suppose that one is a PED carrier, and the other
is the party of interest to the surveiller (i.e., the reason for dissemination), and we are
given the location information reported by the PED.

Even assuming the many potential sources of error, including poor clock synchro-
nization, considerable error in location reported by the PED, camera location error and
subsequent misalignment, etc, the likelihood of being unable to determine which of two
individuals is the privacy-seeker in the video is slight. It is often the case that a crude
estimate of the arrival and departure times to and from the scene are enough to distin-
guish between two independent travelers moving through a scene. Upon identifying the
privacy seeker, manually removing that party via video editing would often not interfere
with the video owner’s desire to preserve the presence of the other person. Indeed, ex-
amples of such editing are often presented on broadcast television, where surveillance
videos of criminal activity are post-processed to remove the identities of other present
parties (e.g., to protect potential witnesses).

While the above construction assures us that theCloaksystem can be successfully
implemented for very simple use scenarios, the next section focuses on far more com-
plex and interesting scenarios. Some of the questions we seek to answer with our inves-
tigation are:

– Can we overcome the many potential sources of location tracking error to correctly
identify a PED carrier?

– Can we pinpoint a PED carrier within a large, dense crowd?
– How much time must a PED carrier be present in a video to be reliably identified?

Before turning to these technically challenging questions, let’s first take a closer
look at several of the principal objections that are commonly raised by those skeptical
of deploying the Cloak system.

– Voluntary Compliance
Cloak’s most dubious property is that the system relies on voluntary compliance by
video owners to scrub their content prior to dissemination. Technology alone does



not appear to be capable of protecting privacy; only societal pressure or law can
enforce compliance with the unambiguous desire of the privacy seeker. However,
technologycanbe used to assert one’s preference for video privacy, and to provide
proof of that assertion should one’s preference be ignored. A person whose privacy
is asserted but ignored and violated can useCloakto demonstrate this fact. Clearly,
ignoring a person’s privacy preference, particularly one going to the effort and ex-
pense of enabling technology to make the assertion, will earn little public good will.
Public scorn can be an effective deterrent to violations by institutions owning con-
tent (e.g., municipalities) as well as broadcasters (e.g, television, newspaper, web
hosting sites). Indeed, it is possible to imagine a sanitized video bearing a visible
logo indicating its ‘privacy protected’ state; such an indication could conceivably
earngood will for the video owner.

– Trusted Third Parties
Privacy seekers must ultimately place trust in both the location clearinghouse and
the sanitizer, even if some basic level of anonymity is afforded using one-time
identifiers (e.g., the location clearinghouse need not know the identity of an in-
dividual whose location is being recorded). Surveillers receive no information on
the surveilled except for their preference for privacy as ultimately indicated by their
scrubbed image. Sanitation, of course, brings together images and trajectories, but
no additional explicit identifying information is necessarily required.

– Location Privacy
Individuals have a visceral objection to having their location tracked. The paradox
inherent inCloakis that individuals perceive that they must risk sacrificing location
privacy to achieve video surveillance privacy.
But do they? To begin with, if you are carrying a cell phone, how much location
privacy do you have? By entering a public space a person implicitly accepts that he
or she might lose anonymity at any moment and their presence will become known.
But a PED need only be enabled when the possibility of surveillance is real, not at
all times. Without it, if one is indeed surveilled, then not only is location revealed,
but it is now potentially revealed to a much wider audience in a potent, tangible
form (i.e., video).

– Misuse by Authorities
In principle a law enforcement agency could mine the location clearinghouse to
track a subscriber’s movements. But the same is true of other location-sensing sys-
tems (e.g., Enhanced 911, Loopt) or automobile toll or credit card transactions,
though perhaps to a lesser extent.

Cloak can be enhanced in a variety of ways, and some of these approaches can mit-
igate these concerns. For the sake of brevity we will omit an exhaustive discussion of
the many possible system embellishments. To consider one example, however, a PED
device can potentially specify a preferred Quality of Privacy (QoP). Examples of pa-
rameters that can determine service quality include retention time of location data, type
of entity (e.g., person, automobile) to cloak, and the degree of desired video ‘scrubbing.’
Interestingly, the communication loop can be closed; QoP requirements can conceivably
require the surveiller to obtain the explicit consent of the surveilled prior to video dis-
semination. Such an interaction might require the surveilled to examine and authorize



scrubbed content prior to dissemination, or even involve a negotiation of distribution
rights.

3 Analysis and Simulation Results

Suppose there areP people (or objects) traversing the field-of-view of a single camera
in some time interval[t0, t0+D], and exactly one of those people carries an active PED.
The PED reports its location each second, though both its estimate of time and location
may be inaccurate; neither are synchronized with the surveillance system. Suppose a
sanitizer is independently given the PED carrier’s recorded, timestamped path and the
recorded, timestamped surveillance video. Given a large value ofP , how should the
sanitizer correctly pinpoint the PED carrier in the video, and how likely is the sanitizer
able to do so?

Let s(t) be theactual location of the PED at timet with s = {x, y, z}. Let ŝ(t)
be the PED’s own estimate of its location. We will assume that the error in a PED’s
location estimate is bounded at each time instant, i.e.

|s(t)− ŝ(t)| < ε. (1)

For an inexpensive Garmin GPS 18 USB receiver [12], the advertised bound for location
error isε < 3 meters (Wide Area Augmentation Service enabled) andε < 15 meters
(Standard Positioning Service), for 95% of measurements. For simplicity let us first
consider atime synchronoussystem; we assume that the PED’s clock and surveillance
system clocks are perfectly time-synchronized. We will revisit this assumption later.

We will also assume that image analysis enables us to discern the distinct people
(or objects) in a scene, though in general this is not required for sanitization. Letvi(t) :
i ∈ P be the chosen ‘center’ of theith discernible object at timet in the captured
video, wherev = {l,m} is a point in the 2-dimensional image coordinate system. The
sanitizer determines the path (i.e., trajectories) of each discernible object in the video
segment, i.e.,vi(t) : i ∈ P, t ∈ [t0, t0 + D]. The sanitizer also receives theestimated
trajectory of the PED̂s(t) as recorded while traversing the 3-dimensional space in the
camera’s field of view. Using knowledge of the camera location and perspective, the
sanitizer projects that trajectory onto the 2-dimensional image coordinate space, i.e.,

s̃(t) = T [ŝ(t)]. (2)

Hence,̃s(t) represents an approximate trajectory for one of theP objects in the video.
Our objective is to determine to which object the approximate trajectory most closely
corresponds.

To find that corresponding object (i.e., PED carrier) we compare the given approx-
imate trajectory to each of theP object trajectories discerned from image analysis. To
do so we choose to use one of the following two heuristics; either minimize the Mean
Square Error (MSE) or (absolute) Linear Error (LE). That is, we find the objecti such
that
MSE: ∫ t+D

t

|vi(t)− s̃(t)|2dt <

∫ t+D

t

|vj(t)− s̃(t)|2dt (3)



or

LE : ∫ t+D

t

|vi(t)− s̃(t)|dt <

∫ t+D

t

|vj(t)− s̃(t)|dt (4)

for 0 < i ≤ P, 0 < j ≤ P, i 6= j.

We next turn to simulation to determine the probability of correctly identifying a
single active PED amongP discernible objects given a noisy representation of its path.
Since we have assumed that a PED updates its location periodically we model its trajec-
tory in discrete rather than continuous time. Further, since our location-sensing device
is assumed imperfect, we can approximate location (and the projection of location to the
image coordinate system as defined by the transformationT in Eq. 2) as discrete-valued
variables.

Selecting the most appropriate mobility model for simulating the movement of the
P objects in a video greatly depends on where a camera is trained, and the type of ob-
jects in that scene. For example, vehicles photographed passing through a highway toll
booth have relatively predictable motion, while pedestrians in a shopping mall might ap-
pear to move randomly. Further, correlations between the movement of different objects
in a scene can vary greatly. Consider a camera trained on a busy public escalator where
several people in close proximity have roughly the same trajectory – which person is
carrying an active PED, the one just stepping off the escalator or the one immediately
behind?

Recall that theP objects traverse the 3-dimensional volume in the camera’s field-
of-view, and each object’s actual trajectory has an associated 2-dimensional trajectory
in the image coordinate system. Since the transformation from a 3-d trajectory to a 2-d
trajectory is deterministic, we can model object mobility in either coordinate system
with no loss of generality; we choose to model mobility in the simpler 2-d image coor-
dinate system. Note, of course, that a trajectory in image space does not in general have
a unique corresponding trajectory through the volume. A preferred approach would be
to work with 3-d mobility models (or better, to measure actual paths empirically) and
transform those into the 2-d image space.

Object motion can now be represented by a walk on an infinite 2-d grid. To make
matters concrete let’s say that grid points correspond to a separation of 1 meter in the
camera field-of-view, and the camera field has approximately a 10,000 square meter
window (corresponding to grid points [0-99, 0-99]). Such a large, open space might
correspond to the size of an outdoor public park or square.

Now let’s introduce a simple mobility model. Suppose that at timet0 = 0 each of
theP objects enters the grid at locationvi(0) ≡ v(0) = (0, 0); this corresponds roughly
to the entire group entering the field-of-view simultaneously at the same location, as if
entering though a single portal (i.e., hallway or door). Let each subsequent object step be
independent from step-to-step, and independent of every other object step. Suppose that
each object path follows abiased random walkwith the following non-zero transition
probabilities:



p[l + 2|l] = 0.25 p[m + 2|m] = 0.25 (5)

p[l + 1|l] = 0.25 p[m + 1|m] = 0.25 (6)

p[l|l] = 0.25 p[m|m] = 0.25 (7)

p[l − 1|l] = 0.25 p[m− 1|m] = 0.25 (8)

That is, in each step each object moves with equal probability either ahead or backward
1 meter, or ahead 2 meters, or does not move at all, in each dimensionl (horizontal) and
m (vertical).

Observed from directly above, an object traversing a surface under this model could
appear at times to stop, to reverse course, or to vary speeds. The group ofP objects
would appear to be heading very roughly to the same destination, as if the group was
entering a square room at one corner and moving toward the diagonally opposite cor-
ner. Though in principle an object could leave and return to the camera’s field-of view
(possibly multiple times) we will observe objects for a sufficiently long period that tak-
ing this event into consideration is unnecessary. Suppose we consider a time interval of
durationD = 200 seconds (i.e., our observation interval ist ∈ [0, 199]); on average
an object will drift 100 meters both horizontally and vertically during that interval, so a
typical object will appear to move across the camera’s entire field-of-view.

Now let’s explore the effect of a PED’s error in estimating its location on our abil-
ity to correctly identify the PED carrier. We introduce two location error models, each
intended to capture all potential sources of location error. Each model is applied inde-
pendently to each coordinate{l,m} in the 2-dimensional image coordinate system at
each step in the object’s path. For thel dimension we have

Biased Uniform error :

p[|l − l̃| = d] = 1/W d ∈ [a− W − 1
2

, a +
W − 1

2
] (9)

whereW is an odd-valued integer greater than 1 meter, anda is a non-negative integer,
or

‘Worst Case’ error :

p[|l − l̃| = −W − 1
2

] = 0.25

p[|l − l̃| = +
W − 1

2
] = 0.25 (10)

p[|l − l̃| = 0] = 0.5

An identical model is separately written for them coordinate. Our uniform error dis-
tribution has meana (i.e., E[|l − l̃|] = a), permitting us to examine cases where a
PED’s observed location has a fixed offset error (typically of a few meters). We chose
to consider the ‘Worst Case’ error distribution because we anticipated that MSE de-
tection would perform relatively poorly when the maximum location error is realized



in half the location updates, on average. Unless noted, in each of our simulations we
consideredP = 1000 objects traversing the grid, and we present error rates averaged
over10, 000 iterations of200 second walks.

Let’s now determine how well we can correctly identify the single PED carrier as
the location error distribution widthW increases in the absence of bias. Figure 2 shows
that under MSE detection the error distribution width would have to exceed41 meters
before we guessed incorrectly in 10,000 scenes. Similarly, the figure shows no errors
under LE detection withW ≤ 27 meters, though note that the LE detection error rate
climbs much more rapidly than the MSE detection error rate under uniformly distributed
location error. Nonetheless both of these results compare very favorably with worst case
GPS location error (Eq. 1). As we predicted the error rate for the MSE algorithm under
the ‘Worst Case’ error distribution climbs much more rapidly with increasingW than
under the uniform error distribution.
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Figure 3 presents a set of sample paths for a typical iteration of our simulation. Each
black dashed line depicts one of theP object trajectories. For clarity we show only
a randomly selected100 of the thousand object trajectories. The 200 green+ points
indicated the erroneous sequence of locations reported by the PED carrier during the
200 second observation interval when moving under an unbiased, uniform error model
with an error width ofW = 59 meters. Given those locations, the MSE detection



scheme had an easy task of correctly identifying the path corresponding to the actual
PED carrier (highlighted in red). The path highlighted in blue corresponds to the path
among the 1000 that is furthest in distance from the reported trajectory. Remarkably,
despite this noisy path report, the MSE algorithm is able to identify the PED carrier
correctly in 99.75% of the 10000 iterations.
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Next let’s consider how error rates are affected by a fixed offset in location reported
by the PED carrier. For a uniform distribution with a mean ofa meters, we seek the
value of the largest distribution widthW that results in a detection error rate exceeding
1%. Table 1 shows that error rates can climb sharply as this fixed offset climbs; a fixed
offset greatly reduces the location error variability that can be tolerated. In other words,
if a PED carrier is always mis-reporting its location by a few meters, it is increasingly
likely that the detection algorithm will select another trajectory as associated with the
PED, even if the location error variability is shrinking.

Next we consider the effect of the absence of synchronization between a PED’s
clock and the surveillance system clock(s). Figure 4 shows how the detection error
probability varies as we increase both the unbiased uniform distribution widthW and



distribution width (W )
mean (a)LE MSE

4 W < 27 W < 41
3 27 ≤ W ≤ 35 41 ≤ W ≤ 57
2 37 ≤ W ≤ 41 61 ≤ W ≤ 67
1 43 ≤ W < 45 69 ≤ W < 73
0 45 ≤ W 73 ≤ W

Table 1.The mean and width of a biased uniform location error distribution that result in an error
rate higher than 1% for each detection.

the time difference between the surveillance system clock and the PED clock for a
group of100 objects traversing the grid.

Note how the the LE detection scheme degrades relatively slowly as asynchrony
grows from0 to 4 seconds, while the MSE scheme error rate climbs catastrophically
after about2 seconds. For very low timing error (≤ 2 seconds) detection performance
is determined largely by the location error distribution widthW . In a practical system it
appears it would be necessary to ensure that clocks remained roughly in synchrony. In
either case, these observations lead us to speculate that it might be beneficial to develop
a multi-pass detection scheme. In such a system one would perform the first detection
pass under the assumption of synchrony, then subsequent passes assuming growing
asynchrony, searching for the absolute minimum error across all passes.
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What if we increase the number of objectsP to choose from in a scene? Figure 5
shows that under the random walk model the detection performance decreases relatively
slowly as we increase the object density in the presence of unbiased uniform location
error. This too is unsurprising, for if we observe independent walks for a sufficiently
long periodk we expect to be able distinguish between many objects (i.e.,P � 2k).
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Fig. 5.Detection error rate increases relatively slowly with increased object density.

Dropouts, or the loss of location signal acquisition, is a familiar nuisance to GPS
automobile navigation system owners. But dropouts can quickly become a significant
source of detection error when dropouts coincide with surveillance of a PED carrier.
We model this phenomenon as an on-off process where the probability of staying in the
‘connected’ state (i.e, location signal acquired) and ‘disconnected’ state are Bernoulli
processes with probabilitiesα andβ, respectively. Hence the duty cycle, or fraction
of time in the connected state, isD = α

α+β . Let’s make the rather severe assumption
that during periods of disconnection from the location service the PED continues to
report its last known location. Figure 6 shows how the detection error probability can
increase dramatically with decreasing duty cycle. In this example, the mean time spent
in the connected state is8 seconds, and the mean in the disconnected state is8 ∗ ( 1−D

D )
seconds. There are, however, simple ways to make considerable improvements on this
result. For example, one can imagine the PED delaying location reports until the loca-
tion is re-acquired, and then sending a set of location updates estimating its previous
positions (e.g., using linear interpolation between the last known location in the most
recent connection state and the first location in the current connection state).

So far we have limited our attention to models of mobility in which each person’s
movement is independent of every other person’s movement. But in many situations
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one’s motion depends on the motion of others nearby; people traveling together move
in tightly knit groups, and a chain of automobiles stops if one in front stops. Hence we
developed a ‘clustering’ mobility model in which each person’s movement depends in
part on the movement of the PED carrier. The PED carrier effectively serves as the ‘cen-
ter’ of a cluster of sizeP ; those lagging behind the PED carrier increase their ‘speed’
and/or change their direction to catch up, and those ahead slow down. Figure 7 depicts
the effects of both clustering and uniform location error as the error distribution width
W varies. As expected the detection error rate increases when compared to independent
motion. Nonetheless, despite the lower variability of distance between objects detection
performance remains high.

Let’s turn to the technical challenges faced by the sanitizer. Let’s assume a sanitizer
is given a video, a sanitization request, and access to the location database. The task
faced is to jointly satisfy the privacy objective of the surveilled while preserving the
image dissemination objective of the surveiller. Achieving such an outcome can be
relatively trivial, or entirely infeasible.

As an example of the former case, a sanitizer might quickly determine that a video
simply does not include images of the privacy seeker (i.e., a false alarm), or that the
video can be readily ‘cut’ to remove such images. Basic video cuts are easily achieved
with commonly available, open-source video processing tools. At the other extreme,
the sanitizer might quickly determine that the privacy and dissemination objectives are
at complete odds. This would ordinarily be the case for a video taken by a paparazzo of
her targeted subject, if the subject was seeking privacy by carrying a PED.

Somewhere between these two extremes lies the challenge of video obfuscation.
Here we typically wish the sanitizer to obscure only part of a video. Any number of
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obfuscation techniques (e.g., blackout, pixellation) are easily available today in widely
used software tools. Figure 1 provides a simple demonstration of a pixel blurring oper-
ation.

How does a sanitizer know when privacy and dissemination objectives are truly
achieved? One approach might be based on an interactive process of scrubbed video
review by the privacy seeker and video owner. In general, the more information shared
between the parties the higher the likelihood of success. In some cases one imagines
that the sanitizer could serve as a mediator between the parties.

To this point we have considered only fixed surveillance cameras, and we have not
addressed the challenging special case of remotely controlled cameras that offer pan-
ning, tilting and zoom functions. But these cameras only begin to address the significant
challenges we face in striving to support mobile surveillance cameras in the Cloak sys-
tem. In the case of fixed surveillance cameras, we expected each camera to know its
position, and to know the location of objects in its fixed field-of-view. While the former
requirement can be reasonably applied to mobile cameras – at least to the same extent
that location knowledge is expected of PEDs – it is difficult to imagine how the latter re-
quirement could be realized. So instead, let us suppose thateveryPED within a radius
r of an operating mobile camera at each timet is potentially in the camera’s current
field-of-view. That is, we will identify every PED carrier that could possibly have been
photographed by the mobile camera at each instant during the video clip’s duration.

To initiate this process, each surveillance video taken from a mobile camera to be
disseminated is accompanied by the camera trajectory, indicating the camera’s estimate
of its location at 1 second intervals during the filming. Letĉ(t) be the camera’s own
estimate of its location in the filming time interval[t, t + k]. The sanitizer queries the



location clearinghouse to determine if there exists a PED trajectoryŝ(t) satisfying

|ŝ(t)− ĉ(t)| < r (11)

during the interval[t, t + k].
In general this is a significant computational task. Suppose we define a region suf-

ficiently large to enclose the mobile camera during the filming interval. IfN PEDs are
known to be present in that region for all or part of the interval, then a brute force al-
gorithm to identify the subset of those PED carriers who came within distancer of the
mobile camera isO(Nk).

After completing such a task the location clearinghouse has now identified a set of
PED carriers whomightappear in the video. Of course, in many situations almost none
of them will actually appear.

At this point, few courses of action remain open to a sanitizer to respect the privacy
requested by the PED carriers. One approach is to initiate a negotiation with each PED
carrier to privately review the video to confirm that she is indeed not a photographed
party. In the event she is, a manual sanitization would be initiated with her assistance.

Of course, disclosure of the pre-sanitized video to a PED carrier who was not
present in the video introduces a risk of subsequent disclosure (or even dissemination
of the video itself) to a larger audience – exactly what the process is seeking to avoid.
Here, however, we must ultimately rely on the benevolence of the community of PED
carriers to respect each other’s desire for privacy.

Before moving on let’s take a moment to summarize what we have learned in this
section. We have presented a collection of simulations to explore the feasibility of con-
structingCloakusing existing mobile communications, location technologies and video
processing systems. We are keenly aware that each of these technologies is imperfect,
and each can at times perform poorly in the challenging operational settings where we
expect Cloak to be deployed.

Our first concern was maintaining a high PED detection rate given current technolo-
gies that imprecisely measure a carrier’s location. But the results of Figure 2 suggest
that we can use far more imprecise location measurement than is currently widely avail-
able with inexpensive GPS receiver technology. We also showed in Figure 6 that signal
dropouts so common in GPS systems can be tolerated with modest reductions in de-
tection rates, though applying simple location estimation techniques would increase
performance during these dropout intervals.

Figure 3 highlights our considerable ability to correctly pick out a specific PED
carrier even in a crowd of PED carriers moving along a roughly similar course, while
Figure 5 shows that the detection rates remain high even as the size of the crowd grows
to a large size. In both cases, of course, we are relying on the target carrier to remain in
the surveillance camera’s field-of-view for an extended time period, and for the target
carrier to move through the scene largely independently of other carriers. To take mat-
ters a bit further, Figure 7 shows that a target PED carrier can also be readily detected
when moving together in relatively tight clusters of other carriers.

An additional problem we anticipated that motivated our simulations is lowered de-
tection rates caused by the lack of time synchronization between surveillance camera
recording equipment and PED carriers. Figure 4 indicates that even a few seconds off



synchronization can degrade performance considerably, so this problem must be solved
in an actual system. One approach is to enhance existing surveillance recording systems
by providing them with the same clock source used by PED carriers. An alternate ap-
proach might involve using a different but relatively accurate time source, such as the
Network Time Protocol. Both of these approaches suffer from the need to supplement
existing surveillance recorders with new, more accurate time sources. In both cases to
maintain the highest detection rates it might also be desirable for a sanitizer to use
a more sophisticated, multi-pass detection algorithm which presumes imperfect time
synchronization between recorder and PED carrier.

It is important to note that we have made a large number of assumptions in de-
veloping our simulations, and we have yet to address a number of easy-to-anticipate
real-world considerations. As a simple example consider the variety of problems that
we have yet to confront with even well-engineered, fixed-mount camera installations:
scenes are typically viewed obliquely rather than from above, camera mounts might tilt
and sag over time, scene lighting changes over time, objects occasionally block scene
elements, etc.

In summary, our simulations give us confidence that a number of potentially signifi-
cant barriers toCloak’sfeasibility appear to be surmountable. While this is considerably
short of an assurance of a practical system, it does encourage us to take the next step in
our investigation – creation of a small-scale experimental prototype for laboratory and
field evaluation.

4 Related Technologies

The automated analysis and processing of surveillance video is a central area of study
for the computer vision and pattern recognition research community. IBM researchers
have developed thePrivacy Camera[16], an intelligent camera, or more precisely, a
camera connected to a computer that performs real-time video analysis. The camera
edits out certain pre-determined video content such as a person in a scene. Though
both Cloak and thePrivacy Cameraeffectively sanitize video, it is worth noting the
differences between them. Our system does not edit video in real-time, yet it is designed
to sanitize any video produced by any camera. Our video editing is driven by object
trajectories; the objects themselves can be of arbitrary type and are not known a priori.
We do not rely on information about a scene or objects in a scene. Indeed, in our work
we have sought to deemphasize computationally intensive video processing, preferring
to rely on positional information rather than information in the video itself. To our
disappointment our research has uncovered relatively little work on mobility modeling
for people or objects, and this appears to be a fertile area for future research [14], [15].

Intelligent mobile peer-to-peer systems are also an emerging technology that can
either amplify or further threaten surveillance privacy.Smart Camera Networkssuch
asFacet [27] create networks of cooperating mobile phone cameras. Though the in-
tent of this system is to create composite images, they make use of location data of
network participants, and may serve as a foundation to help Cloak address non-fixed
surveillance systems. But these networks also bring the challenge of addressing the
unanticipated problem that surveillance videos can be dynamically stitched together to



form composite surveillance video. This raises some very intriguing questions about
ownership of derived and/or synthesized surveillance video which is well outside the
scope of our study.

Technology useful in video sanitization is also advancing quickly. In particular,
emergingin-painting [23] techniques promise to permit sanitized videos to appear un-
sanitized. This is achieved by not only removing objects but synthesizing perceptually
plausible filler for the sanitized pixels.

Location-based services are also taking rapid hold, in part due to technological ad-
vances in GPS receivers and the application of wireless internet and cellular telephone
technology to the development of ‘social networks’. Personal location ‘sharing’ ser-
vices such asLooptgo to some effort to distance their service offerings from ‘tracking’
services, as used to manage commercial vehicle fleets. Fortunately, as location services
have evolved so have efforts by standards bodies to securely process networked location
information to protect the privacy of participants; much of the work on protocols, pri-
vacy preference specifications, threat analysis and location data formats developed by
the IETFGeoprivWorking Group [24] would be directly applicable in the deployment
of a location clearinghouse for Cloak.

Video privacy and surveillance is also a subject of considerable interest in the le-
gal, political science, and social science research communities. Interested readers are
strongly encouraged to examine the seminal privacy treatise by Warren and Brandeis
[25], which serves as a foundation for current privacy law. This work anticipated the
erosion of privacy due to advancing technology, correctly predicting the need for on-
going expansion in privacy law, and the article holds up astonishingly well more than
a century after it was written. But despite their insight, the authors could not possibly
have anticipated the degree to which technology has outpaced law, particularly in just
the last decade. Fortunately, there are a growing number of research groups focusing
on the intersection of technology, society and privacy. TheSurveillance Project[22] at
Queen’s University is another resource available to those interested in studying various
aspects of video privacy.

Cloak invites immediate analogies with the ”National Do Not Call” registry [28]
as implemented for telephone solicitation call blocking. The systems are similar in that
users must opt-in to assert their privacy preference. Both systems are designed to dis-
courage rather than impede an action by an unknown and frequently unwanted third
party. Social and legal frameworks must be established to ensure compliance, which
must be monitored and enforced. Of course, a surveilled party may be entirely unaware
of surveillance and has no recourse to ‘hang up’ or ‘not answer’ or even review ‘caller
identification’.

An important distinction between Cloak and Do Not Call is that the former ad-
dresses privacy in public settings, while the latter was motivated in part due to what
was viewed as an intrusion into the home. But mobile phones may be registered in Do
Not Call. While this practice seems consistent with the mission of the registrar, the
Federal Trade Commission, which is chartered to protect consumers (not homeown-
ers), the registry can be arguably viewed as a precedent for a widely accepted [29]
government-sponsored system to protect unwanted technological intrusions in both pri-
vateandpublic places.



5 Technology and Privacy Law

The near absence of privacy rights for individuals in public spaces ensures that any
primer on privacy law be brief. Unlike many countries – particularly in Europe – there
is no explicit right to privacy guaranteed by the US constitution. Yet a vast incongruity
exists between reality and perception; many citizens believe that legal protections to
privacy exist that simply do not. Perhaps even more revealing is the lack of a high-
level federal government privacy advocate. In Canada, for example, the mission of the
Office of the Privacy Commissioner is to ”protect and promote the privacy rights of
individuals.”

Video surveillance is closely tied with the concept ofterritorial privacy; that is, the
fact that our assumption of privacy varies with place. Clearly, one expects a greater de-
gree of privacy in one’s home than in more public settings. This distinction was upheld
by US courts in the case of Katz vs. United States, 389 U.S. 347 (1967), which estab-
lished that the Fourth Amendment provides privacy protections in places where a person
has a reasonable expectation of privacy. At the same time, courts have supported public
video surveillance by policing agencies as a legitimate means of protecting citizens. A
person has no reasonable expectation of privacy when entering a crowded public space.
Yet some people cherish the relative public anonymity that a dense urban setting can at
times provide, suggesting that the notion of privacy in public might be desirable if not
achievable.

Privacy rights also vary with the type of surveillance media. Audio communications
are subject to Title 1 of the Electronic Communications Privacy Act (1996) [16 U.S.C.
Section 2510] requiring warrants for audio ‘wiretapping’. Video surveilling is under no
such constraint, and consequently existing public surveillance systems are video-only.
We must await future court rulings to determine if objects containing sensitive infor-
mation (e.g., credit card, driver’s license, medical report) are granted any photographic
protections.

Perhaps the most shameful demonstration of one’s inability to assert one’s privacy
in public is the street battle routinely waged between celebrities and paparazzi. In each
encounter a photographer exploits the absence of their subject’s public privacy, and the
subject at best feebly indicates their preference for no photography. In the absence of
a clear and unambiguous ability to assert one’s preference and have it respected, the
occasional result is a public skirmish. Both parties invariably believe that they are in the
right. The subject believes in his or her ”right to be left alone”, while the photographer
insists that any subject in public is ‘fair game’ and anything less is an assault on their
livelihood.

The fundamental problem here, of course, is the inability (i.e., lack of protocol) for
one to express one’s preference and have that preference respected. In the absence of
such a protocol, certain lawmakers have begun to contemplate the flawed notion of a
physical ‘privacy zone’ associated with individuals in public spaces [18].

Indeed, technology appears to be rapidly blurring what we traditionally think of as
a well-defined line between public and private space. For example, use of a public side-
walk access Automatic Teller Machine (ATM) may arguably constitute a private trans-
action occurring in a public space, as may be a credit card exchange with a street vendor.
Recent incidents have raised questions about the intrusiveness of Google’s Street View



video mapping service [19]; we are left to consider the possibility that the ‘line’ will be
redrawn by technological advances, not by social consensus.

6 Conclusion

We have discussed a novel combination of mobile communications and navigation tech-
nology to permit individuals to assert a preference for privacy from video surveillance.
We know of no other active research program that shares the ambitious agenda to uni-
versally supplement today’s surveillance systems with privacy enhancing technology.
Our simulations demonstrate that an individual’s privacy can be protected even in the
face of the many sources of error we expect to encounter in a deployed system. Though
our investigation remains at an early stage – particularly in understanding its applicabil-
ity to the rapidly growing number of mobile camera phones – our initial work suggests
that there are no significant technical barriers to large-scale system deployment. How-
ever we have relied very heavily on simulation, and have made a large number of simpli-
fying assumptions that we would not expect to hold in practical settings. Nonetheless,
we are delighted by the promising early results, and the next step in our investigation
will be to gather empirical evidence with a small-scale prototype.

Today’s surveillance systems are rather primitive, technically unsophisticated tools.
But with anticipated advances in technology we expect this to change. We believe that
if individuals were aware of the extent that they are surveilled, and had the option to
protect their images from distribution, that many would choose to do so.
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