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Summary. The “Dendritic Cell Algorithm” (DCA) is inspired by the function of
the dendritic cells of the human immune system. In nature, dendritic cells are the
intrusion detection agents of the human body, policing the tissue and organs for po-
tential invaders in the form of pathogens. In this research, an abstract model of den-
dritic cell (DC) behavior is developed and subsequently used to form an algorithm—
the DCA. The abstraction process was facilitated through close collaboration with
laboratory-based immunologists, who performed bespoke experiments, the results
of which are used as an integral part of this algorithm. The DCA is a population-
based algorithm, with each agent in the system represented as an “artificial DC”.
Each DC has the ability to combine multiple data streams and can add context to
data suspected as anomalous. In this chapter, the abstraction process and details of
the resultant algorithm are given. The algorithm is applied to numerous intrusion
detection problems in computer security including the detection of port scans and
botnets, where it has produced impressive results with relatively low rates of false
positives.

1.1 Introduction

The dendritic cell algorithm (DCA) is a biologically inspired technique, de-
veloped for the purpose of detecting intruders in computer networks. This
algorithm belongs to a class of biologically inspired algorithms known as “arti-
ficial immune systems” (AIS) [de Castro and Timmis, 2002]. Such algorithms
use abstract models of the immune system to underpin algorithms capable of
performing some useful computational task [Forrest et al., 1994]. The human
immune system is a rich source of inspiration as it provides a high level of pro-
tection for the host body without causing harm to the host [Coico et al., 2003].

As the name suggests, the DCA is based on a metaphor of naturally oc-
curring dendritic cells (DCs), a type of cell that is native to the innate arm
of the immune system. DCs are responsible for the initial detection of in-
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truders, including bacteria and parasites, through responding to the damage
caused by the invading entity. Natural DCs receive sensory input in the form
of molecules that can indicate if the tissue is healthy or in distress. These
cells have the ability to combine these various signals from the tissue and to
produce their own output signals. The output of DCs instructs the responder
cells of the immune system to deal with the source of the potential damage.
DCs are excellent candidate cells for abstraction to computer security as they
are the body’s own intrusion detection agents.

The DCA is a multi-sensor data fusion and correlation algorithm that can
perform anomaly detection on ordered data sets, including real-time and time-
series data. The signal fusion process is inspired by the interaction between
DCs and their environment. In a similar manner, the DCA uses a population
of agents, each representing an individual DC that can perform fusion of signal
input to produce their own signal output. The assessment of the signal output
of the entire DC population is used to perform correlation with “suspect” data
items. Further details of this mechanism and of the function of the DCA are
presented in Section 1.4.

This chapter presents the history of the development of the DCA, including
a brief overview of the abstract biology used to underpin the algorithm. This is
followed by a detailed description of a generic DC-based algorithm, including
pseudocode and worked example calculations. This chapter concludes with a
discussion of the applications of the algorithm to date, and application areas
to which the algorithm could be applied are suggested.

1.2 Biological Inspiration

1.2.1 Danger, Death, and Damage

The immune system is a decentralized, robust, complex adaptive system. It
performs its function through the self-organized interaction between a diverse
set of cell populations. Classically, immunology has focused on the body’s
ability to discriminate between protein molecules belonging to “self” or “non-
self”, through the careful selection of cells during fetal and infant stages.
This theory has underpinned the research performed in immunology since its
conception by Paul Ehrlich in 1891 [Silverstein, 2005]. However, numerous
problems have been uncovered with this paradigm. For example, if the im-
mune system is tuned to respond only to non-self, then why do autoimmune
diseases occur, such as multiple sclerosis and rheumatoid arthritis? Or, why
do intestines contain millions of bacteria, yet the immune system does not
react against these colonies of non-self invaders?

In 1994, immunologist Polly Matzinger controversially postulated that
the immune system’s objective is not to discriminate between self and non-
self, but to react to signs of damage to the body. This theory is known as



1 Detecting Danger: The Dendritic Cell Algorithm 3

the “Danger Theory” [Matzinger, 1994]. This theory postulates that the im-
mune system responds to the presence of molecules known as danger sig-
nals, which are released as a by-product of unplanned cell death (necro-
sis) [Edinger and Thompson, 2004]. When a cell undergoes necrosis, the cell
degrades in a chaotic manner, producing various molecules (collectively termed
“the danger signals”), formed from the oxidation and reduction of cellular ma-
terials. Dendritic cells are sensitive to increases in the amount of danger signals
present in the tissue environment, causing their maturation, which ultimately
results in the activation of the immune system [Gallucci et al., 1999].

There are two sides to the danger theory: activation and suppression.
Whereas the presence of danger signals is sufficient to activate the immune
system, the presence of a different class of signal can prevent an immune
response. This mechanism of suppression arises as a result of apoptotic cell
death, which is the normal manner in which cells are removed from the body.
When a cell undergoes this process of apoptosis, it releases various signals
into the environment. DCs are also sensitive to changes in concentration of
this signal. DCs can combine the danger and safe signal information to decide
if the tissue environment is in distress or is functioning normally. The dan-
ger theory states that the immune system will only respond when damage is
indicated and is actively suppressed otherwise [Mahnke et al., 2007].

In addition to the danger theory related signals, one other class of sig-
nal is processed as environmental input by DCs. These signals are termed
PAMPs (pathogenic associated molecular patterns) and are a class of molecule
that are expressed exclusively by microorganisms such as bacteria. The “in-
fectious non-self” theory of immunology, developed by Janeway in the late
1980s [Janeway, 1989], states that the immune system will respond by attack-
ing cells that express PAMP molecules. PAMPs are biological signatures of
potential intrusion.

1.2.2 Introducing Dendritic Cells

Dendritic cells are the immune cells that are sensitive to the presence of dan-
ger signals in the tissue [Mosmann and Livingstone, 2004]. In addition to dan-
ger signals, DCs are also sensitive to two other classes of molecule, namely
PAMPs and “safe” signals. PAMPs are molecules produced by microorganisms
and provide a fairly definitive indicator of pathogenic presence. Safe signals
are the opposite of danger signals and are released as a result of controlled,
planned cell death. In response to the collection of signals, the DC produces
its own set of output signals—the relative concentrations of the output signals
is dependent on the relative concentrations of the input signals over time. It
is the combination of external signals and current internal state that results
in what is defined in this work as “context”.

In addition to the processing of environmental signals, DCs also collect
proteins termed “antigen”. DCs have the ability to combine the signal infor-
mation with the collected antigen to provide “context” for the classification of
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antigen. If the antigen are collected in an environment of mainly danger and
PAMP signals, the context of the cell is “anomalous” and all antigen collected
by the cell are deemed as potential intruders. Conversely, if the environment
contains mainly safe signals, then the context of the cell is “normal” and all
collected antigen are deemed as non-threatening. This theory contrasts the
classical self/non-self theory as the structure of the antigen proteins is not
used as a basis of classification; the context is used to determine if an antigen
is derived from a potential invader. The structure of the antigen is important
for the subsequent response, but the processing performed by DCs involves
the examination of the tissue “context” and are unaffected by the structure
of the antigen.

In the natural system, this antigen-plus-context information is passed on to
a class of responder cells, termed T-cells. The T-cells translate the information
given to them by the local DC population. If sufficient DCs present a particular
antigen to T-cells in an anomalous context, then the immune system responds
by eliminating any cell containing that antigen. It is noteworthy that this is
a simplified description of a highly complicated immune function. For more
information on the action of T-cells, please refer to a standard immunology
text such as Janeway [Janeway, 2004].

The description above is a simplified description of the events that occur
“in vivo”. For readers interested in the exact mechanism of DC function, refer
to Lutz and Schuler [Lutz and Schuler, 2002]. In this chapter, these principles
are abstracted to form a model of DC behavior (described in Section 1.3).

1.3 Abstract Model

1.3.1 The Approach

The DCA has been developed as part of an interdisciplinary project, known
as the “Danger Project” [Aickelin et al., 2003], which comprised a team of
researchers including practical immunologists, computer scientists, and com-
puter security specialists. The aim of the project was to bring together
state-of-the-art immunology with artificial immune systems to improve the
results of such systems when applied to computer network intrusion detec-
tion [Twycross and Aickelin, 2008]. The abstract model presented in this sec-
tion is the result of the collaboration between the computer scientists and im-
munologists. Thorough analysis of the literature assisted the interdisciplinary
collaboration, facilitating the performance of the immunological research that
contributes to the results of the abstraction process. After this important
development, key published findings from DC biology were collated.

To meet the needs of the development of the algorithm and to further re-
search in immunology, aspects of DC function are investigated. This includes
the characterization of signals and the effects of DCs on the responder cells.
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Fig. 1.1. A depiction of the abstraction process used in this chapter, and the rela-
tionship between abstraction and immunology.

Various wet-lab experiments have been performed using natural DCs to de-
termine this necessary information, results of which assist in clarifying certain
aspects of DC function. This research is performed following intense discussion
and debate between computer scientists and immunologists and is mutually
beneficial. A diagram of the process used to develop the DCA is shown in
Figure 1.1.

1.3.2 Abstract DC Biology

As explained in Section 1.2, the biological function of DCs is as a natural
intrusion detector. The mechanisms by which DCs perform this function are
complex, numerous, and still debated within immunology [Matzinger, 2007].
To produce an algorithm (the DCA), the disparate information regarding DC
biology must be combined to form an abstract model. The developed abstract
model forms the basis of the DCA. Several key properties of DC biology are
used to form the abstract model. These properties are compartmentalization,
differentiation, antigen processing, signal processing, and populations.

Compartmentalization: This property provides two separate areas in which
DCs perform sampling and analysis. The processing of input signals and collec-
tion of antigen occur in “tissue”, which is the environment monitored by DCs.
Upon maturation, DCs migrate to a processing center, termed a lymph node.
While in the lymph nodes, DCs present antigen coupled with context signals,
which is interpreted and translated into an immune response. In nature, this
is designed to keep potentially deadly T-cells away from direct contact with
the tissue until it is required.

Differentiation: In this model, DCs exist in one of three states, termed its
state of differentiation: immature, semi-mature, and mature (see Figure 1.2).
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Fig. 1.2. An abstract model of the differentiation of DCs, showing the transforma-
tion between states and the signals responsible for the transitions. The inflammatory
signal (not depicted) acts to amplify the effects of all other signals.

Transitions to semi-mature and mature occur through the differentiation of
the immature DC. This transformation is initiated upon the receipt of input
signals. The resultant DC state is determined through the relative proportions
of input signal categories received by the immature cell. The terminal state of
differentiation dictates the context of antigen presentation where “context” is
an interpretation of the state of the signal environment. Semimature implies
a “safe” context and mature implies a “dangerous” context. This is a pivotal
decision mechanism used by the immune system and is the cornerstone of this
abstract model.

Antigen processing : The processing of antigen through collection and pre-
sentation is vital to the function of the system. The pattern matching of
the antigen structure is not used in this model unlike previous AIS mod-
els [Balthrop et al., 2002]. The collection of antigen is not responsible for the
activation of the immune system although it is necessary for antigen to be
sampled in order to have an entity to classify. This is analogous to sampling
a series of “suspects” or data to classify. The process of an immature DC
collecting multiple antigen forms the sampling mechanism used by the DCA.
Each DC collects a subset of the total antigen available for sampling.

Signal processing : Dendritic cells perform a type of biological signal pro-
cessing. DCs are sensitive to differences in concentration of various molecules
found in their tissue environment. Safe signals are the initiators of matura-
tion to the semi-mature state. Danger signals and PAMPs are responsible for
maturation to the fully-mature state. Simultaneous receipt of signals from
all classes increases the production of all three output signals, though the
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sample signals and antigen

update output and CSM cytokines
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[CSM < threshold] [CSM > threshold]

Fig. 1.3. A UML activity diagram representing the key features of DC biology,
presented in a systemic manner. The processes on the left occur in the tissue and
the processes on the right in the lymph node.

safe signal reduces the expected amount of mature output signal generated
in response to danger and PAMP signals. Output signals are generated at
concentrations proportional to the input signals received.

Dendritic cells do not perform their function in isolation, residing in tissue
as a population. Each member of the population can sample antigen and
signals. This multiplicity of DCs is an important aspect of the natural system.
Multiple DCs are required to present multiple copies of the same antigen type
in order to invoke a response from the adaptive immune system. This is an
error-tolerant component of DC behavior as it implies that a misclassification
by one cell is not enough to stimulate a false-positive error from the immune
system. Using a population of DCs also means that diversity can be generated
within the population, such as assigning each DC its own threshold values,
if desired. Such diversity may also add robustness to the resultant process
presented in Figure 1.3.

1.3.3 Signals and Antigen Overview

As this model is in part inspired by the danger theory, various signals drive
the system. In natural systems, the signals are a reflection of the state of the
environment. Four categories of signal are used in this abstract model, inclu-
sive of PAMPs, danger signals, safe signals, and inflammation. The various
categories of signal direct the DC population down two distinct pathways,
one causing the activation of the immune system, and one responsible for
generating peripheral tolerance. Upon examination of the relevant biology,
it appears that DCs process all categories of signal stated above to produce
their own output signals [Lutz and Schuler, 2002]. The output signals include
a costimulation signal (CSM), which shows that the cell is prepared for anti-
gen presentation and two context signals, the mature and semi-mature output
signals. An overview of the names and functions of the biological signals and
their abstracted counterparts is given in Table 1.1.
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Table 1.1. Biological signal functions and their abstracted counterparts.

Signal Biological Abstract Computational
Property Property Example

PAMP Indicator of micro-
bial presence

Signature of likely
anomaly

Error messages per
second

Danger signals Indicator of tissue
damage

High levels indicate
“potential” anomaly

Network packets per
second

Safe signals Indicator of healthy
tissue

High levels indicate
normally functioning
system

Size of network pack-
ets

Inflammation Indicating general
tissue distress

Multiplies all other
input signals

User physically ab-
sent

In the forthcoming Sections 1.3.4 to Section 1.3.8, all signals used in the
abstract DC model are explained and rationalized individually.

1.3.4 Pathogenic Associated Molecular Patterns (PAMPs)

In a biological context, PAMPs are essential products produced by microor-
ganisms but not produced by the host. These molecules are not unique
to pathogens but are produced by microbes, regardless of their potential
pathogenicity [Medzhitov and Janeway, 2002]. PAMP molecules are a firm in-
dicator to the innate immune system that a nonhost-based entity is present.
Specific PAMPs bind to specific receptors on DCs (termed pattern recognition
receptors), which can lead to the production of two output signal molecules.
These output signals are termed envision molecules (CSM) and the “mature”
output signal. Both of these chemical outputs can indicate a likely presence
of a foreign entity. In this abstract model, a PAMP is interpreted as a signal
that is a confident indicator of an abnormality. An increase in the strength of
the PAMP input signal leads to an increase in two of three potential output
signals, namely the CSM signal and the mature output signal, produced by
the artificial DCs in the abstract model.

In the abstract model, PAMPs are certain indicators of an anomaly. This
is based on their role in vivo as signatures of bacterial presence. In this re-
search, this is translated as mapping to a signature of intrusion, or abnor-
mally high rate of errors when the DCA is applied to computer security
problems. For example, when applied to the detection of scanning activity,
a high frequency of networking errors is translated as a high value of PAMP
signal [Bakos and Berk, 2002].

1.3.5 Danger Signals

In the human immune system, danger signals are released as a result of un-
planned cell death. Specifically, danger signals are the by-product of cellu-
lar degradation in an uncontrolled manner. The constituent components of
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danger signals are formed from the erratically decomposing macromolecules
normally found inside the cell, encapsulated by the cell membrane. They are
indicators of damage to tissue, which the immune system is trying to protect.
In a similar manner to PAMPs, the receipt of danger signals by a DC also
causes differentiation to the fully mature state. However, the resultant effect
on DCs through danger signals is less than that of PAMPs. This means that
a higher concentration of danger signal molecules are needed in order to elicit
a response of the same magnitude as with a similar concentration of PAMPs,
where concentration is the number of molecules of signal per unit volume.

Within the context of the abstract model, danger signals are indicators
of abnormality but have a lower value of confidence than associated with the
PAMP signal. The receipt of danger signals also increases the amount of CSMs
and mature output signals produced by the DC. The receipt of danger sig-
nals causes the presentation of antigen in a “dangerous context”. This can
ultimately lead to the activation of the adaptive immune system. In a com-
putational context, for example to detect scanning activity on a computer
network, the danger signal can be derived from the rate of sent/received net-
work packets per second. A high rate of sending of packets may be indicative
of an anomaly at high levels but at low levels is likely to indicate normal
system function.

1.3.6 Safe Signals

Within natural immune systems, certain signals are released as a result of
healthy tissue cell function. This form of cell death is termed apoptosis—the
signals of which are collectively termed “safe signals” in this work. The receipt
of safe signals by a DC results in the production of CSMs in a similar manner
to the increase caused by PAMPs and danger signals. In addition, the “semi-
mature” output signal is produced as a result of the presence of safe signals
in the tissue. The production of the semi-mature output signal indicates that
antigen collected by this DC was found in a normal, healthy tissue context.
Tolerance is generated to antigen presented in this context.

The secondary effect of safe signals is their influence on the production
of the mature output signal. In the situation where tissue contains cells un-
dergoing both apoptosis and necrosis, the receipt of safe signals suppresses
the production of the mature output signal in response to the danger and
PAMP signals present in the tissue. This appears to be one of many regula-
tory mechanisms provided by the immune system to prevent the generation
of false positives. This is a key mechanism of suppression of the response to
antigen not directly linked to a pathogen. The balance between safe and dan-
ger signals and the resultant effects on the production of the mature output
signal is incorporated in the signal processing mechanism. The incorporation
of this mechanism is significant for the danger project as its use was facili-
tated by the close collaboration achieved with the team of laboratory-based
immunologists.
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Fig. 1.4. An abstract model of DC signal processing. The inflammatory signal (not
pictured) acts as a general amplification signal.

Within this abstract model, input signals that indicate normality are
termed “safe signals”. This signal is interpreted as data that indicates normal
system/data behavior and a high level of this signal will increase the output
signal value for the “semi-mature signal”. In line with the biological effect
of this signal, subsequent receipt of a high safe signal value will reduce the
cumulative value of the “mature” output signal, incremented by the receipt
of either PAMPs or danger signals. The interaction between these signals is
shown in Figure 1.4.

In a computational context, for example to detect scanning activity on a
computer network, the safe signal is an indicator of normal machine behavior,
which can also be derived from the rate of sent/received network packets
per second. In previous work [Greensmith and Aickelin, 2007], it is identified
that scanning activity produces highly “regular” and small network packet
sizes. Therefore, the safe signal value is produced in proportion to the average
packet size, with a high safe signal value created if the average packet size is
sufficiently larger than the expected size.

1.3.7 Inflammation

As shown in [Sporri and Caetano, 2005], the presence of inflammatory sig-
nals in human tissue is insufficient to initiate maturation of an immature DC.
However, the presence of inflammation not only implies the presence of in-
flammatory cytokines (cytokines are biological signals that act as messenger
molecules between cells) but also that the temperature is increased in the af-
fected tissue. Additionally, the rates of reaction are increased because of this
increasing heat, plus inflammatory cytokines initiate the process of dilating
blood vessels, recruiting an increased number of cells to the tissue area under
distress.
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A variant of this concept is employed in the abstract model, where in-
flammation has the effect of amplifying the other three categories of input
signal, inclusive of safe signals. The resultant effect of the amplification is
an increase in the artificial DC’s output signals. An increase in inflammation
implies that the rate of DC migration will increase, as the magnitude of the
CSMs produced by the DC will occur over a shorter duration, hence resulting
in a shortened DC life span in the tissue compartment. It is important to
stress, however, that the presence of inflammatory signals alone is insufficient
to instruct the immune system how to behave appropriately.

1.3.8 Output Signals

From examination of the biological literature, it is evident that DCs produce
a set of output signals as a result of exposure to the environmental input
signals experienced in the tissue. By process of abstraction, three signals in
particular are selected to be the output signals of the DCs:

1. CSM output: limits the life span of a DC through being assessed against
a “migration threshold”.

2. Semi-mature: output incremented in response to safe signals.
3. Mature: output incremented in response to PAMP and danger signals;

reduced in response to safe signals.

In the natural system DC CSM production is combined with production of
another receptor that attracts the DC to the lymph node for antigen presenta-
tion, where the DCs present their antigen to a responder cell. This mechanism
is complicated and is abstracted to a simpler version for use within an algo-
rithm. In the abstract model, an increased amount of CSMs increases the
probability of a DC leaving the tissue and entering the lymph node for anal-
ysis. This is abstracted into a model through the assignment of a migration
threshold (described in detail in Section 1.4). In the abstract model, if this
threshold is exceeded, the state of the cell changes from immature to either
semi-mature or mature. The cell then enters the “antigen presentation stage”
where its context is assessed.

In nature, the presence or absence of these two chemicals controls the
response of the responder cells. In the presented model, these responder cells
do not feature, and therefore, the information provided through the use of
these context signals is used in a different manner. The context of the DC in
the abstract model is controlled by the relative proportions of the semi-mature
signal to the mature signal. The DCs context is assigned by whichever of the
two output signals is greater upon presentation of antigen by the DC. A
larger value of semi-mature signal implies the presented antigen was collected
in a primarily “normal” context, whereas a larger value of the mature output
signal would imply that the presented antigen was collected in a potentially
“anomalous” context.
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Table 1.2. Biological and abstract computational terms for the input signals.

Biological Abstract

PAMP PAMP
Necrotic products Danger signals
Apoptotic cytokines Safe signals
Inflammatory cytokines Inflammation

1.3.9 Signal Summary

Table 1.2 gives the various synonyms for the various terms at different levels of
abstraction, from the actual biological terms to the terms used in the general
model of a DC-based algorithm.

A state chart showing the influence of the various signals and the corre-
sponding output signals is presented in Figure 1.5, where IL-12 and IL-10 are
the mature and semi-mature output signals, respectively.

1.3.10 Accounting for Potency: Signal Processing

The actual mechanisms of internal DC signal processing are vastly complex
and are termed signal transduction mechanisms. For the purpose of the ab-
stract model and resultant algorithm, a simplified version of signal processing
can be implemented without compromising the underlying metaphor. An ab-
stracted model of signal transduction is developed that accounts for the mag-
nitude of responses but does not involve the intricacies of a signaling network.

DC created from monocyte

Exposed to safe signals

and inflammation

Exposed to PAMP, danger

signals and inflammation

Mature DC

Resident: lymph node

Antigen: present

Express: CSM, IL-2

T-cell: activate

Semi-mature DC

Resident: lymph node

Antigen: present

Express: CSM, IL-10

T-cell: supress

Immature DC

Resident: tissue

Antigen: collect

Express: IL-2

T-cell: no action

Fig. 1.5. A state chart showing various DC states and the featured input and output
signals, where responder cells are termed T-cells.
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This interaction is simplified to a weighted sum equation, which is performed
for the transformation of input signals to output signals. A representation of
this process is shown in Figure 1.4. The influence of a signal on a cell, the
potency, is translated as the weight value given to each signal, and efficacy
represented as either a positive or negative weight value. In the system pre-
sented in this chapter, the weight values given above are used as an integral
part of the system, and it is repeatedly shown that these values suit the cho-
sen applications. However, these weights are given as a guideline—other values
may be more suitable for different applications. This may become apparent
as the DCA is applied to a more diverse set of applications.

1.3.11 Abstract Antigen

The combination of signals provides the basis of classification that can be
used for the purpose of anomaly detection. The processing of signals would be
sufficient to indicate if the tissue is currently in distress or under attack, but
it would not yield any information regarding the originator of the anomaly,
namely the culprit responsible. Antigen is required in order to link the ev-
idence of the changing behavior of tissue with the culprits that may have
caused this change in behavior. Antigen is necessary: it is the data that is to
be classified, with the basis of classification derived not from the structure of
this antigen but from the relative proportions of the three categories of input
signal, processed across a population of DCs.

It is important to note that a single antigen of a specific structure will not
be sufficient to elicit any response from the immune system. Concentrations
of antigens with identical structures are found in tissue and processed by the
DCs. In selecting suitable data, multiple items with the same structure should
be used, forming an “antigen type”. Aggregate sampling of multiple antigens
is a key property of the system and may provide some robustness and tolerance
against rogue signal processing of a small number of DCs. In this abstraction,
no processing of antigen is performed as the focus is on the treatment of the
different categories of input signal.

1.3.12 Assumptions and Simplifications

As part of this abstraction process, various assumptions and simplifications are
made, as the purpose of this process is to derive a feasible algorithm and not to
produce a realistic simulator of DC biology. It is assumed that no other type of
immune cells are required for this algorithm to function. Unlike the approach
of [Twycross, 2007], DCs in the DCA function in isolation and the T-cell
component is replaced with a statistical technique. This is possible as system
changing responses do not form part of this model. It is also assumed that no
inter-cell communication occurs and that individual DCs do not communicate
with one another. This can be assumed as no adaptation is present in this
system.
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It is assumed that four signal categories exist, and that the DC does not
respond to any other signal. Of course, DCs express a plethora of receptors
for various molecules. In this abstraction, only the molecules responsible for
immune activation are used. In a similar manner, it is assumed that three
output signals are produced. It is also assumed that DCs are impervious to
unexpected death, unlike in the human immune system. In this model, a single
tissue compartment is used.

The above assumptions are used to make the abstraction clearer and the
resultant algorithm simpler to understand. There are also various assumptions
in this abstraction that are made due to the lack of understanding of natural
DCs within immunology. In this abstraction, it is assumed that each DC
has a fixed size capacity for antigen storage. This is assumed as there is no
biological data available to confirm the antigen capacity of DCs. In a similar
manner, it is unknown which agent is responsible for limiting the sampling
period of the DCs within the tissue. In this abstraction, measurement of CSMs
against a migration threshold determines the duration of the DCs life span.
As the objective of this work is to produce an algorithm (and not an accurate
simulation), it is acceptable to make such assumptions, provided they are
useful in leading to a feasible algorithm.

1.4 The Dendritic Cell Algorithm

1.4.1 Algorithm Overview

The development of an abstract model of DC behavior is one step in the devel-
opment of a danger theory inspired intrusion detection system. To transform
the abstract model of DC biology into an immune-inspired algorithm, it must
be formalized into the structure of a generic algorithm and into a series of
logical processes. It must also be expressed appropriately so that the DCA
can be implemented feasibly. A generic form of the algorithm is given in this
section. For further details of the algorithm and for information regarding
its implementation as a real-time anomaly detection system, please refer to
Greensmith et al. [Greensmith et al., 2008].

The purpose of a DC algorithm is to correlate disparate data-streams in
the form of antigen and signals. The DCA is not a classification algorithm but
shares properties with certain filtering techniques. It provides information rep-
resenting how anomalous a group of antigen is, not simply if a data item is
anomalous or not. This is achieved through the generation of an anomaly
coefficient value, termed the “mature context antigen value” (MCAV). The
labeling of antigen data with a MCAV coefficient is performed through corre-
lating a time-series of input signals with a group of antigen. The signals used
are pre-normalized and pre-categorized data sources, which reflect the behav-
ior of the system being monitored. The signal categorization is based on the
four signal model, based on PAMP, danger, safe signals, and inflammation.
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The cooccurrence of antigen and high/low signal values forms the basis of
categorization for the antigen data.

This overview, though technically correct, is still somewhat abstract. To
cement the ideas that form the DCA, a generic representation of the algorithm
is presented. A formal description of the algorithm and details of its imple-
mentation are presented in [Greensmith, 2007, Greensmith et al., 2008]. To
further elaborate on the workings of a DC-based algorithm, each key compo-
nent is described in turn. The primary components of a DC-based algorithm
are as follows:

1. Individual DCs with the capability to perform multi-signal processing.
2. Antigen collection and presentation.
3. Sampling behavior and state changes.
4. A population of DCs and their interactions with signals and antigen.
5. Incoming signals and antigen, with signals pre-categorized as PAMP, dan-

ger, safe, or inflammation.
6. Multiple antigen presentation and analysis using “types” of antigen.
7. Generation of anomaly coefficient for various different types of antigen.

1.4.2 An Individual DC

As aforementioned, each DC in the system is represented by an object, capable
of executing its own behavioral instructions. DCs process input signals to form
a set of cumulatively updated output signals in addition to the collection of
antigen throughout the duration of the sampling stage. Each DC can exist
in one of three states at any point in time. These states are immature, semi-
mature, or mature. The differences in the semi-mature and mature state is
controlled by a single variable, determined by the relative differences between
two output signals produced by the DCs. The initiation of the state change
from immature to either mature or semi-mature is facilitated by sufficient
exposure to signals, limited by the cell’s “migration threshold”. Pseudocode
of a generic DC object is given in Algorithm 1.

While in the immature state, the DC has the following three functions,
which are performed each time a single DC is updated:

1. Sample antigen: the DC collects antigen from an external source (in this
case, from the “tissue”) and places the antigen in its own antigen storage
data structure.

2. Update input signals: the DC collects values of all input signals present in
the signal storage area.

3. Calculate interim output signals: at each iteration, each DC calculates
three temporary output signal values from the received input signals, with
the output values then added to form the cell’s cumulative output signals.

The signal processing performed while in the immature state is suggested
to be in the form of a weighted sum equation, bypassing the modeling of any bi-
ologically realistic gene regulatory network or signal transduction mechanism.
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Algorithm 1: Pseudocode of the functioning of a generic DC object.
input : signals from all categories and antigen
output: antigen plus context values

initializeDC;
while CSM output signal < migration Threshold do

get antigen;
store antigen;
get signals;
calculate interim output signals;
update cumulative output signals;

end
cell location update to lymph node;

if semi-mature output > mature output then
cell context is assigned as 0;

else
cell context is assigned as 1;

end
kill cell;
replace cell in population;

A simple weighted sum equation is used in order to reduce any additional
computational overheads, with the intended DCA application being real-time
anomaly detection. In the generic algorithm, the only crucial component of
this procedure is the ability of the end user to map raw input data to one of
the four categories of input signal (PAMP, danger, safe, and inflammation).
The general form of the signal processing equation is shown in equation (1.1)

Output = (Pw

∑

i

Pi + Dw

∑

i

Di + Sw

∑

i

Si) ∗ (1 + I) (1.1)

where Pw are the PAMP-related weights, Dw for danger signals, etc., and each
output value is then cumulatively added over time for future assessment.

In the generic form of the signal processing equation (1.1), Pi, Di, and Si

are the input signal value of category PAMP (P ), danger (D), or safe (S) for
all signals (i) of that category, assuming that there are multiple signals per
category. In the equation, I represents the inflammation signal. This sum is
repeated three times, once per output signal. This is to calculate the interim
output signal values for the CSM output, the semi-mature output, and mature
output signals. These values are cumulatively summed over time.

The weights used in this signal processing procedure are derived empir-
ically from immunological data, generated for the purpose of the model de-
velopment. From past experience, these are combinations that have worked
well, shown through sensitivity analysis to work for the chosen applications—
though they are not fundamental to the algorithm. The actual values used for
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Table 1.3. Derivation and interrelationship between weights in the signal processing
equation, where the values of the PAMP weights are used to create all other weights
relative to the PAMP weight. W1 is the the weight to transform the PAMP signal
to the CSM output signal, and W2 is the weight to transform the PAMP signal to
the mature output signal.

Signal PAMP Danger Safe

CSM W1 W1
2

W1 ∗ 1.5
Semi-mature 0 0 1
Mature W2 W2

2
-W2 ∗ 1.5

the weights can be user defined, though the relative values determined empir-
ically are kept constant. The relative weight values are presented in Table 1.3.

These signals are used to assess the state of the DC upon termination of
the sampling phase of a DC’s life span. The three output signals of a DC
perform two roles, to determine if an antigen type is anomalous and to limit
the time spent sampling data. A summary of the three output signals and
their function is given in Table 1.4.

Within the Danger Project, the word “context” is used extensively. The
word context refers to the circumstances in which an event occurs. Context
means a representation of the signal circumstances in which an antigen is
processed. The context used to categorize antigen is not achieved with one DC
for one antigen, but rather the aggregate total of contexts across a population
of DCs and a set of antigen. Nevertheless, each member of the DC population
is assigned a context upon its state transition from immature to a matured
state. Each DC makes a binary choice, as an individual cell can only be either
mature or semi-mature, but not both.

Diversity and feedback in the DC population is maintained through the
use of variable migration thresholds. This concept is touched upon in Sec-
tion 1.3, but what implications does it actually have for the algorithm, and
what exactly is a variable migration threshold? The natural mechanism of DC
migration is complex and not particularly well understood, involving the up

Table 1.4. Cumulative output signals and their associated implications for the
DCA.

Output Signal Function

Costimulatory signal Assessed against a threshold to limit the duration of DC signal
and antigen sampling, based on a migration threshold.

Semi-mature signal Terminal state to semi-mature if greater than resultant mature
signal value.

Mature signal Terminal state to mature if greater than resultant semi-mature
signal value.
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and down regulation of many interacting molecules. Instead of using a model
of what is ascertainable from the natural system, a surrogate mechanism that
shows similar end results is implemented.

In this algorithm, multiple DCs are used to form a population, each sam-
pling a set of signals within a given “time window”. Each DC in the population
is assigned a “migration threshold value” upon its creation. Following the up-
date of the cumulative output signals, a DC compares the value it contains
for CSMs with the value it is assigned as its migration threshold. If the value
of CSM exceeds the value of the migration threshold, then the DC is removed
from the sampling area and its life span is terminated upon analysis in the
“lymph node” area, which is a different compartment than is tissue.

Each member of the DC population is randomly assigned a migration
threshold upon its creation. The range of the random threshold is a user defin-
able parameter, with this range being applicable to the whole DC population.
From previous experience with the DCA, the median point about which the
migration thresholds are assigned equates to a DC sampling for two iterations
when the signal strengths are half the expected total input signal maximum.
This process discounts the use of inflammation in this derivation. Addition-
ally, the range of the random assignment is ± 50% of the median value of a
uniform distribution. A derivation of this is shown in equation (1.2).

tmedian = 0.5 ∗ ((maxp ∗ weightpc) + (maxd ∗ weightdc)+ (1.2)

(maxs ∗ weightsc))

In this equation, maxp is the maximum observed level of PAMP signal, and
weightpc is the corresponding transforming weight from PAMP to CSM out-
put signal. In a similar manner, maxd and maxs, and weightdc and weightsc

are equivalent values for danger signal and safe signal. Inflammation is not
included in this derivation.

The net result of this is that different members of the DC population
“experience” different sets of signals across a time window. If the input signals
are kept constant, this implies that members of the population with low values
of migration threshold present antigen more frequently and therefore produce
a tighter coupling between current signals and current antigen. Conversely,
DCs with a larger migration threshold may sample for a longer duration,
producing a more relaxed coupling between potentially collected signal and
context. Having a diverse population, who all sample different total sets of
signals, is a positive feature of this algorithm, demonstrated through results
presented in [Greensmith et al., 2008].

Once the cell has migrated, its role is to then present the antigen and
output signals it has collected throughout its life span. As part of this pro-
cess, the kinds of signal it was exposed to over its life span are assessed and
transformed into a binary value—this is termed the DC context. This can
be achieved through a simple comparison between the remaining two out-
puts signals, which are resultant cumulative values. These two values (semi
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Algorithm 2: Context assessment for a single DC.
input : semi-mature and mature cumulative output signals
output: collected antigen and cell context

if semi-mature output > mature output then
cell context is assigned as 0;

else
cell context is assigned as 1;

end
print collected antigen plus cell context

and mature output signals) are compared directly with each other using the
relationship described in Algorithm 2.

The context is vital to assign any collected antigen with the context in
which the cell performed its collection. Another important feature of the al-
gorithm is that each DC can sample multiple antigens per iteration and can
store these antigens (up to a certain capacity) internally for presentation upon
maturation.

To summarize, each DC has the ability to process and collect signals and
antigen. Through the generation of cumulative output signals, the DC forms
a cell context that is used to perform anomaly detection in the assessment
of antigen. The life span of the DC is controlled by a threshold, termed the
migration threshold, which is randomly assigned to each DC in the population
(within a given range). Upon migration, the cumulative output signals are
assessed and the greater of semi-mature or mature output signal becomes the
cell context. This cell context is used to label all antigen collected by the DC
with the derived context value of 1 or 0. This information is ultimately used
in the generation of an anomaly coefficient.

1.4.3 Populations, Tissue, and Assessment—The Macroscopic
Level

The DCA is a population-based algorithm, based on an agent-like system of
artificially created cells that interact with an artificially created environment.
This consists of a tissue compartment and a lymph node compartment. In
the tissue compartment, signals and antigen are stored for use by the DC
population. DCs are transferred to the lymph node compartment for analysis
upon migration. It is in the lymph node where the antigen plus context values
are logged for analysis.

The interaction between cells and environment (termed here as tissue) is
crucial and drives the system. From a DC’s perspective, the enviroment/tissue
is what it can sense. In the case of natural DCs, they sense the world around
them through activation or deactivation of receptors found on the surface.
Indeed, the DCs outlined in the section above have a similar system of being
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Fig. 1.6. A UML overview of the processes at the tissue level of the program,
showing the asynchronous update of cells, signals, and antigen. It also shows the
two main stages of update and initialization and subsequent analysis.

able to sense the signal data present in the tissue and to respond through the
generation of output signals.

In addition to sensing signals, DCs also interact with antigen. This is
performed through the transfer of antigen from its store in the tissue com-
partment to the internal storage for antigen within the sampling DC. For use
in a DC-based algorithm, the environment for a DC in the sampling popu-
lation consists only of signals and antigen. Therefore, in a generic DC-based
algorithm, tissue is comprised of signals and antigen as this is what the cell
population can respond to and process.

It is proposed that the updates of antigen, signals, and cells are performed
independently. The dictated timing of when entities are updated is left to
the user. In the real-time implementations described in this chapter, cells are
updated once per second. In the implemented system, signals are also updated
at a rate of once per second, with antigen updated as soon as the data becomes
available. The rate of update is dependent upon the requirements of the user
and the nature of the input data and application. The exact nature of the
update mechanisms are not specific to the algorithm, it can be up to the user
or dictated by the nature of the data processed by the algorithm.

However, it is noteworthy that each of the three updates need not occur si-
multaneously: this temporal correlation between asynchronously arriving data
is performed by the processing of the cells themselves (see Figure 1.6 for the
current discussion).

The population dynamics are used to perform the actual anomaly detec-
tion. The ultimate classification of a particular type of antigen is derived not
from a single DC but from an aggregate analysis produced across the DC
population over the duration of an experiment.

The derived value for the cell context is assigned to each antigen (if indeed
any) collected by the assessed DC. This information is used to derive the
MCAV (mature context antigen value) anomaly coefficient for a particular
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Algorithm 3: The generation of MCAV coefficients for each antigen
type sampled by the DC Algorithm.

input : total list of antigen plus context values per experiment
output: MCAV coefficient per antigen type

for all antigen in total list do
increment antigen count for this antigen type;
if antigen context equals 1 then

increment antigen type mature count;
end

end
for all antigen types do

MCAV of antigen type = mature count / antigen count;
end

type of antigen. This relies on the fact that during their time as sampling
entities, the DCs sample both antigen and signals. This is also dependent
upon the use of “antigen types”. This means that the input antigen are not
unique in value but belong to a population in themselves. In the numerous
experiments in this chapter, the ID value of a running program is used to
form antigen, with each antigen generated every time the program sends an
instruction to the low-level system. Therefore a population of antigen is used,
linked to the activity of the program, and all bearing the same ID number.

Each DC can sample multiple antigens per iteration and can store a fixed
maximum amount of antigen within while sampling signals. It is the consensus
value for an entire antigen type that gives rise to the anomaly detection within
this algorithm. The MCAV is the mean value of context per antigen type.
Pseudocode for the generation of the MCAV is given in Algorithm 3.

The closer the MCAV is to one, the more likely it is that the majority of
the antigen existed in the tissue at the same time as a set of signals. This is
similar to the principle of guilt by association, which has a temporal basis.
If more than one tissue compartment were used, this association would also
be spatial. The “cause and effect” means of classification is facilitated by the
temporal correlation produced through the use of DCs that sample signals
and antigen over different durations.

1.4.4 Generic DC Algorithm Summary

An overview of the DCA is presented in Figure 1.7. In Section 1.4, a generic
description of the algorithm is presented, outlining its key features and mecha-
nisms for processing data, filtering, and detecting anomalous antigen. At a cell
level, the DC is a signal processing unit, which makes a binary (yes/no) deci-
sion as to whether the antigen it has collected during its life span was collected
under anomalous conditions. At a population level, the greater DC popula-
tion is used to perform anomaly detection based on the consensus opinion of
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Fig. 1.7. Illustration of the DCA showing data input, continuous sampling, the
maturation process, and aggregate analysis.

the collection of cells. This behavior produces a robust method of detection
through the incorporation of multiple antigen and signal sampling across a
population of artificial cells all with variable life spans. This forms a filter-
based correlation algorithm that includes a “time window” effect that reduces
false positive errors [Greensmith, 2007].

1.5 Applications: Past and Present

The DCA is designed with the objective of its ultimate application to problems
in network intrusion detection, through reducing the high rates of false pos-
itives previously seen with anomaly detection systems [Aickelin et al., 2004].
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While the DCA has been applied to such problems [Greensmith et al., 2006],
it has also enjoyed some preliminary successes in sensor networks and mobile
robotics.

Early work with the algorithm involved its application to a standard ma-
chine learning data set [Greensmith et al., 2005], where it was shown that the
algorithm can process classification data but is sensitive to the data order.
Once the algorithm was deemed feasible through its application to the ma-
chine learning data set, the DCA has also been applied to the detection of port
scans and scanning based activity [Greensmith et al., 2008], which produced
high rates of true positives and low rates of false positives. In the case of the
port scan experiments, signals are taken as behavioral attributes, and system
calls are used to form antigen. This research is ongoing and now encompasses
the detection of other forms of malicious mobile code, such as botnets and
scanning worms.

In addition to standard network anomaly detection tasks, Kim et al.
[Kim et al., 2006] produced an implementation of the DCA for detecting mis-
behavior in sensor networks. The signals are based on the behavior of packet
sending and is used to determine which nodes in the network are potentially
under attack. The use of the DCA in this scenario produced satisfactory re-
sults. In conclusion, this problem is suitable for use with in the DCA as data
fusion from disparate sources is required to perform detection.

Oates et al. [Oates et al., 2007] have applied the DCA to object detection
using mobile robots. The DCA is used to classify specific objects based on
combining data from various robot sensors in real-time. As part of this re-
search, theoretical analysis of the algorithm is being performed to assist in
its application to difficult robotic problems. This research indicates that the
DCA is a suitable algorithm for applications in mobile robotics.

As the DCA can analyze time-dependent data in real-time, there are nu-
merous areas to which the algorithm could be applied, both within computer
network intrusion detection and in other more general scientific applications.
For example, it may be useful in the prediction of earthquakes, by looking
for “danger” in the form of seismic activity, and correlate this information
with location, encoding antigen. Similar signal/location correlating problems
such as the analysis of radio anomalies in space and the analysis of real-time
medical data may be potential applications areas for the DCA.

1.6 Conclusions

In this chapter, the dendritic cell algorithm is presented as an immune-inspired
algorithm. This algorithm is based on an abstract model of the biological den-
dritic cells (DCs), which are key decision-making cells of the human immune
system. The abstract model presented in this chapter shows the key proper-
ties of the natural system, and such properties are presented to form a model.
From this model, a generic DC-based algorithm is presented. This algorithm
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forms the DCA and is capable of performing multi-sensor data fusion on the
input signals, combined with a correlation component, linking signals to anti-
gen data. The process by which the signals are used and combined is detailed,
in combination with a description of the behavior for each artificial cell within
the algorithm.

The DCA has enjoyed success so far in its application to the detection of
port scans and is shown in the related work to be a robust and decentralized
algorithm. The key to the robustness lies in the “time-window effect”, where
different members of the population sample input data across different dura-
tions. This effect is thought to decrease the number of false-positive results
produced by the algorithm.

Future developments with the DCA include the addition of a “respon-
der cell” component to calculate the MCAV anomaly coefficient dynamically.
This would potentially increase the sensitivity of the system. Understanding
the exact workings of the DCA is a non-trivial task. So far, the majority of
its characterization has been performed empirically, through sensitivity anal-
ysis and parameter modification. However, in the future, a more theoretical
approach to its analysis will be taken, through the use of various theoretical
tools such as constraint satisfaction. Perhaps through the performance of this
analysis it can be shown exactly why this algorithm produces the good rates
of detection in a robust manner.
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