

Keyword(s):

Abstract:

©

Solving the Transitive Access Problem for the Services Oriented Architecture

Alan H. Karp, Jun Li

HP Laboratories
HPL-2008-204R1

SOA, web services, access control, RBAC, PBAC, ABAC, ZBAC

A key goal of the Services Oriented Architecture is the composition of independently written and managed
services. However, managing access to these services has proven to be a problem. A particularly difficult
case involves a service that invokes another service to satisfy an initial request. In a number of cases,
implementations are able to achieve either the desired functionality or the required security, but not both at
the same time. We say that this service composition suffers from the transitive access problem. We show
that the problem arises from a poor choice of access control mechanism, one that uses authentication to
make access decisions, and that the problem does not occur if we use delegatable authorizations.

External Posting Date: November 21, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: November 21, 2008 [Fulltext]

Submitted to ACM Symposium on Access Control Models and Technologies, Stresa, Italy, June 3-5, 2009

Copyright 2009 Hewlett-Packard Development Company, L.P.

Solving the Transitive Access Problem

for the Services Oriented Architecture
Alan H. Karp

Hewlett-Packard Laboratories
1501 Page Mill Road
Palo Alto, CA 94304

650-857-3967

alan.karp@hp.com

Jun Li
Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304

650-857-4087

jun.li@hp.com

ABSTRACT

A key goal of the Services Oriented Architecture is the composi-

tion of independently written and managed services. However,

managing access to these services has proven to be a problem. A

particularly difficult case involves a service that invokes another

service to satisfy an initial request. In a number of cases, imple-

mentations are able to achieve either the desired functionality or

the required security, but not both at the same time. We say that

this service composition suffers from the transitive access prob-

lem. We show that the problem arises from a poor choice of

access control mechanism, one that uses subject authentication to

make access decisions, and that the problem does not occur if we

use delegatable authorizations.

Categories and Subject Descriptors

K.4.4 [Computers and Society]: Electronic Commerce - Security

H.3.5 [Information Storage and Retrieval]: Online Information

Services - Web-based services

General Terms

Security

Keywords

SOA, web services, access control, RBAC, PBAC, ABAC, ZBAC

1. INTRODUCTION
The Services Oriented Architecture (SOA) promises large gains in

productivity by providing a means to assemble independently

written and managed web services to satisfy a request. These

gains have yet to be achieved, in part due to problems with con-

trolling access to the services. A particularly difficult case occurs

when an invoked service invokes another service to satisfy the

initial request. This paper describes an approach to solving this

problem that satisfies both the desired functionality and security

requirements while conforming to the web services standards.

A real-world example of this problem comes from the Consolidat-

ed Afloat Network and Enterprise Service (CANES) program of

the US Navy [27]. The goal of CANES is to standardize on a

common set of hardware for all ships and unify software around a

set of SOA based services.

Figure 1 shows a version of an important use case taken from the

Net-Centric Enterprise Architecture specification [8] developed as

part of CANES. The End User is in the battlefield with a machine

that is not fully trusted because it is subject to loss, destruction, or

capture. The component denoted “Mars Portal” runs in a more

trusted environment and creates process denoted “WS Client” to

act on behalf of the user.

In this scenario, the user, who we call Alice, is requesting a

weather forecast for her ship. Her request goes to a Forecast ser-

vice that is responsible for identifying the appropriate weather

service to use. For example, Forecast may select a US service for

predictions for the eastern Pacific or a UK service for a ship in the

eastern Atlantic. The Forecast service then invokes the Weather

service.

The transitive access problem arises because we have to decide

which credentials get used when the Weather service is invoked.

If we use the Forecast service’s credentials, Alice might ask for

something that the Forecast service is allowed to do but Alice is

not, which makes the Forecast service a Confused Deputy [18].

We can address this problem by having the Weather service only

accept requests signed by Alice, but that limits the value an inter-

mediate service can add. If we use Alice’s credentials, the Fore-

cast service could ask for something Alice is allowed to do but

doesn’t want done. In other words, the Forecast service is able to

impersonate Alice. We can address that problem by making the

Forecast service fully trusted. With this approach, every service

in a chain must fully trust every downstream service, even servic-

es it has never heard of. It’s hard to argue that this large a viola-

tion of the Principle of Least Privilege [34] meets any reasonable

definition of security.

These issues have been observed in practice. For example, in a

Limited Technical Experiment (LTE) completed in February of

2008, civilian employees of the US Navy implemented a variation

of the use case in Figure 1 and found that they could have either

the desired security or the required functionality, but not both at

the same time.

Although SOA is a framework that can be implemented using

many different technologies, here we will consider only ap-

proaches based on the web services standards, SOAP for message

transport, WSDL to specify the service interface, UDDI for ser-

vice description and discovery, and SAML [30] for communicat-

ing security related information, all of which are expressed in

Submitted to ACM Symposium on Access Control Models and

Technologies, June 3-5, 2009, Stresa, Italy.

XML. SAML is the most relevant of these here because access

control is the focus of this paper.

A SAML assertion specifies a subject and the information being

asserted, which is any combination of identity, attributes, and

authorization. These assertions should only be accepted as valid

if issued by a trusted source and submitted by the designated sub-

ject. In our examples, we verify the issuer’s signature on the as-

sertion and the submitter’s proof of knowledge of the private key

corresponding to the public key in the <Subject> field of the as-

sertion.

The implementation for the CANES LTE was based on the Tran-

sited Provider pattern of the Liberty Alliance SAML Profile [19].

As illustrated in Figure 2, Alice presents her authentication to a

trusted third party (TTP), which returns a SAML identification

assertion. She constructs a SOAP message with this assertion in

the header and a SOAP body specifying her request. She then

signs the entire SOAP message and sends it to the Forecast ser-

vice.

The Forecast service verifies the signatures on the SOAP message

and the identity assertion and makes an access decision based on

the specified identity. If access is allowed, the Forecast service

sends its authentication information to the TTP asking for a Tran-

sited Provider assertion, such as

<TransitedProviderPath>

 <TransitedProvider>

 http://www.canes.gov/Forecast

 </TransitedProvider>

</TransitedProviderPath>

This assertion is not strictly required in this simple case because

the Weather service is able to identify the Forecast service from

the signature on the request. The Transited Provider assertion is

needed for a longer chain, in which case an entry is added to the

<TransitedProviderPath> for each additional service in the chain.

The Forecast service constructs a SOAP message, the body of

which specifies its request and a header having both Alice’s iden-

tity assertion and its Transited Provider assertion. The Forecast

service then signs the SOAP message and sends it to the selected

Weather service. The Weather service uses both the Alice’s iden-

tity assertion and the Forecast service’s Transited Provider asser-

tion to make an access decision.

The Liberty Alliance documentation doesn’t say how the Weather

service should use those authentications to make that decision. An

approach proposed for DCE [11] is one possibility. If the Weath-

er service uses only the Forecast service’s authentication, the

Forecast service can become a confused deputy. If the decision is

made based on Alice’s authentication, then the Forecast service is

able to use or abuse any of Alice’s permissions. In the cited LTE,

the implementation used the union of these sets of permissions,

which has both of these vulnerabilities.

The scenario in Figure 1 is both too complicated and too simple

for our purposes. It is too complicated because there are a large

number of components to consider, most of which are not relevant

to the transitive access problem. The use case is too simple be-

cause it involves only participants belong to the same security

domain. Often, there will be two or three different organizations

involved, a circumstance that only makes the trust assumptions

more critical. More importantly, the use case doesn’t capture the

power of SOA because it doesn’t involve passing references to

services as parameters or returning a service reference.

This paper is organized as follows. In Section 2, we’ll introduce

an example that captures the issues faced by those implementing

the CANES use case without extraneous components and that

extends the example to include passing service references as pa-

rameters. Implementations of the CANES use case to date have

based access decisions on the requester’s authentication. Section

3 describes a number of security weaknesses of this approach.

Section 4 describes these implementations and why they failed to

achieve their goals of security or functionality. In Section 5, we

introduce an access control approach based on explicit, delegata-

ble authorizations. Section 6 describes implementation strategies

and how we apply that strategy to the use case. Section 7 de-

scribes how we avoid inadvertent violation of access policies, and

Section 8 describes related work.

Figure 1. CANES use case showing service chaining.

2. SCENARIO
While the CANES example comes from a real deployment, it does

not show the full range of access control issues that arise in ser-

vice composition. The very simple set of services shown in Fig-

ure 3 captures the essential requirements.

Bob offers a Backup service with a backup method having a sig-

nature

ServiceRef backup(ServiceRef inRef)

where ServiceRef is a type used to denote any kind of invocable

web service. For example, this type would be EndPointReference

in WSRF [17]. A program running on Alice’s behalf invokes this

service

ServiceRef bRef = b.backup(fileRef)

Here fileRef is a reference to a service provided by Alice that re-

turns the contents of a specific file, and bRef is a reference to a

service that will hold the backup copy. Bob implements his back-

up method by invoking a copy service offered by Carol, which is

implemented as

 void copy(ServiceRef inRef,

 ServiceRef outRef)

 { outRef.write(inRef.read()); }

Bob’s backup method’s invocation of this service is

c.copy(fileRef,outRef)

Bob passes the reference he got as fileRef from Alice and a refer-

ence to a service that will hold the copy as outRef. Alice will get

outRef as her return value.

This very simple example has many features of real web services

composition. Services invoke other services, and services take

references to other services as parameters. It is this last feature

that is missing from the CANES example. Further, it may not be

possible to change the service implementation. For example, we

might want to change Carol’s service to take the bits representing

the files instead of references to services that provide them, but

we must be prepared to deal with legacy applications.

In what follows, we will look at the consequences of various

choices Alice makes for fileRef and Bob’s service makes for out-

Ref to see why such scenarios are so hard to deal with. Figure 4

shows a representation of the access policy as an access matrix

[22], which shows the resources and principals. In this case, we

see that Alice has permission to use inRef, while Bob and Carol

have permission to use outRef. In what follows, we’ll look at the

implications of different choices for these permissions. First,

though, we will examine the most widely used access control

mechanisms.

3. AUTHENTICATION-BASED CONTROL
The conventional approach bases the access decision on authenti-

cation of the subject presented with the request. The most com-

mon credential specifies the identity of the requester. We use the

term Identification-Based Access Control (IBAC) to describe this

approach. Each service keeps an access control list (ACL) speci-

fying which operations each principal may use. One problem

with this approach is that all those lists need to be updated each

time a user’s rights change. Coordinating those changes is diffi-

cult [32], especially across organizations.

Role-Based Access Control (RBAC) [13] was designed to address

this problem. The ACLs list roles instead of, or in addition to,

user identities. Users are assigned roles. When a user changes

jobs, some other user is allowed to take on that role. No ACL

changes are needed. Of course, sometimes only a few of the us-

er’s rights change. In that case, a new role needs to be introduced.

Often the rights associated with a role depend on which user is

acting in that role. In that case, too, a new role needs to be intro-

duced. Also, all organizations need to agree on the rights asso-

ciated with each role. Even small differences require the intro-

duction of even more roles. The result is an explosion in the

number of roles [16], which makes managing them difficult.

Policy-Based Access Control (PBAC) [4], which is called

Attribute-Based Access Control (ABAC) in the US Defense De-

partment jargon, extends RBAC to a more general set of proper-

Trusted Third Party

Alice

A
u

th

<
ID

>
…

<
/ID

>

SOAP +

IDA

A
u

th

<
T

P
>

…
<

/T
P

>

SOAP +

IDA+ TPF

Forecast Weather

Figure 2. Use of the Transited Provider SAML profile.

 inRef outRef

Alice Allow Deny

Bob Deny Allow

Carol Deny Allow

Figure 4. Representing permissions in an access matrix.

Bob’s

Domain

Carol’s

Domain

Alice

fileRef

Service

Backup

Service

outRef

Service

Copy

Service

backup

copy

write

read

Alice’s

Domain

Figure 3: Illustration of the sample use case. Heavy arrows

denote service invocation. Dotted lines, service delegations.

For example, Alice invokes the backup service delegating to

that service the right to use the fileRef service.

ties. Subjects are assigned attributes. Each unique set of attribute

values is effectively a role, which addresses the role explosion

problem. Attributes can also be used to specify an identity or a

role. When a request reaches a service, it tests the requester’s

attributes against a policy expressed in a special policy language

to determine if access is allowed. PBAC has been shown to be

capable of expressing a wide range of access policies. The flip

side is the difficulty in understanding the rights being granted (or

denied) when changing the set of attributes assigned to a user.

With PBAC, all participating organizations need to agree on the

meanings of all the attributes, which is easier said than done.

Recently, the National Security Agency spent a year reaching

agreement on a set of attributes for the US Defense Department

(DoD) Joint Enterprise Directory Service (JEDS) and came up

with 13 attributes, most of them related to identity [1]. Additional

work will be needed to standardize a more meaningful set of

attributes. Reaching agreement with agencies from other coun-

tries or civilian first responders will be even more challenging.

We categorize IBAC, RBAC, and PBAC as autheNtication-Based

Access Control (NBAC) because all of these approaches base the

access decision on an authentication the subject presents along

with the request. That authentication is used to look up, for IBAC

and RBAC, or compute, for PBAC, an access decision. The ser-

vice itself is not interested in the authentication, only the access

decision.

There are a number of problems with using NBAC [21]. Here,

we’ll describe just two of them.

Delegation: It is hard for users to delegate subsets of their rights.

In IBAC the ACLs of the relevant services need to be updated to

reflect the changes. Since the ACL is a critical resource, such

changes must be tightly controlled, putting a large burden on sys-

tem administrators [32]. In RBAC, a new role needs to be intro-

duced and the corresponding ACL entries created. PBAC is more

problematic, since it is hard to know what attribute to assign to a

user to grant a particular right. The result is that NBAC leads

people to manage rights at rather coarse granularity.

Ambient authorities: An access decision depends on the authen-

tication of the requester and the request being made. There is no

means to specify which of the requester’s rights apply to what

arguments, which can lead to confusion. In the example of Sec-

tion 2, Bob could inadvertently reverse the order of the arguments

when invoking the copy service. If he has read permission on

outRef and write permission on inRef, the request will succeed,

because Bob has no way to express his true intent.

We’ll see in the next Section two other problems, transitive access

and confused deputy. All these problems, and others, are indica-

tive of a failure to address the real problem, which is dealing with

access policy. Identity, role, and attributes are only a means to an

end, which for this discussion is making an access decision. The

indirection they introduce in making that decision is the root cause

of the transitive access problem. What is needed is a means of

acting more directly on access policy [25].

4. TRANSITIVE ACCESS
We’ll illustrate the problem with the scenario in Section 2. For

each case, we’ll show the access matrix as in Figure 4. There are

a number of cases we need to consider.

Everyone has permission to read inRef and write outRef. Carol

uses her permissions to

read the input and to write

the output. Alice’s re-

quest succeeds. Alice can

use her permission to

recover the backup file.

While everyone can read

inRef, only Bob has permission to write outRef. Carol uses her

permission to read the input, but she is unable to write the output.

Bob could ask his system administrator to add Carol to the ACL

for the service and later

remove her, but the over-

head of this operation is

too high for most uses.

Instead, Bob often grants

Carol the ability to imper-

sonate him for the dura-

tion of the request, as

discussed in the Introduction. Carol gets far more privilege than

she needs to complete the copy operation, but there is often no

practical alternative. Without further action, Alice does not have

permission to access the backup copy.

Carol does not have permission to read the input file. Nor is it

probable that Alice will

have asked to have Carol

added to the service’s

ACL, because Alice is

unlikely to be aware that

Carol’s service gets in-

voked. Further, Alice

necessarily has a trust

relationship with Bob because she is using his service. No such

relationship may exist with Carol. What often happens is that

Alice allows Bob to impersonate her, and Bob allows Carol to

impersonate Alice. Even worse than before, Carol has the rights

of someone who may not know her, a particular problem if Alice

and Carol are in different organizations.

Carol does not have permission to use the inRef service or the

outRef service. Further,

impersonating Alice lets

her read the input but not

write the output. Imper-

sonating Bob lets her

write the output but not

read the input. Carol’s

service must fail. Chang-

ing the copy service implementation to take the contents of the

files instead of references to them or to divide the application into

read and write parts may not be possible, which is one of the con-

straints in the CANES scenario.

Here, Alice specifies a file she is not allowed to read, and Bob

specifies a file he does not

have permission to write.

Nevertheless, Carol can

use her permissions to

read the input and write

the output. Even though

neither Alice nor Bob has

the required permissions,

 inRef outRef

Alice Allow Allow

Bob Allow Allow

Carol Allow Allow

 inRef outRef

Alice Allow Deny

Bob Allow Allow

Carol Allow Deny

 inRef outRef

Alice Allow Deny

Bob Deny Allow

Carol Deny Allow

 inRef outRef

Alice Allow Deny

Bob Deny Allow

Carol Deny Deny

 inRef outRef

Alice Deny Deny

Bob Deny Deny

Carol Allow Allow

Carol’s service succeeds. Carol is a confused deputy [18] who has

been induced to overwrite one of her files. Note that there may be

no way for Carol to distinguish this case from those that should

succeed. Indeed, it may be a security violation to give Carol the

information needed to make the distinction.

This simple example captures the difficulty that has delayed

progress on the CANES scenario and other SOA implementations.

People have tried using roles or attributes instead of identities to

no avail. That’s not surprising since the problems arise from us-

ing subject authentication to make access decisions. The source of

the difficulty is that the authentication is necessarily independent

of the request.

5. AUTHORIZATION-BASED CONTROL
Every approach to access control begins with the user authenticat-

ing to the system and starting a program, a user agent, which acts

on behalf of the user. In a system using subject authentication to

make access decisions, the user agent must be able to transfer the

right to authenticate as that user to every program it starts for the

user.

Figure 5 compares using subject authentication (NBAC) with

explicit authorizations (ZBAC) to make an access decision. For

example, with IBAC a program Alice runs invokes Bob’s service

and includes proof of her identity. Bob’s service looks up in a

repository in his domain the ACL entry corresponding to the re-

quest and the authentication. If the entry matches, the service

honors the request. Looking at it this way makes it clear that the

authentication is only a way for the service to learn if the user is

authorized to make this request. That being the case, let’s turn

things around.

The right half of Figure 5 shows an alternative approach. A user

enters the system by authenticating, and the system starts a user

agent with the ability to use that authentication. So far, this pro-

cedure is the same as an authentication-based system, but the next

step is different. The user agent contacts a repository acting on

behalf of the user’s organization and receives explicit authoriza-

tions for each of the rights granted to the user. These rights can

be individually delegated to programs running on the user’s be-

half, which makes users less vulnerable to erroneous or malicious

programs they run [25]. The user’s program submits the appro-

priate authorization along with each service request. The service

only needs to verify the legitimacy of the authorization for the

request. Subject authentication is not used to make the access

decision, but it can be recorded for audit purposes. We call this

approach authoriZation-Based Access Control (ZBAC).

Figure 6 shows how using delegatable authorizations also ad-

dresses the problem of federating access policy. Bob is probably

not in a position to decide who is allowed to use his service, but

an administrator in his organization is. Bob can delegate the right

to use his service to that administrator, the domain controller in

Figure 6. A corresponding domain controller in Alice’s organiza-

tion can arrange to use Bob’s service and receives a delegatable

authorization from Bob’s domain controller. That authorization

can be delegated to Alice’s user agent when she authenticates to

the system.

This approach has a number of advantages. Unlike authentication-

based schemes, this approach does not require Bob’s organization

to know anything about Alice’s rights. There is no need to fede-

rate identities, since authentication is only done within the users’

organizations. Since there is only one authentication, there is no

need to implement Single Sign-On. Roles and attributes can be

helpful in managing the rights granted to individuals within a

domain, but no global agreement on their meaning is needed since

they are only used within an organization.

Figure 6 also illustrates how ZBAC makes the trust model expli-

cit. With NBAC, Alice’s credentials would be in a policy data-

Identification-Based

Access Control

Authorization-Based

Access Control

Client

Service

Policy

Database

1. Request

with Alice

4. Response

2. Alice

3. Authorization

Client

Policy

Database

1. Alice

2. Authorization

Assertion

3. Request with

Assertion

4. Response

Service

Figure 5. Comparison of NBAC and ZBAC.

Bob’s

Domain

Alice’s

Domain

Backup

Service

Domain Controller

Policy Engine

1. Delegate to

Local Domain

Controller

Domain Controller

2. Request

Authorization based

on Contract

3. Policy

Checking 4. Decision

5. Delegate to Remote

Domain Controller

Figure 6. Federating access policy between domains.

base associated with the Backup service in Bob’s domain even

though Alice has no trust relationship with the Backup service.

She has one with her domain, her domain has one with Bob’s

domain, and Bob’s domain has one with the Backup service. That

fact becomes obvious when Alice does something bad. The

Backup service doesn’t go after Alice. It tells its domain that

Alice did something wrong, and that domain tells Alice’s domain,

which takes the appropriate action. This procedure requires in-

formation that is not defined in the NBAC model. The ZBAC

delegation chain directly encodes these trust relationships.

6. DELEGATABLE AUTHORIZATIONS
SAML certificates were designed to communicate three kinds of

security information, but most implementations use only the au-

thentication and attribute fields. Typically, the authorization field

is only used when a special service, such as the Policy Decision

Service in Figure 1, makes the access decision. In those cases, the

authorization field is used to convey to the invoked service a sin-

gle bit of information, ALLOW or DENY. However, the standard

allows using the SAML authorization field to carry more informa-

tion [25]. In the following subsections, we’ll represent the per-

mission flow as signed digital certificates and show snippets of

SAML assertions expressing those authorizations.

6.1 Installation Endowment

Before service invocations can be started, a subject, which can be

an end-user such as Alice, or services, such as the backup and

copy services, needs to receive SAML certificates that demon-

strate permission to use certain services. This permission is em-

bodied as a delegation chain rooted in the service itself [25].

We’ll denote authorization certificates using a notation similar to

that used for expressing speaks-for relations [23], e.g.,

Subject<-Service(Proof),

which can be read as “delegate to Subject the right to use Service

using Proof to verify that the delegator has at least the rights being

delegated.” Another field, which we don’t need for this example,

can restrict which methods of the service the certificate allows.

We’ll see later how the certificate is validated. An example of a

SAML authorization assertion is at

http://opra.hpl.hp.com/Fam/SamlAuthZCertExample.xml

which is explained in the Appendix.

In a root certificate, Proof is the public key corresponding to the

private key used to sign the certificate, which we see from Figure

6 is the service owner’s key. In a delegation certificate, Proof is a

certificate granting the delegator the right to use at least the set of

rights being delegated. For example,

 SubjectB<-Service(SubjectA<-Service(Proof))

denotes that SubjectB has permission to use Service if SubjectA

does. Each delegation results in an additional nesting of Proof,

which allows full responsibility tracking. In this example, we

know that SubjectA is responsible for SubjectB’s right to use Ser-

vice.

The root certificates for the example in Section 2 are

c0 = Copy<-Copy(Copy),

which denotes that the owner of copy service has delegated to

itself the right to use the copy service, and

b0 = Backup<-Backup(Backup).

Each service then delegates its right to whatever subject in its

organization is responsible for managing access, denoted as B

and, C respectively. For example,

c1 = C<-Copy(c0),

which delegates to C all rights to the copy service. Here Proof is

the root certificate created by the service. We do the same for the

backup service, i.e.,

b1 = B<-Backup(b0).

Starting with b0 and c0 instead of b1 and c1 saves a bit of key man-

agement because the service only needs to know its own private

key to validate the root certificate.

Some entity in Alice’s domain, call it A, negotiates with B for the

right to use the backup service and receives from B a certificate

authorizing this use as

aB = A<-Backup(b1).

B will receive a certificate permitting access to the Copy service

from C represented as

 bc = B<-Copy(c1).

Finally, A grants Alice two certificates for service invocations.

One is for the Backup service, denoted

 Alicebackup = Alice<-Backup(aB)

and one for the service providing the file to be backed up, denoted

 AlicefileRef = Alice<-FileRef(FileSystemA),

where FileSystemA is the nested set of certificates rooted in the

service providing Alice’s file. Similarly, the Backup Service

receives a certificate to invoke the Copy Service from B, namely

backupcopy = Backup<-Copy(bc)

and the right to use the service that will hold the output file,

 backupoutRef = Backup<-OutRef(FileSystemB).

Each of these certificates can be represented as a SAML authori-

zation assertion [25]. Proof is encoded in the <Evidence> field in

the SAML <AuthorizationDecisionStatement> as a nested set of

authorization assertions.

This handling of files shown here is too simplistic, but it serves

our purposes for this example. In a real implementation, the file

system administrator will grant Alice read/write access to a par-

ticular sub-directory, for example, /users/alice. Such a constraint

specification can be expressed in a SAML attribute statement as

<saml:AttributeStatement>

 …

<saml:Attribute

 AttributeName=”AccessibleDirectory”

 AttributeNameSpace =

http://www.domaina.com/CM.asmx

 <saml:AttributeValue>

 /users/alice

 </saml:AttributeValue>

</saml:Attribute>

…

</saml:AttributeStatement>

http://opra.hpl.hp.com/Fam/SamlAuthZCertExample.xml

Notice that the constraint has a scope represented by the XML

AttributeNameSpace attribute, indicating that the constraint is

applied to the entire service representing the file system. This

<AttributeStatement> can be included in the SAML authorization

assertion to restrict the rights being granted.

Also, real services have multiple methods. The restriction para-

meter that we didn’t show can be used to limit which rights are

being delegated. For example, if AlicefileRef includes both

read and write permissions, Alice’s delegation to the backup ser-

vice can be represented as

 Backup<-Backup(AlicefileRef,[read]).

Which methods are being delegated is represented in the SAML

certificate as a list of methods in the <AuthorizationDecisionS-

tatement> [25].

6.2 Service Invocation

Alice starts a process to run the program that performs the backup.

In an NBAC system, that process would be able to authenticate as

Alice and would have all her rights. With ZBAC, that corres-

ponds to Alice sharing her public key with the process, but she

can do better. Say that Alice enters

 backup(/users/alice/foo.pdf)

on the console. Based on Alice’s installation endowment, the

runtime system will map backup to the authorization to use the

backup service and /users/alice/foo.pdf to the authorization to use

this file.

The runtime will then start a process to carry out the command.

That process will create a new key pair and pass the public key to

the runtime. The runtime will produce certificates delegating to

that process the right to invoke the backup service and use the

designated file,

procbackup = proc<-Backup(Alicebackup)

procfileRef = proc<-FileRef(AlicefileRef).

At this point, the process has the least set of Alice’s privileges it

needs to fulfill her request but no more. Alice’s risk is limited

should the program the process runs be erroneous or malicious.

The program running Alice’s request creates a SOAP message to

invoke the backup service. The SOAP header designates the ser-

vice invocation as the certificate procbackup and the argument to

that service as a delegation in the SOAP body,

 ptob = Backup<-FileRef(procfileRef).

The backup service does the same when it invokes the copy ser-

vice with certificate bc , delegating the parameters, i.e.,

inRef = Copy<-FileRef(ptob)

outRef = Copy<-OutRef(backupoutRef).

The copy service uses certificate inRef to read the contents of

Alice’s file and certificate outRef to write the backup. Finally,

the backup service delegates to Alice the right to use the service

holding the copy of her file,

bref = Alice<-OutRef(backupoutRef).

Figure 7 shows the invocations and corresponding delegations.

We probably can’t use the SAML authorization as an argument

when invoking a legacy SOA service. In these cases, the SOAP

body will contain the legacy representation of the arguments, most

often as strings, and the authorizations will go into the SOAP

header. Since we have separated designation from authorization,

using this approach requires care to avoid confused deputy at-

tacks.

6.3 Validation

SAML certificates are assumed to be public documents. Hence

we need to verify the submitter’s right to use them, which in-

volves walking the delegation chain. We also need to verify that

the submitter has the right to use certificates passed as delega-

tions. Without that check, which was omitted in our earlier work

[25], malicious subjects could delegate rights they don’t have,

leading to confused deputy attacks.

First, the invocation certificate in the SOAP header is checked to

verify that it was issued to a public key corresponding to the pri-

vate key used to sign the SOAP request. When a service is in-

voked with a parameter delegating a service reference, the in-

voked service verifies that the delegation was signed with the

same private key used to sign the SOAP request.

The next step is to verify the proof in the invocation certificate.

That step involves unpeeling the onion layers of the nested dele-

gation certificates and verifying that each one was signed by the

private key corresponding to the public key the delegation was

issued to. The proof is complete when the verification reaches the

service’s root certificate.

While a certificate authority may be used when deciding to grant

rights, there is no need for a certificate authority in the verification

process, which only needs to check each signature against the

corresponding public key until it reaches the root certificate

signed with service’s own private key. There is no need, except

perhaps for audit, to attach an identity to any of the keys. Indeed,

some of these keys are ad hoc, created and used for a single invo-

cation, as we saw with the process running Alice’s backup com-

mand.

6.4 Revocation

Alice’s Application

Backup Service

Copy Service

outRefinRef

Header: procbackup

Body: ptob

Header: backupcopy

Body: inRef, outRef

Header: inRef Header: outRef

Figure 7. Permission flow in sample use case showing the

certificates used for invocation and delegation and where

they appear in the SOAP message.

If we stop at this point, both the copy and backup services will

accumulate rights each time they are invoked, which will even-

tually become a security exposure. The services can’t just discard

the SAML assertions, because we have assumed they are public

documents. We use two mechanisms to address this problem.

First, we set an expiration time. Installation endowment certifi-

cates and return delegations can be set to expire when the corres-

ponding contract ends. The situation is more complicated for

delegation certificates passed as parameters. If timeouts were the

only way to make a certificate invalid, this valid time interval

would have to be short, but knowing how short is long enough is

hard. Instead, we set an expiration time reasonably far into the

future and rely on the invoker to revoke any delegations when the

invocation completes.

Second, we explicitly revoke assertions. Each SAML assertion

has a unique identifier, a UUID. We assume that each service

supports a revoke method, which takes a UUID and a SAML as-

sertion as arguments. The first argument specifies which authori-

zation is being revoked. The second argument is the SAML asser-

tion which appears as Proof in the assertion having the specified

by the first argument. This way only the delegator of a right can

revoke the delegation of that right.

Each service keeps a revocation list of unexpired, revoked autho-

rizations. The first time an authorization with a UUID matching a

revocation request is presented in an invocation, the service veri-

fies that the revocation request is authorized. If so, the service

adds this UUID to a local revocation list and refuses any requests

containing that UUID anywhere in the delegation chain.

Unlike IBAC, we are only revoking a single authorization, not a

user’s identity, which has two advantages. First, timeouts can be

short because service invocations have much shorter lifetimes

than user identities. Second, there is no need to circulate certifi-

cate revocation lists (CRLs), because only the service itself needs

to know which authorizations to use the service have been re-

voked. Both of these advantages lead to smaller, more managea-

ble CRLs than when using IBAC.

6.5 Federating Access Policy

Figure 8 shows the evolution of the access matrix as services are

invoked. We start with only Alice having permission to use inRef

and only Bob having permission to use outRef, as shown at the top

of Figure 8. Alice’s invocation of Bob’s backup service delegated

the rights to use inRef, as shown in the second version of the

access matrix. Bob then invoked Carol’s copy service, delegating

the least set of rights needed for his request to succeed, resulting

in the third version of the access matrix. Bob delegates to Alice

the right to use outRef when returning from her request, as shown

in the last version of the access matrix.

This example shows that the effect of delegating the right to use

services specified as arguments is to change the access policy to

match the least privilege needed for the request to succeed. That’s

quite different from the situation when using subject authentica-

tion to make access decisions. In those cases, the access matrix

was static because we needed some external mechanism to specify

the required changes.

7. VOC
One objection commonly raised to the use of freely delegatable

authorizations is loss of control. What if Alice’s organization has

a policy that says Bob

should not be given

access to Alice’s file?

It looks like there is no

way to prevent Alice’s

program from delegat-

ing that right to Bob’s

service.

In an NBAC system,

Alice would have to

ask an administrator to

add Bob to the ACL,

let him take on some

role, or assign him

some attributes. Pre-

sumably, the adminis-

trator would refuse if

honoring the request

would violate policy.

Unfortunately, this

approach makes all

delegations difficult,

which leads people to

bypass such mechan-

isms in order to get

their work done. The

result is that the policy

ends up being violated

in spite of the apparent

control.

The first thing to recognize is that Alice can always send the file

to Bob by some means if she can communicate with him. That

may be as simple as reading the file herself and sending the con-

tents to him or as complex as using a covert channel. Alice can

even share her authentication credentials with Bob. So, whatever

we do, we need Alice’s voluntary cooperation. Nevertheless,

access rules are complex, and they frequently change. Even

though Alice may wish to comply with these rules, she may be

oblivious of them. What we want is a system of that lets users

voluntarily comply with the policy while being oblivious of it,

something we call Voluntary Oblivious Compliance (VOC).

There are many ways to support VOC. The simplest is to make a

rule that people should ask an administrator before delegating any

rights. That’s clearly not a scalable solution, but it is the only one

available with IBAC. Another approach is for Alice to send Bob

a handle to the service and let the underlying system make the

Figure 8. Permission flow ZBAC.

 inRef outRef

Alice Allow Deny

Bob Deny Allow

Carol Deny Deny

 inRef outRef

Alice Allow AllowB

Bob AllowA Allow

Carol AllowA,B AllowB

 inRef outRef

Alice Allow Deny

Bob AllowA Allow

Carol Deny Deny

 inRef outRef

Alice Allow Deny

Bob AllowA Allow

Carol AllowA,B AllowB

Figure 8. Permission flow ZBAC.

Alice’s

program

proxyfileRef

proxyAlicebackup

backupfileRefprocproxy

Proxy

Backup

Figure 9. Using a proxy to enforce VOC.

access decision. A simple example of such a handle is a URL to a

page inside Alice’s firewall, which Bob can use only if the access

policy lets him inside the perimeter. This approach is suitable for

systems that use RBAC and PBAC. However, RBAC and PBAC,

provide rather coarse control over access rights because they are

tied to subjects. Administrators are faced with the dilemma of

making the rules overly permissive, which leads to some viola-

tions of the desired policy, or overly restrictive, which leads

people to circumvent the mechanisms.

Delegatable authorizations, which are the cause of concern, pro-

vide a solution, as well. Most delegations do not violate any poli-

cy, e.g., when Alice’s user agent delegates a right to a process it is

starting on her behalf. We can proxy requests for those delega-

tions that might violate policy, as is done when using an Enter-

prise Service Bus [2], illustrated in Figure 9. Instead of binding

the invocation in Alice’s program directly to the Backup service,

the invocation is bound to a proxy for the service. So, Alice’s

user agent delegates

 procbackup = proc<-Proxy(Alicebackup)

procfileRef = proc<-FileRef(AlicefileRef)

to the process running her program. This process invokes the

proxy, delegating

 proxyfileRef = proxy<-FileRef(procfileRef).

If the delegation to Bob’s service would not violate policy, the

proxy invokes the Backup service using an authorization given to

the proxy for use when acting on Alice’s behalf,

 proxyAlicebackup = Proxy<-Backup(asAlice),

where asAlice is an authorization constructed by A, Alice’s and

the proxy’s domain controller, specifying Alice’s rights to the

Backup service. The proxy delegates to the Backup service the

fileRef authorization received from Alice’s program as

 backupfileRef = Backup<-FileRef(proxyfileRef).

Neither Alice’s program nor Bob’s service need be aware of this

indirection. We are just changing the name bindings of the autho-

rizations.

8. RELATED WORK
The earliest form of explicit authorization is a capability, the de-

fining characteristic of which is that it combines designation with

authorization. Initially, capabilities were used to limit access to

hardware resources, such as memory pages [7]. Later, they were

used to protect other resources, such as files, and used across the

network [9]. More recently, people have noted that object refer-

ences can be used as capabilities controlling access at the object

level [28]. In its purest form, what we demonstrate is that SAML

authorization assertions can combine designation with authoriza-

tion, thereby serving as capabilities.

The REST model of computation [14] uses GET and POST opera-

tions on URLs to implement web services. The original formula-

tion had no access control, but the web calculus [6] makes URLs

into capabilities. OAUTH [31] is not adequate for our needs.

While it can be used for fine-grained authorization, it does not

support chained delegation. Lampson’s general speaks-for [23]

can also be used as capabilities, but explanations of its use are

rooted in an authentication-based ACL.

A number of systems similar to ours were developed before the

web services standards were defined. Passport [35], Proxy [3],

and Restricted Proxy [29] allow chained, restricted delegation, but

the final access decision is based on the identity of the originator

of the request. In a SOA environment, this requirement implies

some sort of distributed identity management because the origina-

tor’s identity must be in the service domain’s policy database.

The Community Authorization Service [36] allows restricted,

chained delegation using a central authorization service. Delega-

tion between communities, which corresponds to domains in

SOA, is not supported. At first glance the authorization profile

for attribute certificates [12] seems to support the kind of delega-

tion of authorization that we propose, but a close look shows that

the authors use the phrase “authorization information” to mean

what we call authentication information, such as role, group

membership, and security clearance.

The closest to our approach is E-speak [20], which was based on

the Simple Public Key Infrastructure [10] and used certificates as

capabilities. However, with that approach all parameters had to

be delegation certificates, which required changes to the applica-

tion API. Our approach permits putting delegation certificates

into the SOAP header. We extend the e-speak approach by includ-

ing SAML attribute assertions in the SOAP header that allow the

use of application specific constraints and to enforce Risk Adap-

tive Access Control (RAdAC) [26].

None of these approaches is suitable for SOA, which is based on

XML and the corresponding web services standards. XACML, an

XML specification for authorization decision making, has been

adapted for delegation [5]. However, the thrust of this work is to

alleviate the administrator’s workload by defining which rights

each user may delegate. This work does not support chained del-

egation.

Other distributed systems, particularly those that cross administra-

tive boundaries can also benefit from switching from NBAC to

ZBAC. The administrative burden of managing ACLs is widely

recognized [32]. Administering a GRID [15] node involves creat-

ing and deleting accounts for users in many organizations. The

Grid community has partially moved toward ZBAC with the

Community Authorization Service [15]. People working on the

DoD Global Information Grid (GIG) have reached the same con-

clusion [24]. One of the main complaints of Principal Investiga-

tors on PlanetLab [33] is the difficulty in delegating subsets of

their authorities to their graduate students. Solutions to this prob-

lem that are currently being used for the 1,000 or so machines in

PlanetLab today will not be practical as its size increases. ZBAC,

by decoupling the policy decisions into manageable chunks,

avoids the scalability issues inherent in NBAC.

9. CONCLUSIONS
SOA is different from more tightly coupled environments. SOA

crosses administrative domains; it has far more users and separate

components; it is far more dynamic in the rate and number of

things that change; no one party is in charge. There is little reason

to think that traditional designs are applicable to SOA. Yet that’s

what using authentication to make access decisions does. Autho-

rization-based access control, which has advantages within an

organization, and even on stand-alone computers, is a better

match to the requirements of distributed systems that span admin-

istrative domains.

Service composition is an important use pattern for SOA. Imple-

mentations that use authentication to make access decisions have

failed to achieve both the desired functionality and the required

security. Using delegatable authorizations lets us federates access

policy, which results in a fully functional system that enforces the

Principle of Least Privilege.

10. ACKNOWLEDGMENTS
We’d like to thank Mike Davis and Harry Haury for helpful dis-

cussions and Tyler Close for pointing out a vulnerability.

11. REFERENCES
[1] Bachert, R., “Moving from One Theater to the Next Using

Enterprise Directory Service (EDS)”, LandWarNet Conf.,

November 2007, also

http://www.afcea.org/events/pastevents/documents/Track4Se

ssion7-EDS.ppt

[2] BEA, AquaLogic Service Bus Concepts and Architecture,

http://edocs.bea.com/alsb/docs30/pdf/concepts.pdf, Feb.

2008.

[3] Black, S. and Varadharajan, V., “An Analysis of the Proxy

Problem,” HP Labs Tech. Report HPL-90-163, 1990.

[4] Blaze, M., Feigenbaum, J., Ioannidis, J., and Keromytis, A.,

"The Role of Trust Management in Distributed Systems Se-

curity." Chapter in Secure Internet Programming: Security

Issues for Mobile and Distributed Objects, (Vitek and Jen-

sen, eds.) Springer-Verlag, 1999.

[5] Chadwick, D. W., Otenko, S., and Nguyen, T. A., “Adding

Support to XACML for Dynamic Delegation of Authority in

Multiple Domains,” Proc. of the IFIP Intl Conf. on Commu-

nications and Multimedia Security, pp. 67-86, 2006.

[6] Close, T., “web-key: Mashing with Permission”, IEEE

W2SP 2008: Web 2.0 Security and Privacy. May 2008,
http://www.waterken.com/dev/Web/REST/

[7] Dennis, J. B. and Van Horn, E. C., “Programming Semantics

for Multiprogrammed Computations” Comm. ACM,

9(3):143-155, 1966.

[8] DISA, “A Security Architecture for Net-Centric Enterprise

Services (NCES)”, Defense Information Systems Agency,

March 2004, also

http://horizontalfusion.dtic.mil/docs/specs/20040310_NCES_

Security_Arc.pdf.

[9] Donnelley, J. “A Distributed Capability Computing System

(DCCS)”, Third International Conf. on Computer Communi-

cation, Toronto, Canada, August 3-6, 1976.

[10] C. Ellison, http://www.ietf.org/rfc/rfc2692.txt 1999.

[11] Erdos, M. E. and Pato, J. N., “Extending the OSF DCE Au-

thorization System to Support Practical Delegation”, PSRG

Workshop on Network and Distributed System Security. Feb.

11-12, 1993.

[12] Farrell, S. and Housley, R, “An Internet Attribute Certificate

Profile for Authorization”, IETF RFC 3281, April 2002.

[13] Ferraiolo, D.F. and Kuhn, D.R., "Role Based Access Con-

trol", 15th National Computer Security Conf.: 554-563, 1992.

[14] R.Fielding, R. "Architectural Styles and the Design of Net-

work-based Software Architectures"; Doctoral dissertation,

University of California, Irvine; 2000.

[15] Foster, I., Kesselman, C., Pearlman, L., Tuecke, S., and

Welch, V., “The Community Authorization Service: Status

In Proc. of Computing in High Energy Physics. 03 2003.

[16] Freudenthal, E., Pesin, T., Keenan, Port, E. L. and Karam-

cheti, V., “dRBAC: Distributed Role-Based Access Control

for Dynamic Coalition Environments”, Proc. of the Intl.

Conf. on Distributed Computing Systems (ICDCS), 2002.

[17] Graham, S., Karmarkar, A., Mischinsky, J., Robinson, I., and

Sedukhin, I., eds., “Web Services Resource 1.2”,

http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-

os.pdf 2006.

[18] Hardy, N., “The Confused Deputy”, Operating Systems Re-

views, 22, #4, 1988.

[19] Hirsch, F., ed., “ID-WSF 2.0 SecMech SAML Profile, Ver-

sion v2.0”,

http://www.projectliberty.org/liberty/content/download/894/6

258/file/liberty-idwsf-security-mechanisms-saml-profile-

v2.0.pdf

[20] Karp, A. H. "E-speak E-xplained", CACM, vol. 46. #7, pp.

113-118, July 2003.

[21] Karp, A. H., "Authorization Based Access Control for the

Services Oriented Architecture", Proc. 4th Int. Conf. on

Creating, Connecting and Collaborating through Computing

(C5 2006), Berkeley, CA, IEEE Press, January 2006.

[22] Lampson, B., “Protection”, Proc. 5th Princeton Conf. on

Information Sciences and Systems, p437, Princeton, 1971.

[23] Lampson, B. “Practical Principles for Computer Security”,

In Software System Reliability and Security, Proceedings of

the 2006 Marktoberdorf Summer school.

[24] Levin, R. E. “The Global Information Grid and Challenges

Facing Its Implementation”, GAO-04-858, 2004, also

http://www.gao.gov/new.items/d04858.pdf

[25] Li, J. and Karp, A. H., “Access Control for the Services

Oriented Architecture,” ACM Workshop on Secure Web

Services, ACM #459074, pp. 9-17, Fairfax, VA, November

2007.

[26] McGraw, R. W., “Securing Content in the Department of

Defense’s Global Information Grid”, Secure Knowledge

Management Workshop, Buffalo, NY, September, 2004.

[27] Miller, C., “Navy C4I Open Architecture Strategy”, Softwa-

reTech, 10, #3, October 2007, also

https://www.softwaretechnews.com/stn_view.php?stn_id=43

&article_id=89

[28] M. S. Miller, “Robust Composition: Towards a Unified Ap-

proach to Access Control and Concurrency Control”, Doc-

toral Dissertation, Johns Hopkins University, 2006, also

http://erights.org/talks/thesis/index.html

[29] Neuman, B. C., “Proxy-Based Authorization and Accounting

for Distributed Systems”, Proc. of the Intl. Conf. on Distri-

buted Computing Systems (ICDCS), 1993.

[30] OASIS, “Security Assertion Markup Language (SAML) 2.0

Technical Overview”, Working Draft 05, 10 May 2005.

[31] OAUTH, http://oauth.net

[32] Open Group, CDSA Explained, An indispensable guide to

Common Data Security Architecture, The Open Group, 2001.

[33] PlanetLab, http://www.planet-lab.org/

[34] Saltzer, J. H. and Schroeder, M. D. “The protection of infor-

mation in computer systems”, Proceedings of the IEEE,

63(9):1278.1308, September 1975.

[35] Sollins, K. R., “Cascaded Authentication”, Proc. of the

IEEE Symposium on Research in Security and Privacy, pp.

156-163, 1988.

[36] Welch, V., Foster, I., Kesselman, C., Mulmo, O., Pearlman,

L., Tuecke, Gawor, J., Meder, S., and Siebenlist, F., “X.509

Proxy Certificates for Dynamic Delegation”, Proceedings of

the 3rd Annual PKI R&D Workshop, 2004.

http://www.afcea.org/events/pastevents/documents/Track4Session7-EDS.ppt
http://www.afcea.org/events/pastevents/documents/Track4Session7-EDS.ppt
http://edocs.bea.com/alsb/docs30/pdf/concepts.pdf
http://www.waterken.com/dev/Web/REST/
http://horizontalfusion.dtic.mil/docs/specs/20040310_NCES_Security_Arc.pdf
http://horizontalfusion.dtic.mil/docs/specs/20040310_NCES_Security_Arc.pdf
http://www.ietf.org/rfc/rfc2692.txt%201999
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://docs.oasis-open.org/wsrf/wsrf-ws_resource-1.2-spec-os.pdf
http://www.projectliberty.org/liberty/content/download/894/6258/file/liberty-idwsf-security-mechanisms-saml-profile-v2.0.pdf
http://www.projectliberty.org/liberty/content/download/894/6258/file/liberty-idwsf-security-mechanisms-saml-profile-v2.0.pdf
http://www.projectliberty.org/liberty/content/download/894/6258/file/liberty-idwsf-security-mechanisms-saml-profile-v2.0.pdf
http://www.gao.gov/new.items/d04858.pdf
https://www.softwaretechnews.com/stn_view.php?stn_id=43&article_id=89
https://www.softwaretechnews.com/stn_view.php?stn_id=43&article_id=89
http://erights.org/talks/thesis/index.html
http://oauth.net/
http://www.planet-lab.org/

APPENDIX
This appendix annotates the authorization assertion Alice’s proxy uses to delegate the right to read the input when it invokes the Backup

service on her behalf. We’ve elided the cryptographic information in the <SubjectConfirmation> and <Signature> tags in the interest of

space and rearranged some tags for clarity. The automatically generated assertion is at

 http://opra.hpl.hp.com/Fam/SamlAuthZCertExample.xml.

The assertion is issued by the proxy acting on Alice’s behalf and must be signed by the proxy’s private key to be valid.

<saml:Assertion MajorVersion="1" MinorVersion="1" IssueInstant="2008-11-18T09:32:22Z"

 AssertionID="_98594eb1-c3d3-44cf-ab83-816bd95612a6"

 Issuer="CN="Proxy of Alice Jones O=Domain A""

xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion">

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

We set the expiration time far enough in the future that we are sure the request will have completed because we expect Alice’s program to

revoke this delegation when it receives the return value.

 <saml:Conditions NotBefore="2008-11-18T09:12:22Z" NotOnOrAfter="2008-11-18T09:52:22Z"/>

 <saml:AuthorizationDecisionStatement Decision="Permit"

Resource="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

The proxy is delegating to the Backup service.

 <saml:Subject>

 <saml:NameIdentifier NameQualifier=""

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">

 CN="Backup Service Authority O=Domain B"

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>...</saml:SubjectConfirmation>

 </saml:Subject>

The right being delegated is the right to use the ReadFile method of the FileMgmt service.

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

ReadFile

 </saml:Action>

The <AttributeStatement> limits this use to reading only the specified file, an example of how to specify an application specific restriction

using an attribute.

 <saml:AttributeStatement>

 <saml:Attribute AttributeNamespace=http://www.DomainA.com/FileMgmt/FileMgmt.asmx

 AttributeName="AccessibleFile">

 <saml:AttributeValue>

 /users/content/alice/brochure.pdf

 </saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

The Proof that this delegation is valid is the proxy’s authorization assertion carried in the <Evidence> field, which has been signed by

Alice.

<saml:Evidence>

 <saml:Assertion MajorVersion="1" MinorVersion="1" IssueInstant="2008-11-18T09:32:21Z"

 AssertionID="_71497a19-3193-4943-8e6e-b58f9f7c3aa0"

 Issuer="CN="Alice Jones O=Domain A"">

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

 <saml:Conditions NotBefore="2008-11-18T09:12:21Z"

 NotOnOrAfter="2008-11-18T09:52:21Z"/>

 <saml:AuthorizationDecisionStatement Decision="Permit"

 Resource="http://www.DomainA.com/FileMgmt/FileMgmt.asmx" >

http://opra.hpl.hp.com/Fam/SamlAuthZCertExample.xml

 <saml:Subject>

 <saml:NameIdentifier NameQualifier=""

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">

 CN="Proxy of Alice Jones O=Domain A"

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>...</saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 ReadFile

 </saml:Action>

 <saml:AttributeStatement>

 <saml:Attribute AttributeNamespace=http://www.DomainA.com/FileMgmt/FileMgmt.asmx

 AttributeName="AccessibleFile">

 <saml:AttributeValue>

 /users/content/alice/brochure.pdf

 </saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

The Proof that Alice has the right to delegate this authority comes from the delegation Alice received from the administrator.

<saml:Evidence>

 <saml:Assertion MajorVersion="1" MinorVersion="1" IssueInstant="2008-11-18T09:32:21Z"

 AssertionID="_ac2df433-3e73-4cb0-aa32-c57ad064d70b"

 Issuer="CN="Domain Access Right Controller O=Domain A"">

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

 <saml:Conditions NotBefore="2007-11-19T09:32:21Z"

 NotOnOrAfter="2009-11-18T09:32:21Z" />

 <saml:AuthorizationDecisionStatement Decision="Permit"

 Resource="http://www.DomainA.com/FileMgmt/FileMgmt.asmx" >

 <saml:Subject>

 <saml:NameIdentifier NameQualifier=""

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">

 CN="Alice Jones O=Domain A"

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>...</saml:SubjectConfirmation>

 </saml:Subject>

Notice that Alice has the right to read or write any file in the specified directory.

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 ReadFile

 </saml:Action>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 WriteFile

 </saml:Action>

 <saml:AttributeStatement>

 <saml:Attribute AttributeName="AccessibleDirectory"

 AttributeNamespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 <saml:AttributeValue>

 /users/content/alice

 </saml:AttributeValue>

 </saml:Attribute>

 </saml:AttributeStatement>

Alice’s administrator has the right to read or write any file in the filesystem.

<saml:Evidence>

 <saml:Assertion MajorVersion="1" MinorVersion="1"

 AssertionID="_2cd7fea2-8ff1-446b-b5d3-723eccaa0014"

 Issuer="CN="File Management Service Authority O=Domain A""

 IssueInstant="2008-11-18T09:32:21Z">

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

 <saml:Conditions NotBefore="2007-11-19T09:32:21Z"

 NotOnOrAfter="2009-11-18T09:32:21Z" />

 <saml:AuthorizationDecisionStatement Decision="Permit"

 Resource="http://www.DomainA.com/FileMgmt/FileMgmt.asmx" >

 <saml:Subject>

 <saml:NameIdentifier NameQualifier=""

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">

 CN="Domain Access Right Controller O=Domain A"

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>...</saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 ReadFile

 </saml:Action>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 WriteFile

 </saml:Action>

The root of the authority is the filesystem service and is signed by the service itself.

<saml:Evidence>

 <saml:Assertion MajorVersion="1" MinorVersion="1"

 AssertionID="_4ccb6557-d8f9-47e5-a239-2bc8ddd5c3c5"

 Issuer="CN="File Management Service Authority O=Domain A""

 IssueInstant="2008-11-18T09:32:21Z">

 <Signature xmlns="http://www.w3.org/2000/09/xmldsig#">...</Signature>

 <saml:Conditions NotBefore="2007-11-19T09:32:21Z"

 NotOnOrAfter="2009-11-18T09:32:21Z" />

 <saml:AuthorizationDecisionStatement Decision="Permit"

 Resource="http://www.DomainA.com/FileMgmt/FileMgmt.asmx" >

 <saml:Subject>

 <saml:NameIdentifier NameQualifier=""

 Format="urn:oasis:names:tc:SAML:1.1:nameid-format:X509SubjectName">

 CN="File Management Service Authority O=Domain A"

 </saml:NameIdentifier>

 <saml:SubjectConfirmation>...</saml:SubjectConfirmation>

 </saml:Subject>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 ReadFile

 </saml:Action>

 <saml:Action Namespace="http://www.DomainA.com/FileMgmt/FileMgmt.asmx">

 WriteFile

 </saml:Action>

 </saml:AuthorizationDecisionStatement>

 </saml:Assertion>

</saml:Evidence>

Followed by the rest of the close tags.

