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The random coding error exponents are studied [5], [6] for the finite alphabet interference channel (IFC)
with two transmitter receiver pairs. The code words are uniform on a fixed-composition set and the
decoding is optimum, as opposed to decoding based on interference cancellation, and decoding that
considers the interference as additional noises. In this paper we further study the error exponents of
randomized fixed-composition coding, some simple lower bounds are derived for universal decoding rules.
Furthermore, we give a complete characterization of the capacity region of this coding scheme that is first
proposed in [5] and [6]. It is shown that even with a sophisticated time-sharing scheme among randomized
fixed-composition codes, the capacity region of the randomized fixed-composition coding is not bigger
than the known Han-Kobayashi capacity region first appeared in [12]. This suggests that the average
behavior of random codes are not sufficient to get new capacity regions.
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Interference channel capacity region for randomized
fixed-composition codes

Cheng Chang, Raul Etkin and Erik Ordentlich

Abstract

The randomized fixed-composition with optimal decoding error exponents are studied [7], [8] for the
finite alphabet interference channel (IFC) with two transmitter-receiver pairs. In this paper we investigate
the capacity region of the randomized fixed-composition coding scheme. A complete characterization
of the capacity region of the said coding scheme is given. The inner bound is derived by showing the
existence of a positive error exponent within the capacity region. A simple universal decoding rule is
given. The tight outer bound is derived by extending a technique first developed in [6] for single input
output channels to interference channels. It is shown that even with a sophisticated time-sharing scheme
among randomized fixed-composition codes, the capacity region of the randomized fixed-composition
coding is not bigger than the known Han-Kobayashi [15] capacity region. This suggests that the average
behavior of random codes are not sufficient to get new capacity regions.

I. I NTRODUCTION

In [15], the capacity region of interference channel is studied for both discrete and Gaussian cases. In
this paper we study the discrete interference channelsWZ|X,Y and W̃Z̃|X,Y with two pairs of encoders
and decoders as shown in Figure 1. The two channel inputs arexn ∈ X n and yn ∈ Yn, outputs are
zn ∈ Zn and z̃n ∈ Z̃n respectively, whereX , Y, Z andZ̃ are finite sets. We study the basic interference
channel where each encoder only has a private message to the correspondent decoder.

-

--

@
@

@
@

@
@R

-

¡
¡

¡
¡

¡
¡µ

-

- -

-

-

-

WZ|XY (z|x, y)xn(mx)
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Fig. 1. A discrete memoryless interference channel of two users

Some recent progress on the capacity region for Gaussian interference channels is reported in [9],
however, the capacity regions for general interference channels are unknown. We focus our investigation
on the capacity region for a specific coding scheme: randomized fixed-composition codes while the
error probability is defined as the average error over all code book with a certain composition (type).
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Fixed-composition coding is a useful coding scheme in the investigation of both upper [10] and lower
bounds of channel coding error exponents [4] for point to point channel and [14], [13] for multiple
access (MAC) channels. Recently in [7] and [8], randomized fixed-composition codes are used to derive
a lower bound on the error exponent for discrete interference channels. A lower bound on the maximum-
likelihood decoding error exponent is derived, this is a new attempt in investigating the error exponents
for interference channels. The unanswered question is the capacity region of such coding schemes.

In this paper, we give a complete characterization of the interference channel capacity region for
randomized fixed-composition codes. To prove the achievability of the capacity region, we prove the
positivity everywhere in the capacity region of a universal decoding error exponent. This error exponent
is derived by the method of types [3], in particular the universal decoding scheme used for multiple-access
channels [14]. A better error exponent can be achieved by using the more complicated universal decoding
rules developed in [13]. But since they both have the same achievable capacity region, we use the simpler
scheme in [14]. To prove the the converse, that the achievable region matches the outer bound, we extend
the technique in [6] for point to point channels to interference channels by using the known capacity
region results for multiple-access channels. The result reveals the intimate relations between interference
channels and multiple-access channels. With the capacity region for fixed-composition code established,
it is evident that this capacity region is a subset of the Han-Kobayashi region [15].

The technical proof of this paper is focused on the average behavior of fixed-composition code books.
However this fundamental setup can be generalized in the following three directions.

• It is obvious that there exists a code book that its decoding error is no bigger than the average
decoding error over all code books. Hence the achievability results in this paper guarantees the
existence of a of deterministic coding scheme with at least the same error exponents and capacity
region. More discussions are in Section II-E.

• The focus of this paper is on the fixed-composition codes with a compositionP , where P is
a distribution on the input alphabet. This code book generation is different from the non-fixed-
composition random coding [12] according to distributionP . It is well known in the literature that
the fixed-composition code gives better error exponent result in low rate regime for point to point
channels [4] and multiple-access channels [14], [13]. It is the same case for interference channels
and hence the capacity region result in this paper applies to the non-fixed-composition random codes.

• Time-sharing is a key element in achieving capacity regions for multi-terminal channels [2]. For
instance, for multiple-access channels, simple time-sharing among operational rate pairs gives the
entire capacity region. We show that the our fixed composition codes can be used to build a time-
sharing capacity region for interference channel. More interestingly, we show that the simple time-
sharing technique that gives the entire capacity region for multiple-access channels is not enough
to get the largest capacity region, a more sophisticated time-sharing scheme is needed. Detailed
discussions are in Section IV.

The outline of the paper is as follows. In Section II we first formally define randomized fixed-
composition codes and its capacity region and then in Section II-C we present the main result of this
paper: the interference channel capacity region for randomized fixed-composition code in Theorem 1.
The proof is later shown in Section III with more details in the appendix. Finally in Section IV, we
argue that due to the non-convexity of the randomized fixed-composition coding, a more sophisticated
time-sharing scheme is needed. This shows the necessity of studying the geometry of the code-books for
interference channels.
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II. RANDOMIZED FIXED-COMPOSITION CODE AND ITS CAPACITY REGION

We first review the definition of randomized fixed-composition code that is studied intensively in pre-
vious works. Then the definition of the interference channel capacity region for such codes is introduced.
Then we give the main result of this paper: the complete characterization of the capacity region for
randomized fixed-composition codes.

A. Randomized fixed-composition codes

A randomized fixed-composition code is a uniform distribution on the code books in which every
codeword is from the type set with the fixed composition (type).

First we introduce the notion of type set [2]. A type setT n(P ) is a set of all the stringsxn ∈ X n

with the same typeP where P is a probability distribution [2]. A sequence of type setsT n ⊆ X n

has compositionPX if the types ofT n converges toPX , i.e. lim
n→∞

N(a|T n)
n = PX(a) for all a ∈ X

that PX(a) > 0 and N(a|T n) = 0 for all a ∈ X that PX(a) = 0, whereN(a|T n) is the number of
occurrence ofa in type T n. We ignore the nuisance of the integer effect and assume thatnPX(a) is
an integer for alla ∈ X and nRx and nRy are also integers. This is indeed a reasonable assumption
since we study long block lengthn and all the information theoretic quantities studied in this paper
are continuous on the code compositions and rates. We simply denote byT n(PX) the length-n type set
which has “asymptotic” typePX , later in the appendix we abuse the notations by simply writingxn ∈ PX

instead ofxn ∈ T n(PX). Obviously, there are|T n(PX)|2nRx many code books with fixed-composition
PX and rateRx

In this paper, we study the randomized fixed-composition codes, where each code book with all
codewords from the fixed composition being chosen with the same probability. Equivalently, over all
these code books, a code word for messagei is uniformly i.i.d distributed on the type setT n(PX). A
formal definition is as follows.

Definition 1: Randomized fixed-composition codes: for a probability distributionPX on X , a rate
Rx randomized fixed-composition-PX encoder picks a code book with the following probability, for
any fixed-composition-PX code bookθn = (θn(1), θn(2), ..., θ(2nRx)), where θn(i) ∈ T n(PX), i =
1, 2, ..., 2nRx , and θn(i) and θn(j) may not be different fori 6= j, the code bookθn is chosen, i.e.
xn(i) = θn(i), i = 1, 2, ..., 2nRx , with probability

(
1

|T n(PX)|
)2nRx

In other words, the choice of the code book is a random variablecX uniformly distributed on the index
set of all the possible code books with fixed-compositionPX : {1, 2, 3, ..., |T n(PX)|2nRx}, while cX is
shared between the encoderX and the decodersX andY .

The key property of the randomized fixed-composition code is that for any message subset{i1, i2, ...il} ⊆
{1, 2, ..., 2nRx}, the code words for these messages are identical independently distributed on the type
set ofT n(PX).

For randomized fixed-composition codes, the average error probabilityPn
e(x)(Rx, Ry, PX , PY ) for X

is the expectation of decoding error over all message, code books and channel behaviors.

Pn
e(x)(Rx, Ry, PX , PY ) =

(
1

|T n(PX)|
)2nRx (

1
|T n(PY )|

)2nRy

(1)

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)
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Fig. 2. Randomized fixed-composition capacity regionRx(PX , PY ) for X, the achievable region is the union of RegionI
andII.

wherexn(mx) is the code word of messagemx in code bookcX , similarly for yn(my), m̂x(zn) is
the decision made by the decoder knowing the code bookscX andcY .

B. Randomized fixed-composition coding capacity for interference channels

Given the definitions of randomized fixed-composition coding and the average error probability in (1)
for such codes, we can formally define the capacity region for such codes.

Definition 2: Capacity region for randomized fixed-composition codes: for a fixed-compositionPX

andPY , a rate pair(Rx, Ry) is said to be achievable forX, if for all δ > 0, there existsNδ < ∞, s.t.
for all n > Nδ,

Pn
e(x)(Rx, Ry, PX , PY ) < δ (2)

We denote byRx(PX , PY ) the closure of the union of the all achievable rate pairs. Similarly we denote
by Ry(PX , PY ) the achievable region forY , andRxy(PX , PY ) for (X, Y ) where both decoding errors
are small. Obviously

Rxy(PX , PY ) = Rx(PX , PY )
⋂
Ry(PX , PY ). (3)

We only need to focus our investigation onRx(PX , PY ), then by the obvious symmetry, bothRy(PX , PY )
andRxy(PX , PY ) follow.

C. Capacity region of the fixed-composition code,Rx(PX , PY ), for X

The main result of this paper is the complete characterization of the randomized fixed-composition
capacity regionRx(PX , PY ) for X, as illustrated in (3), by symmetry,Rxy(PX , PY ) follows.
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Ry

Rx

Fig. 3. A typical randomized fixed-composition capacity regionRxy(PX , PY ) = Rx(PX , PY )∩Ry(PX , PY ) is the intersection
of the dotted line and the solid lines, this capacity region is not necessarily convex.

Theorem 1:Interference channel capacity regionRx(PX , PY ) for randomized fixed-composition codes
with compositionsPX andPY :

Rx(PX , PY ) = {(Rx, Ry) : 0 ≤ Rx < I(X;Z), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X;Z|Y ), Rx + Ry < I(X, Y ;Z)} (4)

where the random variables in (4),(X, Y, Z) ∼ PXPY WZ|X,Y . The regionRx(PX , PY ) is illustrated in
Figure 2.

The achievable part of the theorem states that: for a rate pair(Rx, Ry) ∈ Rx(PX , PY ), the union of
RegionI and II in Figure 2, for allδ > 0, there existsNδ < ∞, s.t. for all n > Nδ, the average error
probability (1) for the randomized code from compositionsPX andPY is smaller thanδ for X:

Pn
e(x)(Rx, Ry, PX , PY ) < δ

for some decoding rule. RegionII is also the multiple-access capacity region for fixed-composition codes
(PX , PY ) for channelWZ|XY .

The converse of the theorem states that for any rate pair(Rx, Ry) outside ofRx(PX , PY ), that is
regionIII, IV andIV in Figure 2, there existsδ > 0, such that for alln,

Pn
e(x)(Rx, Ry, PX , PY ) > δ

no matter what decoding rule is used. Note that the definition of the error probabilityPn
e(x)(Rx, Ry, PX , PY )

defined in (1)
The proof of Theorem 1 is in Section III.

D. Necessities of more sophisticated time-sharing schemes

In the achievability part of Theorem 1, we prove that the average error probability forX is arbitrarily
small for a randomized fixed-composition code if the rate pair(Rx, Ry) is inside the capacity region
Rx(PX , PY ). For interference channels, it is obvious that the rate region for bothX andY is:

Rxy(PX , PY ) = Rx(PX , PY ) ∩Ry(PX , PY ), (5)

5



whereRy(PX , PY ) is defined in the same manner asRx(PX , PY ) but the channel is̃WZ̃|XY instead
of WZ|XY as shown in Figure 1. A typical capacity regionRxy(PX , PY ) is shown in Figure 3. It is not
necessarily convex.

However, by a simple time-sharing between different rate pairs for the same composition, we can
convexify the capacity region. Then the convex hull of the union of all such capacity regions of different
compositions gives a bigger convex achievable capacity region. This capacity region of the interference
channel is

CONV EX


 ⋃

PX ,PY

Rxy(PX , PY )


 .

It is tempting to claim that the above convex capacity region is the largest one can get by time-
sharing the “basic” fixed-composition codes as multiple-access channels shown in [2]. However, as will
be discussed later in Section IV, it is not the case. A more sophisticated time-sharing gives a bigger
capacity region.

This is an important difference between interference channel coding and multiple-access channel coding
because the fixed-composition capacity region is convex for the latter and hence the simple time-sharing
gives the biggest capacity region [2]. Time-sharing capacity is detailed in Section IV.

E. Existence of a good code for an interference channel

In this paper we focus our study on the average (over all messages) error probability over all code
books with the same composition. For a rate pair(Rx, Ry), if the average error probability forX is
smaller thanδ, then obviously there exists a code book such that the error probability is smaller than
δ for X. This should be clear from the definition of error probabilityPn

e(x)(Rx, Ry, PX , PY ) in (1). In
the following example, we illustrate that this is also the case for decoding error for bothX andY . We
claim without proof that this is also true for “uniform” time-sharing coding schemes later discussed in
Section IV. The existence of a code book that achieves the error exponents in the achievability part of
the proof of Theorem 1 can also be shown. The proof is similar to that in [12] and Exercise 30 (b) on
page 198 [5].

Similar to the error probability forX defined in (1), we define the average joint error probability for
X andY as

Pn
e(xy)(Rx, Ry, PX , PY ) =

(
1

|T n(PX)|
)2nRx (

1
|T n(PY )|

)2nRy ∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

(6)

{∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx)

+
∑

z̃n

W̃Z̃|XY (z̃n|xn(mx), yn(my))1(m̂y(z̃n) 6= my)
}

For a rate pair(Rx, Ry) ∈ Rxy(PX , PY ) = Rx(PX , PY )
⋂Ry(PX , PY ). We know that for allδ > 0,

there existsNδ < ∞, s.t. for all n > Nδ, the average error probability is smaller thanδ for userX and
userY :
Pn

e(x)(Rx, Ry, PX , PY ) < δ andPn
e(y)(Rx, Ry, PX , PY ) < δ. It is easy to see that the average joint error

probability for userX andY can be bounded by:

Pn
e(xy)(Rx, Ry, PX , PY ) = Pn

e(x)(Rx, Ry, PX , PY ) + Pn
e(y)(Rx, Ry, PX , PY )

≤ 2δ (7)
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From (6), we know thatPn
e(xy)(Rx, Ry, PX , PY ) is the average error probability ofall (PX , PY )-fixed-

composition codes. Together with (7), we know that there exists at leastone code book such that the
error probability is no bigger than2δ.

Note, the converse of the randomized coding does not guarantee that there is not a single good fixed-
composition code book. The converse claims that, the average (over all code books with the composition)
decoding error probability does not converge to zero if the rate pair is outside the capacity region in
Theorem 1.

III. PROOF OFTHEOREM 1

There are two parts of the theorem, achievability and converse. The achievability part is proved by
applying the classical method of types in point to point channel coding and MAC channel coding for
randomized fixed-composition code. The converse is proved by extending the technique first developed
in [6] for point to point channels to interference channels.

A. Achievability

We show that in the interior of the capacity region, i.e. the union of RegionI and II in Figure 2,
a positive error exponent is achieved by applying the randomized fixed-composition coding defined in
Definition 1. In Sections III-A.1 and III-A.2, we describe the universal decoding rules for RegionII and
I respectively. We then present the error exponent results in Lemma 1 in Section III-A.3 and Lemma 2
in Section III-A.4 that covers RegionII and I respectively. Then in Lemma 3 in Section III-A.5, we
show that these error exponents are positive in the interior of the capacity regionRx(PX , PY ) and hence
conclude the proof of the achievability part in Theorem 1.

1) Decoding rule in RegionII: In RegionII, we show that decoderX can decode both messagemx

andmy with small error probabilities. This is essentially a multiple-access channel coding problem. We
use the technique developed in [5] to derive the positive error exponents that parallel to those in [14].
The decoder is a simple maximum mutual information1 decoder [5]. This decoding rule is universal in
the sense that the decoder does not need to know the multiple access channelWZ|XY . We describe the
decoding rule here, the estimate of the joint message is the message pair such that the input to the channel
WZ|XY and the output of the channel have the maximal empirical mutual information. i.e.:

(m̂x(zn), m̂y(zn)) = arg max
i∈{1,2,...,2nRx},j∈{1,2,...,2nRy}

I(zn; xn(i), yn(j)) (8)

wherezn is the channel output andxn(i) andyn(j) are the channel inputs for messagei andj respectively.
I(zn;xn, yn) is the empirical mutual information betweenzn and (xn, yn), the point to point maximal
mutual mutual information decoding is studied in [5].

If there is a tie, the decoder can choose an arbitrary winner or simply declare error. In Lemma 1,
we show that by using the randomized fixed-composition encoding and the maximal mutual information
decoding, a non-negative error exponent is achieved in RegionII.

1A more sophisticated decoding rule based on minimum conditional entropy decoding for multiple-access channel is developed
in [13], it is shown that this decoding rule achieves a bigger error exponent in low rate regime. The goal of this paper is, however,
not to derive the tightest lower bound on the error exponent. We only need a coding scheme to achieve positive error exponent
in the capacity region in Theorem 1. Hence we use the simpler decoding rule here.
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2) Decoding rule in RegionI: In RegionI, decoderX only estimatesmx by treating the input of
encoderY as a source of random noises. This is essentially a point to point channel coding problem.
The channel itself has memory since the input of encoderY is not memoryless. Similar to the multiple
access channel coding problem studied in RegionII, we use a maximal mutual information decoding
rule:

m̂x(zn) = arg max
i∈{1,2,...,2nRx}

I(zn;xn(i)) (9)

In Lemma 2, we show that by using the randomized fixed-composition encoding and the maximal mutual
information decoding, a non-negative error exponent is achieved in RegionI.

3) Lower bound on the error exponent in RegionII:
Lemma 1: (RegionII) Multiple-access channel error exponents (joint error probability). For the ran-

domized coding scheme described in Definition 1, and the decoding rule described in (8), the decoding
error probability averaged over all messages, code books and channel behaviors is upper bounded by an
exponential term:

Pr((mx, my) 6= (m̂x, m̂y))

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

(10)

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1 ((m̂x(zn), m̂y(zn)) 6= (mx,my))

≤ 2−n(E−εn). (11)

εn converges to zero asn goes to infinity, andE = min{Exy, Ex|y, Ey|x}, where

Exy = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY ) + D(QXY ‖PX × PY ) + |IQ(X, Y ; Z)−Rx −Ry|+

Ex|y = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY ) + D(QXY ‖PX × PY ) + |IQ(X;Z|Y )−Rx|+

Ey|x = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY ) + D(QXY ‖PX × PY ) + |IQ(Y ; Z|X)−Ry|+

where|t|+ = max{0, t} and the random variables(X,Y, Z) ∼ QXY Z in IQ(X; Z|Y ), IQ(Y ;Z|X) and
IQ(X,Y ; Z).

Remark 1: it is easy to verify thatD(QZ|XY ‖W |QXY )+D(QXY ‖PX×PY ) = D(QXY Z‖PX×PY ×
W ), so the expressions for the error exponents can be further simplified. We use the expressions similar
to those in [14] because they are more intuitive.

Remark 2: The proof parallels that in [14] which is in turn an extension to the point to point channel
coding problem studied in [5]. The method of types is the main tool for the proofs. The difference is
that we need to show the lower bound to the average error probability instead of showing the existence
of a good code book in [14]. Without giving details, we follow Gallager’s proof in [12] and claim the
existence of a good code with the same error exponent as that in [14] as a simple corollary of Lemma 1.

Proof: First we have an obvious upper bound on the error probability

Pr((mx,my) 6= (m̂x, m̂y))

= Pr(mx 6= m̂x,my 6= m̂y) + Pr(mx 6= m̂x,my = m̂y) + Pr(mx = m̂x, my 6= m̂y)

≤ Pr(mx 6= m̂x,my 6= m̂y) + Pr(mx 6= m̂x|my = m̂y) + Pr(my 6= m̂y|mx = m̂x)) (12)

8



The inequality (12) follows the equalityP (A,B) = P (A|B)P (B) ≤ P (A|B). Now we upper bound
each individual error probability in (12) respectively by exponentials ofn. We only need to show that

Pr(mx 6= m̂x,my 6= m̂y) ≤ 2−n(Exy−εn), (13)

Pr(mx 6= m̂x|my = m̂y) ≤ 2−n(Ex|y−εn), (14)

and Pr(my 6= m̂y|mx = m̂x) ≤ 2−n(Ey|x−εn). (15)

We prove (13) and (14), (15) follows (14) by symmetry. The proofs are in Appendix A, where a standard
method of type argument is used. ¤

4) Lower bound on the error exponent in RegionI:
Lemma 2: (Region I) point to point channel coding error exponent (decodingX only). For the

randomized coding scheme described in Definition 1, and the decoding rule described in (9), the decoding
error probability averaged over all messages, code books and channel behaviors is upper bounded by an
exponential term:

Pr(mx 6= m̂x) =
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1 (m̂x(zn) 6= mx)

≤ 2−n(Ex−εn). (16)

εn converges to zero asn goes to infinity, and

Ex = min
QXY Z :QX=PX ,QY =PY

D(QZ|XY ‖W |QXY ) + D(QXY ‖PX × PY ) + |IQ(X;Z)−Rx|+

Proof: We give a unified proof for (13), (14) and (16) in Appendix A. ¤

With Lemma 1 and Lemma 2, we know that some non-negative error exponents can be achieved for the
randomized(PX , PY ) fixed-composition code if the rate pair(Rx, Ry) ∈ Rx(PX , PY ). This is because
both Kullback-Leibler divergence and| · |+ are always non-negative. Now we only need to show the
positiveness of those error exponents when the rate pair is in the interior ofRx(PX , PY ).

5) Positiveness of the error exponents:
Lemma 3:For rate pairs(Rx, Ry) in the interior ofRx(PX , PY ) defined in Theorem 1:

max{min{Exy, Ex|y, Ey|x}, Ex} > 0.

More specifically, we show two things. First, ifRx < I(X,Z), where(X, Z) ∼ PX × PY ×WZ|XY ,
then Ex > 0. This covers RegionI. Secondly, ifRx < I(X, Z|Y ), Ry < I(Y, Z|X) and Rx + Ry <
I(X,Y ; Z), where(X, Y, Z) ∼ PX × PY ×WZ|XY , thenmin{Exy, Ex|y, Ey|x} > 0, this covers Region
II.

Proof: First, suppose that for someRx < I(X, Z), Ex ≤ 0. Since both Kullback-Leibler divergence
and | · |+ are non-negative functions, we must haveEx = 0 and hence there exists a distributionQXY Z ,
s.t. QX = PX , QY = PY and all the individual non-negative functions are zero:

D(QXY ‖PX × PY ) = 0

D(QZ|XY ‖W |QXY ) = 0

|IQ(X; Z)−Rx|+ = 0

9



The first equation tells us thatQXY = PX×PY . Then the second equation becomesD(QZ|XY ‖W |PX×
PY ) = 0, this means thatQZ|XY × PX × PY = W × PX × PY , so IQ(X; Z) = I(X; Z) where
the random variables(X, Y, Z) ∼ PX × PY × WZ|XY in I(X; Z). Now the third equation becomes
|I(X; Z) − Rx|+ = 0 which is equivalent toI(X;Z) ≤ Rx, this is a contradiction to the fact that
Rx < I(X, Z).

Secondly, suppose that for some rate pair(Rx, Ry) in Region II, i.e. Rx < I(X,Z|Y ), Ry <
I(Y, Z|X) andRx + Ry < I(X, Y ;Z) andmin{Exy, Ex|y, Ey|x} ≤ 0, thenmin{Exy = 0 or Ex|y = 0
or Ey|x} = 0. Following exactly the same argument as that in the first part of the proof of Lemma 3, we
can get contradictions with the fact that the rate pair(Rx, Ry) is in the interior of RegionII. ¤

From the above three lemmas, we conclude that the error probability for decoding messageX is upper
bounded by2−n(E−εn) for all (Rx, Ry) ∈ Rx(PX , PY ), whereE > 0 and lim

n→∞ εn = 0. Hence the error
probability converges to zero exponentially fast for largen. This concludes the achievability part of the
proof for Theorem 1.

B. Converse

We show that the average decoding error of DecoderX does not converge to zero with increasingn
if the rate pair(Rx, Ry) is outside the capacity regionRx(PX , PY ) shown in Figure 2. There are three
parts of the proof for RegionsV , IV andIII respectively.

1) RegionV : First, we show that in RegionV the average error probability does not converge to zero
as block length goes to infinity. This is proved by using a modified version of the reliability function for
rate higher than the channel capacity [6].

Lemma 4:RegionV , the average error probability forX does not converge to0 with block lengthn
if Rx > I(X;Z|Y ), where(X, Y, Z) ∼ PX × PY ×WZ|XY .

Proof: It is enough to show the case where there is only one message forY and encoderY sends
a code wordyn with compositionPY . The code book for encoderX is still uniformly generated among
all the fixed-composition-PX code books. In the rest of the proof, we investigate the typical behavior of
the codewordsxn and modify the Lemma 3 and Lemma 5 from [6] to show that

Pr(m̂x 6= mx) = Pn
e(x)(Rx, Ry, PX , PY ) >

1
2

(17)

for largen. The details of the proof are in Appendix B. ¤

2) Region IV : The more complicated case is in RegionIV . We show that the decoding error
probability for userX does not converge to zero with block lengthn. The proof is by contradiction.
The idea is to construct a decoder that decodes both messagemx and messagemy correctly with high
probability, if the decoding error formx converges to zero. Then again by using a modified proof used
in proving the reliability function for rate higher than channel capacity in [6], we get a contradiction.

Lemma 5:RegionIV , the average error probability forX does not converge to0 with block lengthn
if Rx < I(X; Z|Y ), Ry < I(Y ; Z|X) andRx+Ry > I(X, Y ; Z) where(X, Y, Z) ∼ PX×PY ×WZ|XY .

Proof: Suppose that

Pr(m̂x 6= mx) = Pn
e(x)(Rx, Ry, PX , PY ) ≤ δn (18)

whereδn goes to zero withn. Let decoderX decodemy by the same decoding rule devised in (8):

m̂y(zn) = arg max
j∈{1,2,...,2nRy}

I(zn; xn(m̂x(zn)), yn(j)). (19)
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The decoding error for either message at decoderX is now:

Pr((m̂x, m̂y) 6= (mx,my)) = Pr(m̂x 6= mx) + Pr(m̂x = mx, m̂y 6= my)

≤ Pr(m̂x 6= mx) + Pr(m̂y 6= my|m̂x = mx) (20)

Given m̂x = mx, (19) becomes

m̂y(zn) = arg max
j∈{1,2,...,2nRy}

I(zn; xn(mx), yn(j)). (21)

So the second term in the RHS of (20),Pr(m̂y 6= my|m̂x = mx), can be upper bounded as shown
in (14). Substitute the upper bounds (14) and (18) into (20), we have:

Pr((m̂x, m̂y) 6= (mx,my)) ≤ δn + 2−n(Ey|x−εn) (22)

This upper bound (22) converges to0 asn goes to infinity. However in Appendix B, we show that

Pn
e(xy)(Rx, Ry, PX , PY ) = Pr((m̂x, m̂y) 6= (mx,my)) >

1
2

(23)

This is contradicted to (22). ¤

3) RegionIII: This is a corollary of Lemma 5. This is intuitively obvious since for each rate pair
(Rx, Ry) in RegionIII, we can find a rate pair(Rx, R′

y) in RegionIV such thatRy > R′
y. We construct

a contradiction as follows. For a(Rx, Ry) decoder, we can construct a new decoder for(Rx, R′
y) where

R′
y < Ry, by revealing a random selection of a(Rx, Ry) code book that is the superset of the(Rx, R′

y)
code book to the(Rx, Ry) decoder and accept the estimate of the(Rx, Ry) decoder as the estimate for
the (Rx, R′

y) decoder. If the average error probability is small for the(Rx, Ry) code books, the average
error probability is small for this particular(Rx, R′

y) decoder as well, this is a contradiction to Lemma 5.
Hence the decoding error for encoderX does not converge to0 with n if the rate pair(Rx, Ry) is in
RegionIII. ¤

This concludes the converse part of the proof for Theorem 1.

IV. D ISCUSSIONS ONTIME-SHARING

The main result of this paper is the randomized fixed-composition coding capacity region forX that is
Rx(PX , PY ) shown in Figure 2. So obviously, the interference channel capacity region, where decoding
errors for bothX andY are small, is the intersection ofRx(PX , PY ) andRy(PX , PY ) whereRy(PX , PY )
is defined in the similar way but with channelW̃Z̃|XY instead ofWZ|XY . The intersected region defined
in (5),Rxy(PX , PY ), is in general non-convex as shown in Figure 3. Similar to multiple-access channels
capacity region, studied in Chapter 15.3 [2], we use this capacity regionRxy(PX , PY ) as the building
blocks to generate larger capacity regions.

A. A digression to MAC channel capacity region

Before giving the time-sharing results for interference channels and show why the simple time-sharing
idea works for MAC channels but not for interference channels, we first look atRx(PX , PY ) in Figure 2.
Region II is obviously the multiple access channelWZ|XY region achieved by input composition
(PX , PY ) at the two encoders, denoted byRmac

xy (PX × PY ). In [2], the full description of the MAC
channel capacity region is given in two different manners:

CONV EX


 ⋃

PX ,PY

Rmac
xy (PX × PY )


 = CLOSURE


 ⋃

PU ,PX|U ,PY |U

Rmac
xy (PX|U × PY |U × PU )
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whereRmac
xy (PX|U × PY |U × PU ) = {(Rx, Ry) : Rx ≤ I(X; Z|Y,U), Ry ≤ I(Y ; Z|X,U), Rx + Ry ≤

I(X,Y ; Z|U)} andU is the time-sharing auxiliary random variable and|U | = 4.
The LHS of (24) is the convex hull of all the fixed-composition MAC channel capacity regions. The

RHS of (24) is the closure (without convexification) of all the time-sharing MAC capacity regions.The
equivalence in (24) is non-trivial, it is not a consequence of the tightness of the achievable region. It
hinges on the convexity of the “basic” capacity regionsRmac

xy (PX , PY ). As will be shown in Section IV-C,
this is not the case for interference channels, i.e. (24) does not hold anymore.

B. Simple time-sharing capacity region and error exponent

The simple idea of time-sharing is well studied for multi-user channel coding, broadcast channel coding.
Whenever there are two operational points(R1

x, R1
y), (R

2
x, R2

y), while there exist two coding schemes to
achieve small error probability at each operational point, one can useλn amount of channel uses at
(R1

x, R1
y) with coding scheme1 and (1− λ)n amount of channel uses at(R2

x, R2
y) with coding scheme

2. The rate of this coding scheme is(αR1
x + (1− α)R2

x, αR1
y + (1− α)R2

y) and the error probability is
still small2 (no bigger than the sum of two small error probabilities). This idea is easily generalized to
more than2 operational points.

This simple time sharing idea works perfectly for MAC channel coding as shown in (24). The whole
capacity region can be described as time sharing among fixed-composition codes where the fixed-
composition codes are building blocks. If we extend this idea to interference channel, we have the
following simple time sharing region as discussed in Section II-D:

CONV EX


 ⋃

PX ,PY

Rxy(PX , PY )


 = CONV EX


 ⋃

PX ,PY

Rx(PX , PY )
⋂

Ry(PX , PY )


 . (24)

We shall soon see in the next section that this result can be improved.

C. Beyond simple time-sharing: “Uniform” time-sharing

In this section we give a time-sharing coding scheme that was first developed by Gallager [11] and later
further studied for universal decoding by Pokorny and Wallmeier [14] to get better error exponents for
MAC channels. This type of “uniform” time-sharing schemes not only achieves better error exponents,
more importantly, we show that this achievebigger capacity region than the simple time-sharing
scheme does for interference channels! Unlike the multiple-access channels where the simple time-sharing
achieves the whole capacity region, this is unique to the interference channels, due to the fact that the
capacity region is the convex hull of the intersections of pairs of non-convex regions (convex or not is
not the issue here, the real difference is the intersection operation).

The organization of this section parallel to that for the fixed-composition. We first introduce the
“uniform” time-sharing coding scheme, then give the achievable error exponents and lastly drive the
achievable rate region for such coding schemes. The proofs are omitted since they are similar to those
for the randomized fixed-composition codes.

Definition 3: “Uniform” time-sharing codes: for a probability distributionPU on U , where U =
{u1, u2, ..., uK} with

∑K
i=1 PU (ui) = 1, and a pair of conditional independent distributionsPX|U , PY |U .

We define the two codeword sets3 as

Xc(n) = {xn : x
nPU (u1)
1 ∈ PX|u1

, x
n(PU (u1)+PU (u2))
nPU (u1)+1 ∈ PX|u2

, ..., xn
n(1−PU (u1))

∈ PX|uL
}

2The error exponent is, however, at most half of the individual error exponent.
3Again, we ignore the nuisance of the non-integers here.
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Fig. 4. “Uniform” time-sharing capacity regionRx(PUPX|UPYU ) for X, the achievable region is the union of RegionI
and II. This region is very similar to that for fixed-composition coding shown in Figure 2, only difference is now there is an
auxiliary time-sharing random variableU .

i.e. thei’th chunk of the codewordxn with lengthnPU (ui) has compositionPX|ui
, and similarly

Yc(n) = {yn : y
nPU (u1)
1 ∈ PY |u1

, y
n(PU (u1)+PU (u2))
nPU (u1)+1 ∈ PY |u2

, ..., yn
n(1−PU (u1))

∈ PY |uL
}.

A “uniform” time-sharing code(Rx, Ry, PUPX|UPY |U ) encoder picks a code book with the following
probability: for any messagemx ∈ {1, 2, ..., 2nRx}, the code wordxn(mx) is uniformly distributed in
Xc(n), similarly for encoder Y.

After the code book is randomly generated and revealed to the decoder, the decoder uses a maximum
mutual information decoding rule. Similar to the fixed-composition coding, the decoder needs to either
decode both messageX and Y jointly or simply treatsY as noise and decodeX only, depending on
where the rate pairs are in RegionI or II, as shown in Figure 4. The error probability we investigate is
again the average error probability over all messages and code books.

Theorem 2:Interference channel capacity regionRx(PUPX|UPY |U ) for “uniform” time-sharing codes
with compositionPUPX|UPY |U :

Rx(PUPX|UPY |U ) = {(Rx, Ry) : 0 ≤ Rx < I(X; Z|U), 0 ≤ Ry}
⋃

{(Rx, Ry) : 0 ≤ Rx < I(X; Z|Y,U), Rx + Ry < I(X, Y ;Z|U)} (25)

where the random variables in (25),(U,X, Y, Z) ∼ PUPX|UPY |UWZ|X,Y . And the interference capacity
region forPUPX|UPY |U is

Rxy(PUPX|UPY |U ) = Rx(PUPX|UPY |U )
⋂
Ry(PUPX|UPY |U ) (26)

The rate region defined in (25) itself does not give any newX-capacity regions forX, since both
RegionI and II in Figure 4 can be achieved by simple time-sharing of RegionI and II repectively
in (4). But for the interference channel capacity, we argue in the next section that this coding scheme
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gives a strictly bigger capacity region than that given by the simple time-sharing of fixed-composition
codes in (24).

The proof of Theorem 2 is similar to that of Theorem 1. We omit the details here. We only point
out that the achievability part is proved by deriving a positive error exponent for rate pair in the interior
of the capacity region defined in Theorem 2. As shown in [14] and also detailed in this paper for the
randomized coding, the error exponents in RegionII of in Figure 4 is:

E = min{Exy, Ex|y, Ey|x}, where

Exy = min
QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U ) + D(QXY |U‖PX|U × PY |U |U) + |IQ(X, Y ;Z)−Rx −Ry|+
Ex|y = min

QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U ) + D(QXY |U‖PX|U × PY |U |U) + |IQ(X; Z|Y, U)−Rx|+
Ey|x = min

QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U ) + D(QXY |U‖PX|U × PY |U |U) + |IQ(Y ;Z|X, U)−Ry|+

This is the error exponents in Lemma 1 with a conditional auxiliary random variableU .
The error exponent in RegionI is

Ex = min
QXY Z|U :QX|U=PX|U ,QY |U=PY |U

D(QZ|XY ‖W |QXY U ) + D(QXY |U‖PX|U × PY |U |U) + |IQ(X; Z|U)−Rx|+

D. Why the “uniform” time sharing is needed?

It is obvious that the “uniform” time-sharing fixed-composition coding gives a bigger error exponent
than the simple time-sharing coding does. More interestingly, we argue that it gives a bigger interference
channel capacity region. First we write down the interference channel capacity region generated from the
basic “uniform” time-sharing fixed-composition codes:

CONV EX


 ⋃

PX|UPY |UPU

Rxy(PUPX|UPY |U )


 . (27)

whereRxy(PUPX|UPY |U ) is defined in (26) andCONV EX(A) is the convex hull (simple time sharing)
of setA.

U is a time-sharing auxiliary random variable. Unlike the MAC coding problem, where simple time-
sharing of fixed-composition codes achieve the full capacity region, it is not guaranteed for interference
channels. The reason is the intersection operator in the basic building blocks in (5) and (26) respectively,
i.e. the interference nature of the problem4.

Obviously the rate region by simple time sharing of fixed composition code in (24) is a subset of
simple time sharing of the “uniform” time sharing capacity region (27). In the following example, we
illustrate why (27) is bigger than (24).

4To understand why intersection is the difference but not the non-convexity, we consider four convex sets:A1, A2, B1, B2.
We show thatCONV EX(A1

⋂
B1, A2

⋂
B2) can be strictly smaller thanCONV EX(A1, A2)

⋂
CONV EX(B1, B2).

Let A1 = B2 ⊂ B1 = A2, then CONV EX(A1

⋂
B1, A2

⋂
B2) = A1 is strictly smaller than

CONV EX(A1, A2)
⋂

CONV EX(B1, B2) = A2. This shows why uniform time-sharing gives bigger capacity region.
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Fig. 5. Simple timesharing of fixed-composition capacityABCDO VS time-sharing fixed composition capacity(0.5) ( the
black pentagon)

Example: Suppose we have a symmetric interference channel, i.e.Rx(PX , PY ) = RT
y (PY , PX) for

all PX , PY whereT is the transpose operation. The comparison of simple timesharing capacity region and
the more sophisticated time-sharing fixed-composition capacity region are illustrated by a toy example
in Figure 5.

For a distribution(PX , PY ), the achievable region for the fixed-composition code is illustrated in
Figure 5,Rx(PX , PY ) andRy(PX , PY ) respectively, these are bounded by the red dotted lines and
red dash-dotted lines respectively, so the interference capacity regionRxy(PX , PY ) is bounded by the
pentagonABEFO. By symmetry,Rx(PY , PX) andRy(PX , PY ) are bounded by the blue dotted lines
and blue dash-dotted lines respectively, the capacity regionRxy(PY , PX) is bounded by the pentagon
HGCDO. So the convex hull of these two regions isABCDO.

Now consider the following timesharing fixed-composition codingPX|UPY |UPU whereU = {0, 1},
PU (0) = PU (1) = 0.5 and PX|0 = PY |1 = PX , PX|1 = PY |0 = PY . The interference capacity region
is obviously bounded by the black pentagon in Figure 5. This toy example shows why (27) is bigger
than (24).

V. FUTURE DIRECTIONS

The most interesting question about interference channel is the geometry of the two code books.
For point to point channel coding, the code words in the optimal code book is uniformly distributed
on a sphere of the optimal compositions and the optimal composition achieves the capacity. For MAC
channels, a simple time-sharing among different fixed-composition codes is sufficient and necessary
to achieve the whole capacity region, meanwhile for each fixed-composition codes, the codewords are
uniformly distributed. However as illustrated in Section IV, a more interesting “uniform” time sharing
is needed. So what is time sharing? Both simple time sharing and “uniform” time sharing change the
shape of the code books, however, in different ways. Simple time sharing “glue” segments of code words
together due to the independence of the coding in different segments of the channel uses, meanwhile for
“uniform” time sharing, code words still have equal distances between one another. Better understanding
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of the shape of code books may help us understand the interference channels. Also in this paper, we give
our first attempt at giving an outer bound of the interference channel capacity region. We only manage
to give a tight outer bound to the time-sharing fixed-composition code. An important future direction is
to categorize the coding schemes for interference channels and more outer bound result may follow. This
is in contrast to the traditional outer bound derivations [1] where genie is used.
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APPENDIX

A. Proof of (13), (14) and (16)

We give a unified proof in lower bounding the error probability for randomized fixed-composition
coding, where the error probabilities in (13), (14) and (16) are taken over all messages, code books and
channel behaviors. We examine the object function to be minimized in (13), (14) and (16).

First, thecommonpart of the three error exponentsExy, Ex|y andEx: D(QZ|XY ‖W |QXY )+D(QXY ‖PX×
PY ). D(QXY ‖PX×PY ) is the logarithm of the inverse of the probability that typeQXY is the empirical
distribution of the code pairxn(1), yn(1) individually generated from fixed-compositionsPX and PY .
D(QZ|XY ‖W |QXY ) is logarithm of the inverse of the conditional probability that the input to the channel
W is QXY , while the empirical type of the input/output isQXY Z = QXY ×QZ|XY .

Secondly for the individual part of the error exponents in (13), (14) and (16):|IQ(X,Y ; Z)−Rx−Ry|+,
|IQ(X; Z|Y )−Rx|+ and |IQ(X;Z)−Rx|+ respectively, each one is the logarithm of the inverse of an
upper bound on the probability that there exists another message (pair) with higher mutual information
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with the channel output, while the channel inputs/ouput has typeQXY Z . This is derived by a union
bound argument. We now give the details of the proofs.

1) Proof of (13): Because of the symmetry of the code book selection, we can fix the message pair
(mx,my) = (1, 1) and write the error probability (13) in the following way:

Pr(mx 6= m̂x,my 6= m̂y)

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy ∑

cX

∑
cY

(28)

1
2nRx

∑
mx

1
2nRy

∑
my

∑
zn

WZ|XY (zn|xn(mx), yn(my))1(m̂x(zn) 6= mx, m̂y(zn) 6= my)

=
(

1
|T n(PX)|

)2nRx (
1

|T n(PY )|
)2nRy

∑
cX

∑
cY

∑
zn

WZ|XY (zn|xn(1), yn(1))1(m̂x(zn) 6= 1, m̂y(zn) 6= 1)

=
∑

QXY :QX=PX ,QY =PY

{
Pr

(
(xn(1), yn(1)) ∈ QXY

) ∑

QZ|XY

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

Pr(m̂x(zn) 6= 1, m̂y(zn) 6= 1)
}

(29)

≤
∑

QXY :QX=PX ,QY =PY

{
Pr

(
(xn(1), yn(1)) ∈ QXY

) ∑

QZ|XY

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn;xn(1), yn(1)) ≤ I(zn; xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z))}}

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY ) (30)

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn;xn(1), yn(1)) ≤ I(zn; xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z))}

(28) and (29) are two different interpretations of the same error probability. In (28), we first randomly
pick a fixed-composition code book paircX and cY , then sum over the all probabilities that the output
of the channel causes a decoding error for the chosen code book pair. (29) is an equivalent interpretation
of the above error probability because the codewords for each message is independently generated. We
interpret (29) as follows, we first randomly pick a codeword pair for message1 in X and message1 in
Y , then the codeword pair is transmitted to through the channel. Then we randomly generate the rest of
the code book and investigate the probability that other message pairs maximize the mutual information
with the channel output. We upper bound the four terms in (30) individually in (31), (32), (33) and (34).

First, the number of type sets of lengthn:

|T n
XY Z | ≤ (n + 1)|X×Y×Z| = 2n( log(n+1)

n
|X×Y×Z|) = 2nan . (31)

Secondly, for anyQXY , s.t. QX = PX andQY = PY , from the method of types [2] and [3], we know
that 2n(H(PY )− log n

n
|Y|) ≤ |PY | ≤ 2nH(PY ), similar bounds applies to|PX |. And for a fixedX-sequence,

xn(1) ∈ PX = QX , we have2n(H(QY |X)− log n

n
|XY |) ≤ |{yn ∈ Yn : (xn(1), yn) ∈ QXY }| ≤ 2nH(QY |X).
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xn(1) andyn(1) are independently distributed in type setPX andPY . Hence,

Pr
(
(xn(1), yn(1)) ∈ QXY

)
=
|{yn ∈ Yn : (xn(1), yn) ∈ QXY }|

|PY | ≤ 2n(H(QY |X)−H(QY )+ log n

n
|X |)

Notice thatH(QY |X)−H(QY ) = −D(QXY ‖QX×QY ) = −D(QXY ‖PX×PY ) and letbn = log n
n |X |,

we have:

Pr
(
(xn(1), yn(1)) ∈ QXY

) ≤ 2−n(D(QXY ‖PX×PY )−bn) (32)

Thirdly, For (xn(1), yn(1)) ∈ QXY , for any empirical channel behaviorQZ|XY :

Pr(zn|(xn(1), yn(1)) ∈ QZ|XY ) = |{zn : (xn(1), yn(1), zn) ∈ QXY Z}|WZ|XY (QZ|XY )

≤ 2nH(QZ|XY ) × 2n(−D(QZ|XY ‖W |QXY )−H(QZ|XY ))

= 2−nD(QZ|XY ‖W |QXY ) (33)

Finally, for (xn(1), yn(1), zn) ∈ QXY Z , we investigate the probability that there exists(i, j), i 6= 1, j 6=
1, s.t. the mutual information between(xn(i), yn(j)) andzn is at least as much as the mutual information
between(xn(1), yn(1)) andzn. For all i 6= 1, the codewordxn(i) is uniformly distributed on the fixed-
composition setPX , same forY . Given (xn(1), yn(1), zn) ∈ QXY Z , we haveI(zn; xn(1), yn(1)) =
IQ(Z;X,Y ), so:

min{1,

2nRx∑

i=2

2nRy∑

j=2

Pr (I(zn;xn(1), yn(1)) ≤ I(zn; xn(i), yn(j))|(xn(1), yn(1), zn) ∈ QXY Z)}

≤ min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

Pr(((xn(i), yn(j), zn) ∈ VXY Z |zn ∈ QZ)}
= min{1, 2n(Rx+Ry)

∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

|{(xn, yn) ∈ PX × PY : (xn, yn, zn) ∈ VXY Z}|
|{xn : xn ∈ PX}||{yn : yn ∈ PY }| }

≤ min{1, 2n(Rx+Ry)
∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(HV (X,Y |Z)−HV (X)−HV (Y )+ log n(|X|+|Y|)
n

)}
≤ min{1, 2n(Rx+Ry)

∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(HV (X,Y |Z)−HV (X,Y )+ log n(|X|+|Y|)
n

)}
= min{1, 2n(Rx+Ry)

∑

VXY Z :VX=QX ,VY =QY ,VZ=QZ ,IQ(Z;X,Y )≤IV (Z;X,Y )

2n(−IV (X,Y ;Z)+ log n(|X|+|Y|)
n

)}

≤ min{1, 2n(Rx+Ry)n|X×Y×Z|2n(−IQ(X,Y ;Z)+ log n(|X|+|Y|)
n

)}
= 2−n(|IQ(X,Y ;Z)−Rx−Ry|+−cn) (34)

Substituting (31), (32), (33) and (34) in (30), and noticing thatan bn andcn converges to zero whenn
goes to infinity, (13) is proved.
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2) Sketch of the proof of (14) and (16):(14) and (16) can be proved by following the same argument
in proving (13). Similar to how we upper bound the LHS of (13) in (30), we upper bound the LHS of
(14) by:

Pr(mx 6= m̂x|my = m̂y)

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,
2nRx∑

i=2

Pr (I(zn; xn(1), yn(1)) ≤ I(zn; xn(i), yn(1))|(xn(1), yn(1), zn) ∈ QXY Z))}.(35)

and the LHS of (16) by

Pr(mx 6= m̂x)

≤ |T n
XY Z | max

QXY Z :QX=PX ,QY =PY

Pr
(
(xn(1), yn(1)) ∈ QXY

)
Pr(zn|(xn(1), yn(1)) ∈ QZ|XY )

min{1,
2nRx∑

i=2

Pr (I(zn;xn(1)) ≤ I(zn;xn(i))|(xn(1), yn(1), zn) ∈ QXY Z))}. (36)

The common parts (the three terms on the first line) in (35) and (36) are upper bounded the same way
as those in (31) (32) and (33) for (30). The individual part (themin{1, ·} term on the second line) of
(35) and (36) are upper bounded by a similar argument for upper bounding the individual part of (30)
shown in (33). We omit the details here. ¤
B. Proof of (17) and (23)

We give a constant lower bound,12 , on the error probabilitiesPr(m̂x 6= mx) and Pr((m̂x, m̂y) 6=
(mx,my)) in (17) and (23) respectively. The technical details of lower boundingPr(m̂x 6= mx) is carried
out in Appendix B.1. We extend the two very technical Lemmas 5 and 3 from [6] into Lemmas 6 and 7
respectively, where Lemma 7 is used to prove Lemma 6. The proof of lower boundingPr((m̂x, m̂y) 6=
(mx,my)) is similar, we only give the necessary definition of jointly good code books in Appendix B.2.

The difference between the setups in this paper and that in [6] is that we are dealing with an interference
channel instead of a memoryless channel in [6]. Hence a notion of the conditionally typical code book
in the proof of (17) and jointly typical code book in the proof of (23) is necessary in the proofs.

1) Proof of (17): we give an upper bound of thecorrect decoding probabilityPr(m̂x = mx) =
1− Pr(m̂x 6= mx) and hence prove the lower bound onPr(m̂x 6= mx) in (17) .

Pr(m̂x = mx) = Pn
e(x)(Rx, Ry, PX , PY )

=
(

1
|T n(PX)|

)2nRx ∑
cX

1
2nRx

∑
mx

∑
zn

WZ|XY (zn|xn(mx), yn)1(m̂x(zn) = mx)

The codewordsxn(mx) is uniformly distributed on the type setPX , so the probability that the joint type
of (xn(mx), yn) is close toPX × PY with high probability [2], i.e. for allσ > 0, for largen,

Pr(D((xn(mx), yn)‖PX × PY )) > σ) < σ. (37)

We denote byTσ(yn) = {xn : D((xn, yn)‖PX × PY )) ≤ σ}, the typical set conditional onyn. We say
a code bookcX is good conditional onyn if

|cX

⋂
TC

σ (yn)| ≤ |cX |
4

(38)
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where|cX | = 2nRx . The set of all good code books is denoted byG, at most4σ of the code books are
not in G because of (37). For a good code bookcX , we use the technique from [6] to upper bound the
correct probability for the good code bookcX .

Pr(m̂x = mx) ≤ |cX
⋂

TC
σ (yn)|

|cX | +
1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = m̂x(zn))

≤ 1
4

+
1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = m̂x(zn))

≤ 1
4

+ 2−n(E−εn) (39)

whereεn goes to zero withn, and

E = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY ) + |Rx − IQ(X;Z|Y )|+

where (39) is proved by Lemma 6 which is an extension of Lemma 5 in [6] from memoryless to
conditional onyn.

Following the argument in Lemma 3, it is easy to see thatE > 0 for Rx > I(X; Z|Y ) and smallσ,
where(X, Y, Z) ∼ WZ|XY × PX × PY . Now we have

Pr(m̂x = mx) =
(

1
|T n(PX)|

)2nRx

(
∑

cX∈G

Pr(m̂x = mx) +
∑

cX∈GC

Pr(m̂x = mx))

≤ 1
4

+ 2−n(E−εn) + 4σ (40)

Let σ be small enough and letn goes to infinity, soPr(m̂x 6= mx) = 1 − Pr(m̂x = mx) ≥ 1
2 . (17) is

proved. ¤

The following two Lemmas 6 and 7 are extensions of Lemma 5 and 3 in [6] respectively. They contain
the technical details in the proof of (39).

Lemma 6:Extension of Lemma5 in [6] from memoryless to conditional onyn, for a good code book
cX ∈ G defined in (38). Recall that|cX

⋂
Tσ(yn)| ≥ 3|cX |

4 = 3
4 × 2nRx , then for any decoding rule

(previously known aŝmx) φ : Zn → {1, 2, ..., 2nRx},
1
|cX |

∑

i:xn(i)∈Tσ(yn)

Pr(i = φ(zn)) ≤ 2−n(E−εn) (41)

whereE = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY ) + |Rx − IQ(X;Z|Y )|+

and εn = ε(|X |, |Y|, |Z|, n) which converges to zero asn goes to infinity.

Proof: We writeM = {i ∈ {1, 2, ..., 2nRx} : xn(i) ∈ Tσ(yn)} then we know that from the definition
of a good code book:34 × 2nRx ≤ |M | ≤ 2nRx = |cX |. Notice that

Pr(i = φ(zn)) =
∑

zn∈φ−1(i)

WZ|XY (zn|xn(i), yn) = WZ|XY (φ−1(i)|xn(i), yn) (42)
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We rewrite the LHS of (41):

= 2−nRx

∑

i:xn(i)∈Tσ(yn)

WZ|XY (φ−1(i)|xn(i), yn)

= 2−nRx

∑

QXY :D(QXY ‖PX×PY )<σ


 ∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)|xn(i), yn)




≤ (n + 1)|X ||Y| max
QXY :D(QXY ‖PX×PY )<σ


2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)|xn(i), yn)




= (n + 1)|X ||Y| max
QXY :D(QXY ‖PX×PY )<σ

2−nRx

∑

i:(xn(i),yn)∈QXY

∑

QZ|XY

WZ|XY (φ−1(i)
⋂

QZ|XY (xn(i), yn)|xn(i), yn)




≤ (n + 1)|X ||Y|+|X ||Y||Z| max
QXY Z :D(QXY ‖PX×PY )<σ

2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (φ−1(i)
⋂

QZ|XY (xn(i), yn)|xn(i), yn)




≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

2−nRx

∑

i:(xn(i),yn)∈QXY

WZ|XY (QZ|XY (xn(i), yn)|xn(i), yn)
|QZ|XY (xn(i), yn)

⋂
φ−1(i)|

|QZ|XY (xn(i), yn)|




≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

2−nD(QZ|XY ‖WZ|XY |QXY )2−nRx

∑

i:(xn(i),yn)∈QXY

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)|




≤ 2nεn(1) max
QXY Z :D(QXY ‖PX×PY )<σ

(
2−nD(QZ|XY ‖WZ|XY |QXY )2−n|R−IQ(X;Z|Y )−εn(2)|+

)
(43)

= 2−n(E−εn) (44)

where (43) follows Lemma 7. The rest are obvious by the method of types. ¤

Lemma 7:Extension of Lemma3 in [6] from memoryless to conditional onyn, for anyR ≥ Rx > 0,
for any coding systemX(yn) with joint input distribution(xn(i), yn) ∈ QXY , i = 1, 2, ...2nRx , and
decoding ruleφ : Zn → {1, 2, ..., 2nRx}, let QZ|XY (xn(i), yn) = {zn : (xn(i), yn, zn) ∈ QXY Z} (this is
the V-shell notationTV used in [6]), we have:

1
2nR

2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)| ≤ 2−n|R−IQ(X;Z|Y )−εn|+ (45)

whereεn = ε(n, |X |, |Y|, |Z|) converges to zero asn goes to infinity.
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Proof: Write QZ|Y (yn) = {zn : (yn, zn) ∈ QZY }. By the method of types [3], we know that

(n + 1)−|Z|2nHQ(Z|XY ) ≤ |QZ|XY (xn(i), yn)| ≤ 2nHQ(Z|XY )

and (n + 1)−|Z|2nHQ(Z|Y ) ≤ |QZ|Y (yn)| ≤ 2nHQ(Z|Y ).

So the LHS of (45) is upper bounded by

1
2nR

2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|
|QZ|XY (xn(i), yn)|

≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR
2nRx∑

i=1

|QZ|XY (xn(i), yn)
⋂

φ−1(i)|

≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR|QZ|Y (yn)| (46)

≤ (n + 1)|Z|2−nHQ(Z|XY )2−nR(n + 1)|Z|2nHQ(Z|Y )

= 2−n(R−IQ(X;Z|Y )−εn) (47)

(46) is true becauseQZ|XY (xn(i), yn)
⋂

φ−1(i), i = 1, 2, ..., 2nRx are disjoint and
⋃

i QZ|XY (xn(i), yn) ⊆
QZ|Y (yn). Now notice that the LHS of (45) is at most2n(Rx−R) ≤ 1, hence the LHS of (45) is no bigger
than1. This together with (47), Lemma 7 is proved. ¤

2) Proof of (23): The proof is similar to that of (17). The difference is that we need the notion of
jointlyg good code books. A code book pair(cX , cY ) is good if

|cX × cY

⋂
TC

σ | ≤
|cX ||cY |

4
(48)

where the joint typical setTσ = {(xn, yn) : D((xn, yn)‖PX × PY ) < σ}. The rest of the proof are
similar to that in the proof for (17). We conclude that

Pr((m̂x, m̂y) = (mx,my)) ≤ 1
4

+ 2−n(E−εn) + 4σ (49)

whereE = min
QXY Z :D(QXY ‖PX×PY )<σ

D(QZ|XY ‖WZ|XY |QXY )+ |R−IQ(X, Y ;Z)|+ > 0, for Rx +Ry >

I(X,Y ; Z).
Again, we need to use a modified version of Lemma 5 and 3 from [6] to prove (49). The proof is

extremely similar to those in Lemma 7 and 6. We omit the details here. ¤
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