

Keyword(s):

Abstract:

©

Effective Metadata Extraction from Irregularly Structured Web Content

Baoyao Zhou, Wei Liu, Yu Yang, Weichun Wang, Ming Zhang

HP Laboratories
HPL-2008-203

Information Extraction, Metadata, Online Course Organization, Logical Structure Model.

Metadata extraction is one crucial module for domain specific Web content discovery and management,
because the accuracy and completeness of the extracted metadata would directly affect the quality of
subsequent domain information services. Our Online Course Organization project aims to build an online
course portal to serve the course information obtained from the Web. Since most course pages are
irregularly structured, most existing approaches are not effective for extracting course metadata. In this
paper, we proposed a novel hierarchical clustering approach to generate a web page semantic structure
model from the DOM tree, called Logical Structure Model, such that the hidden patterns and knowledge
can be revealed and used to facilitate identifying course metadata. The experimental results have shown
that our solution can achieve effective metadata extraction.

External Posting Date: November 21, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: November 21, 2008 [Fulltext]

Copyright 2008 Hewlett-Packard Development Company, L.P.

Effective Metadata Extraction from Irregularly Structured
Web Content

Baoyao Zhou, Wei Liu
HP Labs China

{baoyao.zhou, wliu}@hp.com

Yu Yang, Weichun Wang, Ming Zhang
Peking University, China

{yuyang.db, wangwch,
mzhang_cs}@pku.edu.cn

ABSTRACT
Metadata extraction is one crucial module for domain specific
Web content discovery and management, because the accuracy
and completeness of the extracted metadata would directly affect
the quality of subsequent domain information services. Our
Online Course Organization project aims to build an online course
portal to serve the course information obtained from the Web.
Since most course pages are irregularly structured, most existing
approaches are not effective for extracting course metadata. In this
paper, we proposed a novel hierarchical clustering approach to
generate a web page semantic structure model from the DOM tree,
called Logical Structure Model, such that the hidden patterns and
knowledge can be revealed and used to facilitate identifying
course metadata. The experimental results have shown that our
solution can achieve effective metadata extraction.

Keywords
Information Extraction, Metadata, Online Course Organization,
Logical Structure Model.

1. INTRODUCTION
The World Wide Web serves as a huge, widely distributed, global
information service center. Many general purpose search engines,
like Google, Yahoo! and MSN, have been developed to assist
users to find relevant web pages effectively. However, they still
cannot give accurate and complete answers for more specific
queries regarding a particular domain. For example, “Which
models of HP photo inkjet printers are discussed popularly on
digital product review forums?”, “Which textbooks are popular
for Information Theory courses?” and “What CS courses are
provided by UC Berkeley?” To answer such questions effectively,
further research needs to be carried out to develop technologies
for analyzing and understanding the semantics of Web content,
such as who, what, where, when they are talking about. For
Business Intelligence, such technologies can potentially help
companies to analyze customer online feedback/comments,
competitive product information on the Web and online news
about their events to drive product/service improvements and
targeted marketing programs. Our Online Course Organization
project is aimed at using online courses as an example domain to
develop these technologies for domain specific Web content
discovery and management, especially how to extract semantic
metadata from irregularly structured Web content. Meanwhile, we
also attempt to build an online course portal to serve the course
information we obtained from the Web. In addition, we plan to
generalize this solution to other specific domains for more general
purposes, especially for benefiting HP’s business.

Different from other domain pages with regular structures, such as
product information pages and academic publication pages, most
online course pages are irregularly structured. The main reason is
that most course pages are designed and maintained by the course
instructors in their specific ways. Our work focuses on how to
effectively extract useful metadata from a course page returned by
our course page crawler and classifier. Such course metadata
include Course_ID, Course_Name, Course_Time, Teacher_Name
and Teacher_Email. However, most existing approaches for
extracting metadata from regular pages are not appropriate for
course pages any more. Fortunately, most course pages are
designed in very simple HTML, which makes it possible to
deduce the approximate semantic structure from their DOM
(http://www.w3.org/DOM/) tree, which then can be used to
facilitate extracting metadata.
In this paper, we firstly propose a novel hierarchical clustering
approach to discover the Logical Structure Model of web pages.
Different from other existing web page content structure models,
the proposed Logical Structure Model can present more detailed
and comprehensive structure information of web page content.
Based on the Logical Structure Model, the course metadata then
can be extracted easily by some heuristic rules. We apply such
solution to achieve course metadata extraction, but it is also
possible to extend to other domains, such as online news, product
review information, even Blogs.
The rest of this paper is organized as follows. In Section 2, we
review the related work on metadata extraction and web page
semantic structure discovery. Sections 3 and 4 present our
proposed approach for discovering web page Logical Structure
Model and extracting course metadata. Performance evaluation of
the proposed approach is given in Section 5. Finally, Section 6
concludes the paper.

2. RELATED WORK
Metadata (http://en.wikipedia.org/wiki/Metadata) is data about
data, more specifically a collection of key information about a
particular content, which can be used to facilitate the
understanding, use and management of data. Metadata extraction,
especially from irregularly structured Web content, is still a
challenging issue for the research area on content management.

Existing metadata extraction solutions can be mainly classified
into three categories: wrapper induction [1][2], sliding window
and boundary finding model [3][4], finite state machines (Hidden
Markov Models [5][6], Conditional Random Fields [7][8][9]).
However, most approaches are only effective for structured Web
content, i.e., web pages with similar layout templates or semantic
structures, but not appropriate for irregularly structured Web
content. The main reason is that the semantic or logical patterns of

metadata are usually not obvious in such irregularly structured
Web content. For example, Teacher_Name may appear nearby
Course_Name or in the content of “Instructor:” heading, but such
logical pattern is hidden in course pages with various HTML
implementations by different instructors. One promising solution
to solve this problem is to construct a brief semantic structure
model for web pages such that the hidden patterns and knowledge
can be revealed and used to facilitate metadata extraction. That is
exactly the main idea of our solution.

Many web page content structure models have been proposed,
such as FOM [10], VIPS [11], PAS [12], etc. However, they only
can describe the partition layout structure of a web page, i.e., a
hierarchical tree structure, in which each node represents a page
segment called block and all child nodes of a certain node
represent a more detailed partition of the corresponding block, but
not the hierarchical structure of semantics in Web content. In
addition, most existing web page content structure analysis or web
page segmentation approaches usually define the leaf nodes
(mainly include text nodes, and other specific objects) in
the DOM tree as the basic objects or tokens, i.e., the smallest and
undividable units. However, sometimes, one leaf nodes, especially
text nodes, may contain several tokens with different semantics.
For example, “CS102: Data Structure” consists of two tokens, i.e.,
Course_ID “CS102” and Course_Name “Data Structure”.
Therefore, existing web page content structure models do not
satisfy the need to support metadata extraction from irregularly
structured Web content.

3. WEB PAGE LOGICAL STRUCTURE
DISCOVERY
A web page (i.e., a HTML document) can be parsed as a tree-
based structure model called Document Object Model (DOM in
short) by a standard HTML parser. Although DOM was initially
designed to define the logical structure of documents, it cannot
exactly represent the true inner semantics of HTML documents
due to the flexibility of HTML syntax. However, it is still possible
to deduce the approximate logical structure of HTML documents
according to their DOM, especially for web pages written in
simple HTML, such as most of course pages. Here, the web page
logical structure means a document structure model that can
represent the actual hierarchical relationships among segments
with certain semantics in a web page. A good logical structure
model can be used to facilitate pattern discovering from web page
content. In this section, we propose a novel hierarchical clustering
approach to deduce the approximate logical structure of a web
page from its DOM tree.
Compared with other existing web page content structure models,
the proposed Logic Structure Model (LSM in short) has the
following innovations and contributions:
1. The definition of tokens (the smallest and undividable units)

is independent to the leaf nodes in the DOM tree. In other
words, one text node may be divided into several tokens, or
several adjacent text nodes may be jointed into one token.
Therefore, the proposed LSM can represent more detailed
semantic and logical information of web page content.

2. The proposed LSM can represent the hierarchical section
outline structure of a web page, i.e., not only the partition
blocks but also the hierarchical relationships among them.

We define the LSM of a web page as follows.
Definition 1: A web page W can be represented as a tree structure
model called Logical Structure Model LSM = (C, R), where C =
{c1, c2, … cn} is a set of all tree nodes also known as token
clusters, and R = {<ci, cj>} is a set of all parent-child relationships
among token clusters. Each token cluster has a type, which is one
of PAGE, SEGMENT, HEADING and CONTENT. The PAGE
cluster is the root node of LSM. All SEGMENT clusters are the
second level nodes of LSM, i.e., children of the PAGE cluster.
Both PAGE and SEGMENT clusters own all tokens in their
descendant clusters as their tokens. Others are HEADING or
CONTENT clusters, each of which has a list of their own tokens.
According to the types of the parent and child clusters, each
parent-child relationship can represent one of page-segment,
segment-heading, segment-content, heading-subheading and
heading-content relationships between two clusters.
Figure 1 shows an example of the LSM constructed from a DOM
tree of a sample course page. The sample course page (PAGE
cluster) is divided into two segments (SEGEMENT clusters).
Each segment has a tree of its own token clusters (HEADING and
CONTENT clusters) with their hierarchical relationships. For
example, Node 3 represents a HEADING cluster with two tokens
“CSD 2005” and “Geometric Mechanics”. And the relationship
between Node 5 and Node 6 indicates that the heading of content
“Jerrold Marsden” is “Instructor:”. Based on the constructed LSM,
metadata should be much easier to be extracted from a course
page than based on the original DOM. For example, it is difficult
to identify which one of the two email addresses in the sample
course page is the teacher email based on the DOM tree, because
both of them and the reference heading text “Instructor:” are leaf
nodes and we cannot ensure which one belongs to the content of
“Instructor:”. However, in LSM, it is obvious that the teacher
email is “marsden@cds.caltech.edu”, because only this email
address appears in the descendant clusters of “Instructor:”.
To generate LSM from DOM, we need to perform following tasks:
Step 1. Preprocessing: To extract all text nodes associated with
their location information in the DOM tree and other specific
HTML properties (heading level, font size, font style, link, etc.).
Step 2. Text Node Generalization: To generalize each text node to
form one or more initial tokens with predefined attributes (number,
alphabetical text with number, alphabetical text with capital letter,
time, person title, name, email and others).
Step 3. Hierarchical Clustering: To generate the initial clusters
with one cluster including one initial token, and then, recursively
group tokens in similar clusters into bigger clusters and deduce
the semantic logical relationships between dissimilar clusters by
considering their locations in the DOM tree and specific HTML
properties
The main idea also can be adapted to construct LSM for other
domain web pages. In the subsequent sections, we will introduce
the details of the proposed approach.

3.1 Preprocessing
After parsing the input HTML document as a corresponding
DOM tree, all HTML element and text nodes can be visited easily
by a traversal of the DOM tree. In this research, we only consider
the textual contents, i.e., all text nodes, and separator objects
(
, <HR>, etc.) in course pages.

A sample course page

HTML BODY Text: CDS 205 - Geometric Mechanics H1

Text: Spring 2006H2

CENTER

BR

B Text: Instructor:

BR

Text: Jerrold Marsden

BR

Text: Email:

I Text: marsden@cds.caltech.eduA

B Text: TAs:

BR

Text: Patricio Vela

BR

Text: Email:

I Text: pvela@cds.caltech.eduA

BR

BR

B Text: Course Description:

BR

CENTER Text: 9 unites (3-0-6) third term...

HR

Text: Last updated: 01/19/06.

DOM tree

1
PAGE

3
HEADING

CDS 205
Geometric Mechanics

4
HEADING

Spring 2006

5
HEADING

Instructor:

6
CONTENT

Jerrold Marsden

7
HEADING

Email:

8
CONTENT

marsden@cds.caltech.edu

9
HEADING

TAs:

10
CONTENT

Patricio Vela

11
HEADING

Email:

12
CONTENT

pvela@cds.caltech.edu

13 14
CONTENT

9 unites (3-0-6) third term.
HEADING

Course Description:

2
SEGMENT

15
HEADING

Prerequisites:

16
CONTENT

CDS 202,
CDS 140.

17
CONTENT

The geometry and ...

18
SEGMENT

19
HEADING

Last updated:

20
CONTENT

01/19/06.

Logical Structure Model

In general, text nodes close to each other in the DOM tree are
usually close when shown in the Web browser. Therefore, it is
crucial to keep the location information for each text node, which
can then be used for measuring the semantic and logical
relationship among text nodes. In this research, we adopt the
Absolute Location Path to represent the location of each text node
in the DOM tree. An Absolute Location Path is an XPath
(http://www.w3.org/XPath/) expression consisting of a sequence
of all location steps separated by “/” from the <HTML> element
to the target node (here is each text node) in document order 1,
where each location step is denoted as a HTML element name
with its position code. For example, an Absolute Location Path
“/HTML[1]/BODY[1]/H1[2]/text()[1]” represents the text node
that belongs to the second <H1> element in the children of the
first <BODY> element in the children of the <HTML> element.
Its mathematical definition is given as follows.
Definition 2: An Absolute Location Path can be denoted as a
sequence of Location Steps, i.e., ALP = /s1/s2/…/sn, where each
Location Step si = element_namei[position_codei] for 1 ≤ i ≤ n.
Apart from the location information, we also keep some important
HTML properties for each text node, which include the heading
level, font size, hyperlink and font style. Such information can be
easily obtained from the ancestor element nodes of the
corresponding text node.
According to the text pattern and HTML properties, each text
node is classified into HEADING text or CONTENT text as its
text type using the following heuristic rules:
1. Text node with an ancestor heading element (such as

<H1>~<H6>);
2. Text node with an ancestor highlight element (such as ,

<BIG>, , <I>, , <U> and with
font size larger than normal size), and with a parent
paragraph element (such as <P>, <DIV>, <TD>,
<CENTER>, etc.) or followed by
, and with at most 10
words;

3. Text node with capital (initial) letters, and ending with a
colon, and with at most 10 words;

After preprocessing a web page, we have obtained a list of all text
nodes associated with their Absolute Location Paths, text type and
some specific HTML properties.

3.2 Text Node Generalization
As mentioned earlier, most existing approaches consider the leaf
nodes in the DOM tree as the basic tokens. Sometimes, one text
node may be further divided into several tokens with different
semantics. For example, a text node “Chem 24ab Introduction to
Biophysical Chemistry” contains one Course_ID token “Chem
24ab” and one Course_Name token “Introduction to Biophysical
Chemistry”, and another text node “Instructor: Wennberg,
Seinfeld” contains one Teacher_Heading token “Instructor:” and
two Teacher_Name tokens “Wennberg” and “Seinfeld”. To
distinguish different semantic tokens in one text node, we regard
all single words (texts separated by white-space) of each text node
as the smallest units. We also define a total of eight basic
attributes by simple regular expressions: number, alphabetical

1 Document order orders element nodes in order of the occurrence

of their start-tag in the XML.

Figure 1. The Logical Structure Model of a sample
course page.

text with number, alphabetical text with capital letter, time,
person title, name, email and others. Each word is classified into
one of these eight categories as its attribute. And adjacent words
with the same attributes are jointed together to form a phrase,
sentence or paragraph. As a result, each text node forms one or
several tokens called initial tokens.
After text node generalization, we obtained a list of initial tokens
with their basic attributes, Absolute Location Paths and specific
HTML properties inherited from corresponding text nodes.

3.3 Hierarchical Clustering
In this section, we propose a novel hierarchical clustering
algorithm to group similar tokens into clusters and deduce
hierarchical relationships among clusters. The input of the
algorithm is a list of initial tokens, and the output will be a LSM.
The main tasks of the proposed hierarchical clustering algorithm
are listed as follows:
1. Construct initial cluster list by putting each initial token into

one different initial cluster. And each initial cluster inherits
the Absolute Location Path and specific HTML properties
from its initial token.

2. Scan the current cluster list from tail to head. Compare the
current cluster cβ with each of its previous candidate clusters
cα (i.e., clusters in the rightmost branch of the previous
clusters from its rightmost cluster) until no previous
candidate cluster left or one of the following operations can
be applied to combine cα and cβ. Which operation is required
to be applied in practice depends on the distance between cα
and cβ, the text types (HEADING or CONTENT) and other
properties (heading level, font size and font style) of cα and
cβ.
If the distance between cα and cβ, is less than or equal to a
given minimum distance dmin, we need to
a) merge current cluster cβ into the previous candidate

cluster cα,
l if cα and cβ are both HEADING clusters with the

same heading level AND cα has no child cluster.
l if cα and cβ are both CONTENT clusters with the

same font size AND cα has no child cluster.
b) append current cluster cβ as the last child of the

previous candidate cluster cα,
l if cα and cβ are both HEADING clusters AND cα

has higher heading level than that of cβ.
l if cα and cβ are HEADING and CONTENT

clusters respectively AND cα has no child cluster.
c) append current cluster cβ as the last sibling of the

previous candidate cluster cα,
l if cα and cβ are both HEADING clusters with the

same heading level and cα has child clusters.
l if cα and cβ are HEADING and CONTENT

clusters respectively AND cα has child clusters.
l if cα and cβ are both CONTENT clusters with the

different font size.
l if cα and cβ are both CONTENT clusters AND cα

has child clusters.

The cluster list needs to be updated after each operation.
The updated cluster list should contain a list of root nodes
of cluster trees.

3. Repeat Step 2 to recursively process the updated cluster list,
until there is only one cluster left in the current cluster list or
no two adjacent clusters can be combined.

To merge similar clusters together and distinguish dissimilar
clusters, we should define the similarity or distance between two
clusters. In general, the distance between two text nodes in the
DOM tree can be defined as the length of the shortest path
between them, i.e., the minimum number of edges needed to
connect these two text nodes, which can be calculated based on
the Absolute Location Paths of two text nodes. Such definition
also can be used to evaluate the distance between two clusters.
The mathematical definition on the distance between two clusters
is given as follows.
Definition 3: For two token cluster c and c’ with Absolute
Location Paths ALP = /s1/s2/…/sn and ALP’ = /s’1/s’2/…/s’m
respectively, there must exist some 1 ≤ k ≤ min(n, m), such that si
=s’i for 1 ≤ i ≤ k. Among them, the maximum k is denoted as kmax.
The distance between these two clusters is defined as d(c, c’) = n
+ m – 2 × kmax.
When two clusters need to be merged together, we remain the
shorter ALP of these two clusters as the ALP of the new cluster.
The algorithm for constructing LSM based on an initial token list
is given in Algorithm 1 and 2.

Algorithm 1. Construct_LSM(TL)
Input:

TL = {tokeni} – The initial token list
Output:

Page – The page cluster of the LSM
Process:
1. Construct initial cluster list CL from initial token list TL
2. dmin ← 0
3. dmax ← The average length of all branches in the DOM tree
4. Page ← Hierarchical_Clustering(CL, dmin, dmax)
5. return Page

Note that if the size of cluster list does not reduce after one scan,
we need to increase dmin by 1, otherwise initialize it as 0 to do
another scan.

4. COURSE METADATA EXTRACTION
Based on the generated LSM of a course page, course metadata
can be extracted more effectively. For Course_ID and
Course_Name, we also apply special strategies to improve the
accuracy of extractions, which include taking into account
information in web page titles and making use of a predefined
course name list.

4.1 Course ID Extraction
The ID of a course is usually denoted in the form of one or several
discipline abbreviations plus an alphanumeric code, such as
CS134b, Ph 136 and ChE/BE 210. Course_ID is a very important
kind of metadata for Online Course Organization, because the
discipline abbreviations in it can provide the explicit evidence for

subject-based course classification. For example, for a course
“Cellular Engineering” with Course_ID “ChE/BE 210”, it is
obvious that this course can be classified into the subjects
“Chemistry Engineering” and “Biological Engineering”. Using
Course_ID as a significant clue, the course classification should
be much more applicable than most existing approaches, which
are mainly based on technologies of text mining and web link
analysis. In addition, Course_ID is also a key reference for
locating other metadata, especially Course_Name, which usually
occurs following Course_ID.

Any tokens with the attribute of alphabetical text with number in
the generated LSM can be regarded as Course_ID candidates. To
identify the actual Course_ID, one possible way is to enumerate
all discipline abbreviations (e.g., CS for Computer Science, Ph for
Physics and EconS for Economic Science), match all candidates
with them, and then, label the most probably ones as Course_IDs.
However, such task should be very costly in practice. In addition,
sometimes, we may extract several different Course_IDs or no
Course_ID. For example, if the course “CS101” discusses the
course “EE123” in its content, then both “CS101” and “EE123”
will be identified as Course_IDs. For another example, if a course
has Course_ID “ERS 100”, but “ERS” is not included in the
predefined discipline abbreviation list, then “ERS 100” will not
be identified as Course_ID. In practice, more than 80% of course
page authors like to include course id in the HTML title of course
pages. Upon the above fact, we implement the efficient and
effective Course_ID extraction using the course page titles.

At first, the short alphabetical text with number in the HTML title
is extracted as the potential course id. Then, we only need to
compare all candidates with this potential course id one by one. If
a matching candidate can be found, we can confirm that it is the
actual Course_ID. Such simple method can easily and accurately
identify Course_ID. However, sometimes, we still extract no
Course_ID due to author’s editing mistakes. For example, some
course pages were modified from other web pages, but the author
forgot to update the HTML title. We have seen a course page of
“ECL 290”, but the course id included in its HTML title is “ASE
110C”. To deal with such cases, we have to refer to the predefined
discipline abbreviation list to extract Course_ID again.

4.2 Course Name Extraction
Course_Name is not only the most important metadata for Online
Course Organization, but also the key reference for locating other
metadata in the generated LSM. For example, a course page may
contain several names and emails, but only some of them in the
descendant clusters of the cluster with Course_Name token in
LSM are most likely Teacher_Name and Teacher_Email.
Any tokens with the attribute of alphabetical text with capital
letter in the generated LSM can be regarded as Course_Name
candidates. At the beginning, we attempt to use the similar idea
for extracting Course_ID to identify Course_Name. But,
unfortunately, only less than 10% course pages include the actual
course name in their HTML title. Therefore, in most cases, we
cannot find the potential course name from the HTML title. To
extract Course_Name accurately, a predefined Course Name List
is used to evaluate the probabilities of Course_Name candidates.
Since it is impossible to enumerate all valid course names in the
world, we need an approximate matching strategy to reduce the
influence from the incomplete course name list.

Algorithm 2. Hierarchical_Clustering(CL, dmin, dmax)
Input:

CL = {ci} – The current cluster list
dmin – The minimum distance
dmax – The maximum distance

Output:
Page –The page cluster of the LSM

Process:
1. if | CL | = 1 or dmin > dmax then
2. Create empty cluster Page with Page.type ← Page
3. for all cluster ci ∈ CL do
4. Create empty cluster Seg with Seg.type ← Segment
5. Seg.appendChild(ci)
6. Page.appendChild(Seg)
7. end for
8. return Page
9. end if
10. Cluster number n ← | CL |
11. for i = n to 2 do
12. The previous candidate cluster cα, the rightmost cluster of

ci -1 ∈ CL
13. The current cluster cβ ← ci ∈ CL
14. while cα != null and combine_flag = false do
15. if d(cα, cβ) ≤ dmin then
16. if cα.type=Heading and cβ.type=Heading then
17. if cα.headingLevel = cβ.headingLevel then
18. if cα has no child cluster then
19. Merge cβ into cα, CL.remove(cβ)
20. else
21. cα.appendSibling(cβ), CL.remove(cβ)
22. end if
23. else if cα.headingLevel > cβ.headingLevel
24. cα.appendChild(cβ), CL.remove(cβ)
25. end if
26. else if cα.type=Heading and cβ.type=Content then
27. if cα has no child cluster then
28. cα.appendChild(cβ), CL.remove(cβ)
29. else
30. cα.appendSibling(cβ), CL.remove(cβ)
31. end if
32. else if cα.type=Content and cβ.type=Content then
33. if cα.fontSize = cβ.fontSize and cα has no child

cluster then
34. Merge cβ into cα, CL.remove(cβ)
35. else
36. cα.appendSibling(cβ), CL.remove(cβ)
37. end if
38. end if
39. end if
40. cα ←cα.getParentCluster();
41. end while
42. end for
43. if | CL | = n then
44. dmin ++
45. else
46. dmin ← 0
47. end if
48. return Hierarchical_Clustering(CL, dmin, dmax)

In this research, a total of 5,928 course names have been extracted
respectively from the MIT OpenCourseWare website
(http://ocw.mit.edu/OcwWeb/web/courses/courses/), the UIUC
website (http://courses.uiuc.edu/cis/catalog/urbana/2007/Fall/)
and the English version of China Discipline Classification and
Code. Basically, each course name can be defined as a sequence
of keywords.
Definition 4: A sequence of keywords is denoted as S = w1w2…wn
(n ≥ 1). A sequence of keywords S’ = w’1 w’2…w’m is called a
sub-sequence of S = w1w2…wn, denoted as S’ ⊆ S, if and only if ∃
k (0 ≤ k ≤ n−m), such that ∀ 1 ≤ i ≤ m, w’i = wi+k. We call that a
sequence of keywords S1 approximately matches a sequence of
keywords S2, if and only if ∃ a sequence of keywords S0, such that
S0 ⊆ S1 and S0 ⊆ S2.
According to the above definition, two sequences of keywords
would approximately match each other, if and only if they have a
common sub-sequence.
Definition 5: A Course Name List is a set of Course Names,
denoted as NL = {Ni}, where each Course Name Ni is a sequence
of keywords. A sequence of keywords P is called a Course Name
Pattern, if and only if ∃ Ni ∈ NL, such that P ⊆ Ni.
Definition 6: A Course_Name candidate C is a sequence of
keywords. We call that C approximately matches a Course Name
Pattern P, if and only if P ⊆ C.
According to the above definitions, a Course_Name candidate can
find an approximate matching course name pattern from a given
course name list, if and only if there exists a course name in the
course name list, which has a common sub-sequence as that the
course name candidate has.
We propose a suffix-tree based model, called Course Name
Pattern Tree (CNP-tree in short), to compactly store all course
name patterns and facilitate the approximate matching. Except one
virtual root node, each node in the CNP-tree represents a keyword.
And each path from the root node to a certain node can be
regarded as a sequence of keywords, i.e., a course name pattern.
In addition, the support value associated with a certain node
indicates how many times the corresponding course name pattern
occurs in the given course name list. To improve the efficiency of
pattern matching, all children of a keyword node are stored in a
hash table.
Assume a course name list includes 3 course names, i.e.,
“Advanced Data Structure”, “Data Structure” and “Data Mining”,
Figure 2 shows the process for constructing the corresponding
CNP-tree. The path “Root → A(1) → D(1)” denotes a course
name pattern “Advanced Data” with the support value of 1, and
another path “Root → D(3) → S(2)” denotes a course name
pattern “Data Structure” with the support value of 2.
The algorithm for constructing the Course Name Pattern Tree
from a course name list is given in Algorithm 3. Each course
name, i.e., a sequence of keywords, and its all suffix sequences are
inserted or merged into the CNP-tree one by one. Meanwhile, the
support value of each pattern is calculated.
We also compute a score for each Course_Name candidate
according to its matching results in the given CNP-tree. In general,
the Course_Name candidates matching the longer patterns with
the greater support values should have the higher scores.

Algorithm 3. Construct_CNP-tree(NL)
Input:

NL = {Ni} – Course Name List
Output:

Root – The root node of the CNP-tree
Process:
1. Create an empty node Root as the root of the CNP-tree
2. for all course names Ni = w1w2…wn (n ≥ 1) ∈ NL do
3. for i = 1 to n do
4. node ← Root
5. for j = i to n do
6. if node.children_hashtable.containsKey(wj) then
7. node ← node.children_hashtable.get(wj)
8. node.support++
9. else
10. Create new_node with keyword ← wi and

support ← 1
11. node.children_hashtable.put(wi, new_node)
12. node ← new_node
13. end if
14. end for
15. end for
16. end for
17. return Root

According to the above criteria, the course name score is defined
as follows.
Definition 7: The score of a course name candidate C based on a
given CNP-tree is defined as





 >−+

=
otherwise

L
Support

L
CScore L

,0

0),11(
)(maxmax

max

,

where maxL is the maximum length of all matching patterns
and

maxLSupport is the maximum support value of all matching

longest patterns.
The main task for computing the score is to match all suffix
sequences of a Course_Name candidate with the given CNP-tree.
Algorithm 4 shows the algorithm for computing the score of a
Course_Name candidate based on a given CNP-tree.
For a Course_Name candidate “Advanced Data Mining”, two
matching 2-length course name patterns “Advanced Data (1)” and
“Data Mining (1)” can be found in the CNP-tree given in Figure 2.
Then, Score(“Advanced Data Mining”) = 2. For other examples,

Figure 2. An example of constructing CNP-tree.

Root

A(1)

D(1)

S(1)

D(1)

S(1)

S(1)

Root

A(1)

D(1)

S(1)

D(3)

S(2)

S(2)

M(1)

M(1)

Root

A(1)

D(1)

S(1)

D(2)

S(2)

S(2)

Advanced Data Structure
Data Structure
Data Mining

Advanced Data Structure Advanced Data Structure
Data Structure

Score(“Data Structure”) = 2.5 and Score(“Advanced Data
Structure”) = 3.0.

Algorithm 4. Compute_Course_Name_Score(C, Root)
Input:

C – A course name candidate, i.e., a sequence of keywords C
= w1w2…wn (n ≥ 1)

Root – The root node of the given CNP-tree
Output:

Score – The course name score of C based on the CNP-tree
Process:
1. Lmax ← 0, SupportLmax ← 0
2. for i = 1 to n do
3. if (n–i+1) ≥ Lmax then
4. node ← Root, pattern_length ← 0, support ← 0
5. for j = i to n do
6. if node.children_hashtable.containsKey(wj) then
7. node ← node.children_hashtable.get(wj)
8. support ← node.support
9. pattern_length++
10. else
11. break
12. end if
13. end for
14. if pattern_length > Lmax then
15. Lmax ← pattern_length
16. SupportLmax ← support
17. else if pattern_length = Lmax then
18. if support > SupportLmax then
19. SupportLmax ← support
20. end if
21. end if
22. end if
23. end for
24. Score ← 0
25. if Lmax > 0 then
26. Score = Lmax +(1 – 1 / SupportLmax)
27. end if
28. return Score

Apart from the course name score, we also consider other
properties of the Course_Name candidates and their locations in
the generated LSM. Such approach is also appropriate to extract
other metadata like product name, company name, address, etc.
All heuristic rules used in the proposed approach for extracting
Course_Name based on the LSM of a course page are listed in
priority order as follows.
1. Token with the attribute of alphabetical text with capital

letter can be Course_Name candidates;

2. Candidate with course name score ≥ 1 may be Course_Name;

3. Candidate with a higher header level or bigger font size is
more probably Course_Name;

4. Candidates with higher score is more probably Course_Name

5. Candidate in the more frontal of the web page and close to
Course_ID token is more probably Course_Name.

4.3 Other Course Metadata Extraction
After extracting Course_ID and Course_Name, other course
metadata, such as Course_Time, Teacher_Name and
Teacher_Email, can be located and extracted easily from the LSM.
For example, Teacher_Name usually appears following a
Teacher_Heading, i.e., a token with a keyword of “Instructor”,
“Lecturer” and so on. And Teacher_Heading is generally a sub-
heading of Course_Name. Then, according to the relative
locations of tokens in the LSM and other simple patterns
(keywords included, font style, etc.), we can extract other course
metadata successfully.
Heuristic rules used in the proposed approach for extracting other
metadata based on the LSM of a course page are listed in priority
order as follows.
For Course_Time:
1. Time token in the cluster including Course_ID or

Course_Name token;

2. Time token with its parent cluster including Course_ID or
Course_Name token;

3. Time token with its previous sibling cluster including
Course_ID or Course_Name token.

For Teacher_Name:
1. Name token with its parent cluster including

Teacher_Heading token, which is a token with a keyword of
“Instructor”, “Lecturer” and so on.;

2. Name token in the cluster including Course_Name token;

3. Name token with its parent cluster including Course_Name
token;

4. Name token with its previous sibling cluster including
Course_Name token.

For Teacher_Email:
1. Email token with its parent cluster including

Teacher_Heading token;

2. Email token with its parent cluster including
Teacher_Email_Heading token, which is a token with a
keyword of “Email” and its parent cluster including
Teacher_Heading token;

3. Email token in the cluster including Teacher_Name token;

4. Email token with its parent cluster including Teacher_Name
token;

5. Email token with its previous sibling cluster including
Teacher _Name token.

Figure 3 shows the labeled sample course page and its LSM. And

Figure 4 shows some automatically labeled course pages with
various metadata patterns.

1
PAGE

3
HEADING

CDS 205
(Course_ID)
Geometric Mechanics
(Course_Name)

4
HEADING

Spring 2006
(Course_Time)

5
HEADING

Instructor:
(Teacher_Heading)

6
CONTENT

Jerrold Marsden
(Teacher_Name)

7
HEADING

Email:
(Teacher_Email_Heading)

8
CONTENT

marsden@cds.caltech.edu
(Teacher_Email)

9
HEADING

TAs:

10
CONTENT

Patricio Vela
(Name)

11
HEADING

Email:
(Email_Heading)

12
CONTENT

pvela@cds.caltech.edu
(Email)

13 14
CONTENT

9 unites (3-0-6) third term.
HEADING

Course Description:

2
SEGMENT

15
HEADING

Prerequisites:

16
CONTENT

CDS 202,
CDS 140.

17
CONTENT

The geometry and ...

18
SEGMENT

19
HEADING

Last updated:

20
CONTENT

01/19/06.
(Time)

Labeled Logical Structure Model

The labeled course page

5. PERFORMANCE EVALUATION
We have implemented the proposed course metadata extractor in
Java (JRE 1.6.0.). The experiment was performed on a computer
with Intel Pentium 1.86GHz CPU and 1.49GB RAM, running
Microsoft Widows XP Professional with Service Pack 2. To
evaluate the performance of the proposed solution, we randomly
selected a total of 326 course pages from websites of five US
universities (California Institute of Technology, University of
California at Davis, University of California at Irvine, University
of Connecticut and Washington State University) and manually
labeled all required metadata in the course pages. Then we run the
implemented metadata extractor to identify the course metadata in
the course pages automatically. In addition, we modified the code
of the HMM-Based Text Mining and Extraction Tool
(http://www.cs.toronto.edu/~ssanner/software.html), which is an
implementation of hierarchical hidden-Markov model (HMM)
text extraction from web pages as proposed by [5]. And then, we
run it to label the course metadata by using our dataset as both
training set and testing set.

The performance of extractions is evaluated by Precision, Recall
and F1 score. An extracted metadata is considered correct if it has
the same content (ignore redundant white-space and special
characters) as that in the corresponding labeled metadata. Then,
the Precision P is defined as the number of correct extractions
divided by the total number of extractions, while the Recall R is
defined as the number of correct extractions divided by the total
number of labeled course page. The F1 score is defined as 2PR /
(P+R), i.e., the harmonic mean of P and R. In addition, we use
Total Accuracy to evaluate the overall performance of these two
solutions, which is defined as the number of correct extraction
course page (i.e., course page with all valid metadata extracted
correctly) divided by the total number of course pages.

Table 1 shows the experimental results, which have shown that
the proposed LSM-based solution has achieved much better
effectiveness for most course metadata than the HMM-based
solution. The HMM-based solution always has a higher Recall
value than the LSM-based solution, because it usually labels
many tokens to cover most metadata, but most of labeled tokens
are not correct metadata.

Table 1. The experimental results.

LSM-based HMM-based
Metadata

P R F1 P R F1

Course_ID 93.09% 86.81% 89.84% 30.70% 89.90% 45.80%

Course_Name 77.30% 77.30% 77.30% 32.10% 98.60% 48.50%

Course_Time 66.88% 73.05% 69.83% 19.20% 95.50% 32.00%

Teacher_Name 64.43% 55.80% 59.81% 58.60% 96.20% 72.90%

Teacher_Email 79.25% 65.63% 71.79% 19.00% 94.30% 31.60%

Total Accuracy 50.61% 6.1%

6. CONCLUSIONS
In this paper, we proposed a novel hierarchical clustering
approach to generate Logical Structure Model of a web page from
the DOM tree, which is then used to facilitate extracting metadata
from course pages. The experimental results have shown that our
solution can achieve effective extractions for course metadata.

We will continue improvement for the course metadata extractor,
which includes enhancing the precision and recall of extractions,
extending to other course metadata, such as Course_Intro,
Course_Outline, Course_Resource and Course_Literature, and
integrating with other modules in Online Course Organization to
label a larger amount of course pages automatically. In addition,
we also plan to extend our solution to other specific domains,
such as online news and product information, to extract useful
metadata, which can directly benefit HP’s business.

7. ACKNOWLEDGMENTS
This work is supported by HP Labs China under the project
“Online Course Organization”, as well as the National Natural
Science Foundation of China under Grant No. 90412010.

Figure 3. The labeled course page and its LSM.

8. REFERENCES
[1] Kushmerick, N., Weil, D., and Doorenbos, R. Wrapper

induction for information extraction. In Proc. of Intl. Joint
Conf. on Artificial Intelligence (IJCAI), pp729-735, 1997.

[2] Muslea, I., Minton, S., and Knoblock, C. A. Hierarchical
wrapper induction for semistructured information sources.
Autonomous Agents and Multi-Agent Systems. Vol. 4, No. 1-
2, pp93-114, 2001.

[3] Freitag, D. Information extraction from html: Application of
a general learning approach. In Proc. of the 15th Conf. on
Artificial Intelligence (AAAI), pp517-523, 1998.

[4] Freitag, D., and Kushmerick, N. Boosted wrapper induction.
In Proc. of the 17th National Conf. on Artificial Intelligence
(AAAI), pp577-583, 2000.

[5] Freitag, D., and McCallum, A. Information extraction with
HMM and shrinkage. In Proc. of the 15th National Conf. on
Artificial Intelligence (AAAI), pp31-36, 1998.

[6] Yin, P., Zhang, M., Deng, Z., and Yang, D. Metadata
extraction from bibliographies using Bigram HMM. In Proc.
Of the 7th Intl. Conf. on Asian Digital Libraries (ICADL),
pp310-319, 2004.

[7] Peng, F. and McCallum, A. Information extraction from
research papers using conditional random fields. Information
Processing Management. Vol. 42, No. 4, pp963-979, 2006.

[8] Zhu, J., Nie, Z., Wen, J., Zhang, B., and Ma, W. 2D
Conditional Random Fields for web information extraction.
In Proc. of the 22nd Intl. Conf. on Machine Learning
(ICML), pp1044-1051, 2005.

[9] Zhu, J., Nie, Z., Wen, J., Zhang, B., and Ma, W.
Simultaneous record detection and attribute labeling in web
data extraction. In Proc. of the 12th ACM Intl. Conf. on
Knowledge Discovery and Data Mining (SIGKDD), pp494-
503, 2006.

[10] Chen, J., Zhou, B., Shi, J., Zhang, H., and Wu, Q. Function-
based object model towards website adaptation. In Proc. of
the 10th Intl. Conf. on World Wide Web (WWW), pp587-
596, 2001.

[11] Cai, D., Yu, S., Wen, J., and Ma W. VIPS: a vision-based
page segmentation algorithm, Microsoft Technical Report,
MSR-TR-2003-79, 2003.

[12] Xiang, P., Yang, X., and Shi, Y. Effective page segmentation
combining pattern analysis and visual separators for
browsing on small screens. In Proc. of the 2006
IEEE/WIC/ACM Intl. Conf. on Web Intelligence, pp831-840,
2006.

Figure 4. Some automatically labeled course pages.

