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Abstract
Programmers wishing to obtain the best possi-
ble performance from multi-threaded software on
parallel hardware must often understand detailed
architecture-level interactions. Visualizations based
on execution traces are often useful in gaining such
understanding. Previous visualization tools have
used traces from actual executions. We have ex-
perimented instead with visualizations based on
traces from cycle-level simulations; while this ap-
proach imposes significant performance penalties,
it exposes thread behavior, architectural events, and
inter-thread interactions in minute detail unavailable
via other means. We describe experiments with a
prototype of our tool on several simple applications
and on kernel code, and sketch the design of a us-
able tool.

1 Introduction

Multicore systems create the need to improve
the performance of multi-threaded, shared-memory
parallel programs. Optimizing the performance
of these applications can be quite difficult, and
low-level architectural interactions can create un-
expected performance problems. Most program-
mers have a hard time understanding the nature and
causes of these interactions.

Parallel programmers can gain insight into the
behavior of their software through visualization
tools, many of which have been described in prior
work [4, 5, 6, 7, 8, 9, 12]. However, these tools
have not been able to directly display the fine-grain
interactions, such as cache conflicts and lock con-
tention, that can define the performance of a paral-

lel program. While some tools (e.g., DCPI [2]) have
been able to infer the likelihood of cache misses af-
flicting a specific static instruction or line of code,
inferential techniques have their limits: inferences
can be inaccurate, and can still require significant
guesswork on the part of the user.

We have developed an approach that allows us
to directly visualize the detailed architecture-level
interactions between threads in a parallel program.
We can display the execution of a single iteration
of a function or loop body (although, of course,
real performance problems come from frequently
repeated iterations). We can show when cache
misses, memory barriers, or other stalls afflict the
program’s performance. We can also show how op-
erating system execution interacts with user-mode
applications, and our approach allows us to visual-
ize operating system behavior just as easily as user-
mode behavior – a significant benefit, given that the
OS on multicore hardware may be the most critical
parallel program that many users encounter.

Unlike previous approaches, which monitor the
execution of programs on real hardware, our tech-
nique uses detailed traces generated by a cycle-
accurate simulation. Accurate simulation has its
costs, most obviously in the enormous slowdown
it imposes, but it provides arbitrarily detailed vis-
ibility, and avoids having to solve the problem of
synchronizing multiple traces.

We did not develop this technique for understand-
ing the overall performance of a complex applica-
tion; it is for zooming in on a “kernel” of an appli-
cation, once it has been identified by other analyses.

In this position paper, we describe our approach
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and show examples of how it can visualize behavior
on several toy programs. We also describe how we
have used it to understand and improve the perfor-
mance of complex Linux scheduler code in a multi-
core system.

Note that we have not actually built a fully-usable
tool based on this approach. Instead, we describe
the features that such a tool might offer, and we dis-
cuss some of the challenges and drawbacks of our
approach.

2 Related work

Numerous papers have addressed visualizing the
structure and performance of parallel and dis-
tributed systems (e.g., [6]). Most of these papers fo-
cus on the overall behavior of a system, rather than
fine-grained interactions between threads. Often,
the goal has been to guide programmers in allocat-
ing work to processors. These visualizations have
typically shown overall execution statistics, or time
series sampled at relatively coarse intervals (for ex-
ample, [7]).

Some prior work has visualized the timelines of
threads interacting at the level of messages [5, 9]
or pthreads calls [12]. In these systems, the goal
is often to understand the communication patterns,
with the aim of either changing work placement or
reducing communication in other ways. These ap-
proaches typically work by instrumenting signifi-
cant library calls (e.g., for message operations), or
sometimes by instrumenting the application code
directly.

Our approach is distinct from previous work in
that we focus on the finest-grain interactions be-
tween threads in a shared-memory system, and be-
tween threads and the underlying hardware architec-
ture. However, we recognize that much of the prior
work on parallel-program visualization techniques
in general (e.g., [4, 8]) is applicable to fine-grained
interactions.

3 A simulation-based approach

The basic outline of our approach is simple: we run
the application of interest (along with a real oper-
ating system) on a cycle-level simulator, using de-
tailed models of the target hardware. The simulator

generates a detailed execution trace, including in-
struction addresses, data addresses, cache and bus
events, etc., with fine-grained timing information.
We then distill the events of interest to the program-
mer, and present them as a timeline graph.

Architecture researchers have developed a num-
ber of cycle-level simulators. We use M5 [3], which
supports the execution of the entire system, in-
cluding operating system code (a slightly modified
Linux 2.6.18) and models of network and disk de-
vices. Since M5 support for x86 CPUs is not yet
fully debugged, we have used its Alpha CPU mod-
els, but our approach should apply to any architec-
ture.

M5 supports a variety of core and cache mod-
els of various complexities, and allows the user to
specify various speeds, cache sizes, and core counts.
While this flexibility imposes some extra work on
the user, it also allows what-if analyses – for exam-
ple, will my parallel application run well on a wide
variety of systems, including some that might not be
available for a few years?

3.1 Trace generation

Once the simulated hardware has been defined, the
user can compile the application of interest and in-
stall it on the simulated system. In our setup, we
simply copy the application binary to a disk im-
age that is read by the operating system running on
the simulated system, as well as a script to invoke
the application once the simulated Linux system has
booted.

Booting an operating system using a cycle-level
simulator can take a long time, so M5 supports
lower-fidelity (but faster) simulation modes. M5 al-
lows us to boot the system and start the application
in a fast-simulation mode, then checkpoint the sys-
tem state; we can then start a new, cycle-level sim-
ulation from the checkpoint, so that only the inter-
esting part of the application suffers the worst slow-
downs. Checkpointing is easy; the programmer in-
serts an m5 checkpoint library call, which issues a
special machine-code instruction telling M5 to emit
a checkpoint.

Events traced: Since a cycle-level simulator
can have arbitrarily accurate models of the hard-
ware, it can trace essentially any interesting archi-
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tectural event. Our raw traces are text files with one
line per event, timestamped with picosecond resolu-
tion. Events include instructions executed, showing
the PC and memory addresses referenced (if any),
memory barriers, and all cache misses. We do not
explicitly trace TLB misses and interrupts, but these
are implied by the kernel functions they invoke.

We then convert these raw traces to XML, to
make post-processing easier. Each sequence of in-
structions is represented as an XML element, which
includes a timestamp, the function name, execution
duration, and timestamped sub-elements for each
interesting event such as cache misses. We also note
“long-latency instructions” (those that take over N

cycles; we use N = 100).
Converting addresses to names: Users need

symbolic names to make sense of the visualizations.
We convert a PC value to a function name+offset by
searching the symbol table for the highest-valued
text-segment symbol less than or equal to the PC.
M5 already has access to the kernel’s symbol ta-
ble. Currently, we add application symbols using
a script that runs the nm command to get symbols,
then translates all traced PCs within the range of
these symbols. This hack works only for one ap-
plication per trace. It should be simple to modify
M5 to load all application symbol tables (assum-
ing these are not “stripped”) and to translate a pro-
cess’s address using the right symbol table, since
M5 already knows which Linux process is running
on each CPU.

Inferring calls and returns: Currently we detect
calls and returns when the function name changes.
We keep a stack of these names, and if we start
executing in a function whose name is already on
the stack, we treat this as a return and pop the
name; otherwise, it must be a call, and we push the
name. This hack would not work for recursive func-
tions, so we intend to re-implement this feature us-
ing M5’s existing mechanism for parsing the stack
into frames, which would directly provide the stack
level. (Correctly determining the stack level in the
presence of non-local gotos, etc., can be challeng-
ing.)

Tracing more events: It would not be difficult to
add other interesting events to the trace, such as ac-
cess to named global variables (including offsets for
structure fields or array elements), and other archi-

tectural events, such as lock attempts, lock grants,
unlocks, and power-state transitions.

It might also be possible to trace access to
dynamically-allocated variables of a given type, if
the language runtime provides appropriate cues.

3.2 Trace visualization

We visualize traces as plots of thread timelines, with
time on the x axis and call-stack depth on the y axis.
For each thread, we represent its timeline with a
unique color, and we label function call points with
the name of the functions. Interesting events, such
as cache misses, are marked on the timelines. Fig.
2 shows an example; we will describe the details of
this example in sec. 4.

Currently, we process the XML trace into gnu-
plot commands, which gives us the ability to create
PostScript (PS). files. Unfortunately, these output
files are huge, and the PS visualization tools do not
let us search for a particular function name. We end
up searching the XML files to find events of interest,
then we re-generate the image file with timestamps
limited to a window around the interesting events.
This is tedious and error-prone.

We would like, instead, to have an XML-driven
browser that allows us to zoom and pan on the trace
visualization; to search for specific events (such as
function names, variable accesses, or architectural
events such as L2 cache misses); and to selectively
suppress details such as the names of boring func-
tions. The browser should also provide “calipers” to
allow fine-grained measurements of time intervals,
and could allow “diffing” of the fine-grained behav-
ior between two traces. But this is definitely future
work.

3.3 Automated analyses

Our current visualization approach depends greatly
on the user’s understanding of the software and
hardware, and ability to form mental images.
For example, the causal relationship between two
threads competing for a lock might jump out at
one user from the visualization, while another user
might puzzle over the same image trying to figure it
out.

A trace browser could provide relatively simple
automated analyses to help the user. For example, it
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should be possible to match up all events (in various
threads) corresponding to a given lock address, and
to display a simplified timeline showing how the
threads contend for the lock. It should also be possi-
ble to match up references from multiple CPUs that
are causing cache-coherency misses. (The DCPI
tool [2] made similar kinds of inferences for events
local to a single thread.)

4 Experiments with simple programs

We created two toy programs to illustrate our visu-
alizations:
• ping-pong: two threads repeatedly access the

same cache line. The (senderThread) sets a word
to 1 (in a function called setSharedVar) and polls
it until it becomes 0; the (listenerThread) poll-
waits for it to become 1, then sets it to 0 (in a
function called clearSharedVar). We put a func-
tion call in each inner loop to make the timelines
more readable.

• spin: N threads set up as pairs of producer-
consumer bucket brigades, using pthreads spin-
locks to protect the queue between each pair of
threads. (For simplicity, we show results for N =

2.) After a thread passes along an item (in a
function called move) it does a modest amount of
arithmetic (in a function called called compute)
before iterating.

Each thread was pinned to a dedicated core in a 2-
core system; we modelled “EV6-like” cores with
per-core L1 caches and a shared L2 cache.

Figs. 1 and 2 show snippets of the timelines for
ping-pong and spin, respectively. The stack-level
values are arbitrary, and are offset somewhat to sep-
arate the threads vertically. The boxes at the bottom
of each figure show the key; a square on the time-
lines means the thread had an L1 dcache miss, and
stars show long-latency instructions (“lli”). We also
mark memory barrier (MB) instructions (“#mb”)
explicitly. (No L2 or L1 icache misses happened
during these snippets.)

Fig. 1 (ping-pong) shows simple behavior; each
thread experiences a series of L1 dcache misses
while it polls the variable waiting for it to change.

Fig. 2 (spin) shows more complex behavior. The
bottom timeline (core=0) shows a complete itera-
tion of the inner loop. It is easy to see the lock

and unlock operations (note that the move func-
tion takes and releases two locks, but only one of
these is shared between the two threads pictured; the
other lock is not necessary in the two-thread case).
One flaw in our current visualization is that func-
tion names are placed exactly at the time that a call
is made, which causes labels to overlap; a better la-
bel placement algorithm would dither these.

Fig. 2 also shows that each pthreadSpinlock and
pthreadSpinUnlock issues an MB, some of which
cause long-latency instructions in all threads, and an
MB in pthreadSpinUnlock appears to cause multi-
ple L1 dcache misses in pthreadSpinLock. This
kind of effect would be impossible to see with other
tools.

5 Experiments with kernel code

The experiments described above show timelines
for artificially simple programs. We initially devel-
oped our approach to solve real problems we faced,
during our work on Linux modifications support-
ing fast switching of threads between cores [11].
Because those modifications involved the kernel
scheduler, they were especially difficult to debug.

Fine-grained visualization (the pictures are too
complex to show in the available space) allowed us
to solve a number of performance problems, includ-
ing:
• Increasing inter-core parallelism: Our code on

one core sometimes needed to wake up another
core from a powered-down state. We reduced
overall latency significantly by “prefetching” this
wakeup; our visualization allowed us to see that
this actually led to the desired parallelism.

• Removing unnecessary code from a fast path:
Rather than removing all of the code that we
thought might be unnecessary, risking the intro-
duction of subtle bugs, we found a few functions
that consumed a lot of time, and removed them
first.

• Replacing inefficient code: Linux was using a
very inefficient mechanism, which was obscured
by deep layering of simple functions, to decide
which core to send an interprocessor interrupt to.
One layer created a bitmap with just one bit set;
another layer then spent much time figuring out
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Figure 1: Partial timeline for cache-line ping-pong program
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Figure 2: Partial timeline for spin lock program (Sorry: our automatic label placement is not very smart!)

which bits were set. Our visualization made this
obvious.

In this work, we wondered whether some of our la-
tency could be caused by excessive cache misses
due to sharing of scheduler data structures between
cores. Our visualizations revealed that this was not
a problem, saving us the trouble of trying to experi-
ment with different algorithms and data layouts. (As

we make this code more “sophisticated,” we may
have to revisit this issue.)

6 Challenges and Drawbacks

While we have already found simulation-based vi-
sualization to be a powerful tool in performance de-
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bugging for parallel software, we realize that the ap-
proach has its challenges and drawbacks.

Simulation overhead: Simulators are slow.
Cycle-level simulators are very slow. For example,
an M5 simulation of a two-core system running the
Apache server, on a quad-core 2.8 GHz Xeon took
24660 elapsed seconds for 0.466 simulated seconds,
a slowdown of about 53000:1. If one can restrict
the fine-grained simulation to a specific inner loop,
as we did for ping-pong and spin, simulations can
finish much faster.

M5 simulates parallel systems, but currently is
singled-threaded with one event queue. An upcom-
ing version of M5 will exploit parallel hardware,
with one event queue and thread per real core, using
known techniques [10] to maintain causality. This
should allow simulation speed to scale up on mod-
ern CPUs.

Our approach also generates huge trace files. For
example, our fine-grain simulation of spin cover-
ing 157 simulated microseconds took 35.4 real sec-
onds and generated a 8.2 MByte raw trace file and
a 6.3 MByte XML file. (Also, our unoptimized
Python script takes lots of CPU time to parse the
raw trace files when generating XML.) Eliminating
excess trace detail and using a better intermediate
representation, such as DataSeries [1], could reduce
trace size and processing time.

Simulation fidelity: Ultimately, programmers
want to know how their software runs on real hard-
ware. Our approach is useful only if the simula-
tion is reasonably faithful. Simulators are complex
beasts, and models for modern CPUs are also quite
complex. While simulator developers take pains to
validate their models against reality, there will al-
ways be gaps. Simulator developers don’t model
details they don’t expect will be used, and so appli-
cations that encounter these corner cases will suffer
inaccurate simulation.

These simulation gaps also mean that simulators
are fragile, since someone is always trying to im-
prove the simulator or its models. Our experience
is that “simulation rot” sets in within a few months;
experiments that used to work now require debug-
ging. When simulators break, the average program-
mer can’t debug them.

Simulator usability: Running applications on
a simulator adds complexity. One has to work in

a different execution environment, possibly requir-
ing minor changes to program sources or makefiles.
Simulators have lots of configuration options. And,
of course, time dilation means that the user has to
be very careful about what parts of the program run
during cycle-level (as opposed to behavioral) simu-
lation.

Simulators could be more usable (for example,
VMware Player resembles a simulator in many
ways, and it is fairly usable), but the market for sim-
ulators does not support the large programming ef-
fort to make them really usable.

Information overload: The biggest benefit of
our approach, extremely fine-grained information
about the interaction between threads and the hard-
ware, is also a curse. Programmers trying to under-
stand the performance of their code have to wade
through an overwhelming amount of data. It helps
to have both a good search strategy and some in-
spired guesses about where to look for problems; it
also helps to have a good eye for red herrings in the
data.

A trace browser clearly needs to provide power-
ful, efficient tools for searching through the trace,
probably including some way to look for patterns
of the form “L2 cache miss during function X” or
“spin-lock acquisition delay of more than 1000 cy-
cles during function Y.”

Finally, we have tried out our approach only on
systems with just a few cores (parallel threads). We
expect it will be difficult to extend this kind of vi-
sualization to applications with dozens of threads or
more.

7 Summary

We have found simulation-based visualization to
provide unique and valuable views of the fine-
grained behavior of parallel software, even in our
current crude implementation. We expect it can be
vastly improved.
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