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Abstract

This paper proposes a novel methodology to efficiently
simulate shared-memory multiprocessors composed of hun-
dreds of cores. The basic idea is to use thread-level par-
allelism in the software system and translate it into core-
level parallelism in the simulated world. To achieve this,
we first augment an existing full-system simulator to iden-
tify and separate the instruction streams belonging to the
different software threads. Then, the simulator dynami-
cally maps each instruction flow to the corresponding core
of the target multi-core architecture, taking into account
the inherent thread synchronization of the running appli-
cations. Our simulator allows a user to execute any mul-
tithreaded application in a conventional full-system simu-
lator and evaluate the performance of the application on a
many-core hardware. We carried out extensive simulations
on the SPLASH-2 benchmark suite and demonstrated the
scalability up to 1024 cores with limited simulation speed
degradation vs. the single-core case on a fixed workload.
The results also show that the proposed technique captures
the intrinsic behavior of the SPLASH-2 suite, even when we
scale up the number of shared-memory cores beyond the
thousand-core limit.

1 Introduction

Multi-core processors are here to stay [8, 12, 25, 26].
Today, you can find general purpose components with 2
to 16 cores and more dedicated parts with up to hun-
dreds of cores [1, 5]. The architectural variability is rather
broad: many lightweight cores versus few heavyweight
cores, shared memory versus private memory, etc. These
are only some of the architectural decisions that designers
have to take and solve depending on their design goals and
constraints. It is clear that researchers and designers of the
next generation processors will have to extensively evaluate
the tradeoffs related to this huge design space.

The increase of the core count as projected by several in-
dustrial and academic roadmaps [4] makes this process even

more difficult. Some many-core systems have already ar-
rived [5, 9], and by simply applying Moore’s law it is likely
that hundreds or thousands of cores on a single die will be-
come a commodity in the upcoming years.

Nevertheless, simulating such a large Chip Multiproces-
sor (CMP) is an open problem for the computer architecture
community. Some existing simulators are able to simulate
moderately-sized multi-core processors, although their low
simulation speed and scalability limit them to tens of cores.

This paper describes a methodology to efficiently simu-
late a CMP of hundreds or thousands of cores using a full-
system simulator. Our framework extracts threads from a
multi-threaded application running in the full-system simu-
lator and feeds them to a timing simulator of a many-core
architecture. It correctly generates instruction streams for
each core, while respecting the timing constraints enforced
by the synchronization of the application, such as locks and
barriers. We show that we can predict the performance im-
plications that are independent of detailed memory and in-
terconnect models.

1.1 Background

Although detailed simulation studies of 1000-core pro-
cessors have not been reported yet, the problem of simulat-
ing shared memory processors is well known and previous
research has already explored various techniques to address
it. Our approach has its roots in direct-execution simulators
like the Wisconsin Wind Tunnel (WWT) [21] and the Stan-
ford Tango-lite [11]. These simulators rely on the execution
of the majority of an application on native hardware, with
the simulator paying special attention only to those events
that do not match the target architecture. For example, the
WWT runs applications on a Thinking Machine CM-5, a
large message passing parallel computer, and traps on each
cache miss, which is simulated in a shared virtual memory.
Tango-lite executes the applications on a single-processor
host and reschedules the threads to ensure that events are
simulated in the correct order.

We borrow many concepts from these early tools, but
we apply them in a different context: we run the appli-



cations on a full-system simulator that provides isolation
and hardware independence. Since we want to simulate a
number of cores much larger than that available in the host
machine, we designed techniques to reorder the threads, as
generated by the full-system simulator, similar to Tango-
lite. Our framework detects the synchronization and imple-
ments the corresponding semantics by properly delaying the
threads that must wait. The synchronization is abstracted as
suggested by Goldschmidt and Hennessy [11] to minimize
time-dependent simulation outcomes.

1.2 Contributions

The key contribution of this paper lies in how we trans-
late thread-level parallelism from an application running in
a full-system simulator into core-level parallelism to be ex-
ploited by a many-core simulator back-end. These tech-
niques make it feasible to simulate thousands of cores on a
commodity hardware host. Because this approach can have
a severe impact on the memory footprint of the simulator
itself as we describe later in Section 4, we also have im-
plemented an instruction stream compression scheme and
added scheduling feedback to keep memory requirements
under control. With these techniques, we can model large-
scale future many-core systems on currently available hosts.

To achieve this goal, we retain some features of full-
system simulation, but we give up some others. Our tool
is capable of almost seamless execution of a multithreaded
application, given that the source code is minimally anno-
tated. It efficiently decouples functional and timing simula-
tion, so that functional and timing modes can be interleaved.
Nevertheless, we do not currently exploit I/O device emu-
lation and we discard parts of OS activity. This latter lim-
itation is in part because our simulator is based on an in-
trinsic mismatch between the architecture emulated by the
full-system simulator and the target many-core architecture.
We thus have to discard those parts of the execution that
are not meaningful for the target many-core architecture.
On the other hand, we can faithfully mimic the behavior of
multithreaded applications in a many-core architecture with
synchronization, since we actually re-implement the timing
implications of the synchronization in our simulator.

The rest of the paper is organized as follows. The
next section discusses alternative simulation approaches re-
searched in the community. Section 3 describes the pro-
posed methodology and Section 4 shows the experimental
results. Finally, Section 5 concludes the paper.

2 Related Work

Simulating many cores is an active research topic
in the computer architecture community. Conventional
application-driven simulators can scale up to few tens of

cores (e.g., SESC [22] is reported to scale up to 64 cores).
Nothing theoretically prevents these simulators from scal-
ing up to thousands of cores. Nevertheless, application-
driven simulators have other limitations. Since they typi-
cally do not simulate any OS, they require special libraries
to fake a subset of OS functionalities to support a minimal
threading system. Our solution is based on full-system sim-
ulation, relies on native OS libraries, and only requires a
simple annotation of the synchronization.

Trace-driven simulation is the base of many modern sim-
ulators for multiprocessors [14, 22]. These simulators per-
form functional emulation first and then feed instructions
to a timing engine to model the performance. In many
cases, a binary instrumentor is used as trace generator. Bi-
nary instrumentation tools like ATOM [24] or Pin [16] allow
for code profiling, microarchitectural simulation, and trace
generation. Some recent simulators based on Pin [14, 20]
have been used primarily for cache hierarchy studies, but
few details on how these tools are designed have been dis-
closed.

Our approach is also based on trace-driven simulation.
We use a full-system simulator based on virtualization tech-
nology to generate instruction traces. Koldinger et al. [15]
explore the validity of trace-driven simulation for multipro-
cessors, concluding that correct instruction interleaving is
crucial to maximize simulation accuracy.

Recent studies on many-core systems (range of hun-
dreds) introduce a methodology based on replicating
traces [13, 30]. Traces are collected from a real system—
composed of a limited number of cores—and then tweaked
to approximately reflect actual data sharing. Unfortunately,
this does not accurately simulate realistic data sharing [30].

Several research efforts [7,27,28] are directed at exploit-
ing intrinsic hardware parallelism. The common idea is
to map the target multi-core architecture onto one or more
FPGAs. Some approaches are more oriented towards se-
lectively accelerating parts of a software simulation [7], or
towards the actual prototyping of the desired design [28].
Even if we believe this is an interesting promise, several is-
sues remain unsolved, especially regarding the flexibility of
the models which may be limited by the available hardware
library.

Recently, full-system simulation has gained further in-
terest compared to application-driven approach within a
research community. Full-system simulators [6, 17, 18]
were successfully used to investigate small to medium scale
CMPs. Since full-system simulators emulate the whole
software stack, scaling up to thousands of cores is not as
simple as changing a parameter. Both the OS and the BIOS
need to understand how to manage those cores efficiently,
which may not be trivial to implement. Our approach is in-
dependent of the actual configuration in terms of the number
of cores of the full-system simulator.



3 The Framework

This section describes our methodology for simulating a
many-core system. We start by presenting the big picture of
the framework. We then illustrate the communication inter-
face used to make the full-system simulator and the guest
OS communicate with the timing simulator. We also in-
troduce the main principles and algorithms of the frame-
work, describing how we extract threads from the running
application and map them to CPUs, and how we convey the
semantics of the synchronization from the application into
the simulator. Finally, we present techniques to control the
memory usage of the framework.

3.1 Overview

Our simulation infrastructure uses a functional-first sim-
ulation approach [19], in which a full-system functional
simulator dynamically generates a trace of events that is
consumed by a timing simulator.

An overview of the proposed framework is shown in Fig-
ure 1. It is composed of three main parts: a full-system
functional simulator, an interleaver module (framed be-
tween the dashed lines), and a timing simulator. The func-
tional simulator and the interleaver act as a front-end for
the timing simulator, which consists of a collection of tim-
ing models for CPUs, caches, interconnect, and memories.
We describe each of these parts in detail later in this section.

The functional simulator streams all executed instruc-
tions, including OS activity to the interleaver. We chose
to discard those OS instructions that do not meaningfully
match the target architecture. For example, we filter the
instructions of the kernel scheduler, but we simulate all sys-
tem calls except for I/O events. At the interleaver level,
we separate instructions according to the thread they be-
long to, and dispatch them to the appropriate CPU model
in the back-end. Apart from detecting context switches, we
also detect synchronization points such as barriers and spin
locks.

Any generic multithreaded application that functionally
executes on our full-system simulator can be analyzed and
decomposed into CPU cores with the technique presented in
this document. Moreover, nothing prevents this technique
to be used for independent applications, as long as there are
as many tasks as cores to simulate.

3.2 From Threads to Cores

The first step in the process of mapping application
threads to simulating cores is to identify the different
threads running in the functional simulator. In the Linux
kernel (which is the OS we run as a guest in the func-
tional simulator), both processes and threads are treated as

Figure 1: High level view of the simulator. The di-
agram shows the main data structures of the inter-
leaver, i.e., the global queue and the local queues.
The arrows represent the dispatch and issue phase of
the interleaver. Instructions of different colors belong
to different threads.

tasks. The OS scheduler is responsible for deciding which
task takes the CPU at any given time, according to the OS
scheduling policy and task priority. When a task is assigned
to a CPU, only instructions from this task can be executed,
until the time slice finishes or an interrupt occurs. In any
case, the OS scheduler is then called to decide which task
executes next.

In order to identify the different threads, we modify
the context switch mechanism of the Linux kernel (version
2.6.23). We insert a special instruction in the OS scheduler
code ( switch to() function in the kernel code), telling
our simulator the processID (PID) and threadID (TID) of
the next task. Other simulators like Simics [17] use similar
hooks to allow communication from the emulated world to
the simulation infrastructure. The interleaver uses the PID
and TID to dispatch instructions to the appropriate queues.

This methodology is independent of the specific func-
tional simulator. It may emulate an arbitrary number of
CPUs, but since we rely on the thread abstraction we do
not care where threads are actually mapped in the func-
tional simulator. Our methodology abstracts all mapping
and scheduling done by the OS in the functional simulator
and exposes threads as instruction streams to the different



Algorithm 1 Instruction dispatch
while global queue.size() > 0 do

cpu = to cpu(global queue.front().threadID)
local queue[cpu].push(global queue.front())
global queue.pop()

end while

Algorithm 2 Instruction issue
if every local queue has at least one instruction then

for all non stalled local queues do
execute(local queue.front()) on cpu(local queue)
local queue.pop()

end for
cycles = cycles + 1

end if

CPU timers that model each core.
The interleaver is the module that glues the functional

simulator and the timing models. This module separates
the instructions belonging to different threads—we call this
phase dispatch—and schedules the instructions for execu-
tion in the CPU models with the correct ordering—this
phase is called issue. This whole phase (dispatch and is-
sue) is the key of our methodology. It properly decouples
the functional simulation and the timing simulation.

Algorithm 1 shows the basic operations of the dispatch
phase: instructions are moved from the global queue
to the local queues of their assigned CPUs. This map-
ping is done via the to cpu() function. In our case stud-
ies, which involve high-performance computing applica-
tions, this mapping is straightforward since these applica-
tions tend to spawn the same number of threads as hardware
contexts available. We use two special instructions to guide
the allocation and de-allocation of threads to CPUs, namely
THREAD BEGIN and THREAD END.

Algorithm 2 illustrates the issue phase. The condition
of the if statement checks for availability of instructions for
all CPUs. The forall loop does the actual scheduling of
instructions to the local queues. In order to guarantee that
instructions obey the execution flow, we buffer instructions
until every local queue has at least one instruction. Only
the local queues whose CPUs are not stalled can execute
the instructions in the given cycle. Synchronization slightly
changes this picture as we will see in the next section.

Figure 2 shows an example of a program spawn-
ing a thread that is executed concurrently with the mas-
ter thread. The beginning and end of each thread are
marked with the special instructions THREAD BEGIN and
THREAD END. Figure 3 explains how this code is executed
by our simulation framework. The THREAD BEGIN calls
activate the mechanism. After that, the local queue[0]
starts buffering instructions from the thread tid1.

work(...)
{
THREAD_BEGIN;
/* do some work */
THREAD_END;

}
...
tid[0] = thread_create(&work,0);

work(1);

thread_join(tid[0]);

Figure 2: Fragment of code containing thread cre-
ation (one thread is spawned other than the master
thread) and join

Figure 3: The basic execution flow of the framework
(relative to the program in Figure 2): Two threads are
executed concurrently. From left to right we show a
pictorial view of the program execution, the instruc-
tion stream produced by the functional simulator, i.e.,
the contents of the global queue, and some snap-
shots of the contents of the local queues. The thin
gray arrows indicate the last instruction of the global
instruction stream that is considered in the corre-
sponding snapshot. The big arrows and the X indi-
cate whether a local queue can issue instructions or
not.

Since no instructions from tid2 are present in the
local queue[1], none of the local queues can issue in-
structions (represented by the two Xs). As soon as instruc-
tions from tid2 are dispatched to its local queue, the inter-
leaver starts issuing instructions to both CPUs, and simula-
tion time advances.

In the next subsection, we explain how we augment our
mechanism to deal with programs that contain locks and
barriers.



Table 1: Special instructions used for locks and bar-
riers, and the behavior of the simulator

Special instruction Dispatch Issue
Barriers

BARRIER BEGIN Dispatch wait until the head of each local
and skip queue is BARRIER BEGIN

BARRIER END Dispatch
Locks

SLOCK BEGIN Dispatch Wait until the lock is released
and skip

SLOCK END Dispatch
UNLOCK Dispatch Release the lock

3.3 Synchronization

Simulating synchronization between threads involves
several steps which change our dispatch and issue mech-
anisms: (1) the synchronization event must be delivered
to the interleaver; (2) the simulator must abstract from
the time-dependent patterns that may depend on the ma-
chine emulated by the functional simulator; (3) the inter-
leaver must respect the order imposed by the synchroniza-
tion when issuing the instructions for execution.

To deliver a synchronization event, we annotate the syn-
chronization points in the source code. The special instruc-
tions we chose to mark locks and barriers are listed in Ta-
ble 1. By having these special instructions at the beginning
and end of any barrier and lock, the simulator can isolate
the effects of time-dependent patterns (spinning) which are
used in the implementation of most threading libraries. The
interleaver uses them to enforce the correct instruction or-
dering as we will see shortly in this section. The simula-
tion back-end will simulate the synchronization based on
the micro-architectural model of the particular experiment.

Figure 4(a) shows an example of how special instruc-
tions are applied to a barrier. When a local queue has
a BARRIER BEGIN as the head element, it cannot is-
sue instructions—other queues can go on consuming in-
structions until they also reach a BARRIER BEGIN. The
BARRIER BEGIN also instructs the simulator to skip all
instructions until a BARRIER END is reached. Once all
threads reach the barrier, normal execution resumes. This
way, we abstract the barrier so that the polling of the bar-
rier variable is just discarded and can be potentially re-
built by the timing simulator. The skip is implemented
in the dispatch (Algorithm 1), while the semantics of the
BARRIER BEGIN are implemented in a modified while
condition of the issue (Algorithm 2).

Locks are implemented in a similar way. Figure 4(b)
shows an example of a thread contending a lock that pro-
tects a critical section. SLOCK BEGIN and SLOCK END
delimit a spin lock, while UNLOCK is placed soon after the
actual unlock. All instructions between the SLOCK BEGIN

work(...)
{
...
BARRIER_BEGIN;
barrier();
BARRIER_END;
...

}

(a)

work(...)
{
...
BEGIN_SLOCK(l);
lock(l);
END_SLOCK(l);
/*critical section*/
unlock(l);
UNLOCK(l);
...

}

(b)

Figure 4: Fragment of code containing (a) a barrier;
and (b) a spin lock protecting a critical section

Figure 5: Diagram illustrating the execution of a bar-
rier (code in Figure 4(a))

Figure 6: Diagram illustrating the execution of a lock
(code in Figure 4(b))

and SLOCK END are skipped (spinning). A thread ac-
quires the lock at the SLOCK BEGIN and releases it at the
UNLOCK. Other threads trying to acquire the lock by per-
forming another SLOCK BEGIN are stopped and cannot is-
sue instructions till the lock is released.

Similarly to Figure 3, Figures 5 and 6 illustrate the ex-
ecution of a barrier and a spin lock. The diagrams of the
local queues (right part of the figures) show when the local
queues are stopped because a BARRIER BEGIN has been
reached or a lock has not been released yet.



3.4 Taming Memory Usage

The buffering of instructions in the local queues can eas-
ily consume enormous amounts of memory. This is espe-
cially evident for applications with heavy synchronization
and unbalanced threads. To keep memory usage under con-
trol we have devised an instruction compression technique
in the local queues and a scheduling feedback mechanism.

The compression mechanism is implemented in the dis-
patch phase. Since our memory back-end is cache-line ad-
dressable, we perform an early branch prediction and en-
code only possible misses. We perform address compres-
sion techniques both on instruction and data memory ref-
erences by storing only the necessary bits to address cache
lines. Having a simple pipeline in-order model allows us to
enhance compression by substituting the full opcode by a
broad type identifier and not tracking register values.

The Linux scheduler in the guest OS may cause an
unbalanced execution of threads, and this can be exacer-
bated if the threads that run longer have already generated a
large number of instructions. All these instructions must be
stored until we have instructions from all the threads ready
for being issued (recall Figure 1). In some cases, this may
cause our memory usage to explode beyond reasonable lim-
its (tens of GBs). To solve this, we have implemented a
feedback mechanism to increase the priority of threads that
are in waiting state in the guest OS. When the interleaver
detects that one of the local queues has ran out of instruc-
tions, it instructs the guest OS to increase the priority of
the thread associated to this local queue. The kernel sched-
uler then selects that thread for execution on the next time
slice, and the empty local queue is filled with new instruc-
tions. Note that this does not affect measured performance,
since the full-system emulator only acts as an instruction
flow generator. Performance estimations are generated by
the timing models placed in the simulator back-end.

For example, Figure 2 also illustrates a typical
case where the feedback path is useful to balance
thread execution. Threads are created by calling the
thread create() function, before the master thread is
created by a subsequent call to work(). Since the guest OS
has no visibility of the target architecture, we observed that
it tends to first execute all child threads and, subsequently,
the master thread. Nevertheless, no instruction can leave
the local queues until the master thread has started execut-
ing too. Our feedback path is able to raise the priority of the
master thread anticipating the execution and causing a more
balanced usage of the local queues.

4 Experimental Results

We applied our methodology to a full-system simulation
environment based on HP Labs’ COTSon [3] and AMD’s

SimNow simulator [2]. The guest system runs Linux with
kernel 2.6.23. We designed and implemented a modular
interleaver that interfaces the functional simulator and the
timing models, as described in the previous sections. We
used simple in-order cores and an ideal memory system for
the back-end timing simulator. Note that modeling more
complex cores and memory systems is beyond the scope of
this paper since our focus is on the fundamental character-
istics of the simulation framework, and not on the specific
timing models.

We used the SPLASH-2 benchmark suite [29] to val-
idate our approach. Table 2 reports the programs we
use and the corresponding datasets. We compiled each
application with gcc-4.2, options -O3 -m32 -msse2
-mfpmath=sse. We use two datasets: DS1, the default
dataset for SPLASH-2 [29] and DS2, a scaled up dataset.
For DS2, we tried to scale up the dataset by 16 times.1 This
was possible for FFT, LU, Ocean, and Radix. We had to
scale the dataset of Water-spatial by 64 times to provide
large enough data structure for 1024 threads, while we were
only able to scale the datasets of Barnes and FMM by 4
times to bound simulation time tractable. We could not
fine-tune the datasets of other applications easily, so we ei-
ther could find a suitably larger dataset (Cholesky, Raytrace,
and Radiosity) available in the original benchmark suite, or
we had to take them out of our experiments. Table 2 re-
ports the maximum number of CPUs we simulate for each
benchmark.

We chose to keep the SPLASH-2 code largely unmod-
ified: understanding the algorithmic implications in the
context of a 1000-core processor would be an interesting
study by itself [23], but is outside the scope of this pa-
per. We adapted Radix by replacing implicit synchroniza-
tion via semaphore variables with explicit synchronization
constructs. We carefully analyzed each benchmark to iden-
tify any possible time-dependent pattern, other than lock
and barrier spinning. We found several polling loops (i.e.,
implicit synchronization implemented by polling a shared
variable) that affected the simulation substantially and we
chose to skip these parts. The last column in Table 2 indi-
cates the benchmarks we modified.

Table 2 also reports the number of instructions across
all configurations (1–1024 cores). The variation in number
of instructions is quite large for some benchmarks, espe-
cially for DS1, but drops for the larger DS2—except for
LU. Given that we used the same dataset for different core
counts, the way the dataset is divided among the cores may
differ. Some applications have to process more and larger
overlapping regions when the core count increases, thus fea-
turing an increase of the number of instruction.

Due to the mismatch of the simulated architecture and

1Our target is 1024 cores, while the original SPLASH-2 paper used 64
cores [29]. Hence, 1024/64 = 16×.



Table 2: Benchmarks
DS1 (default) DS2 Polling Loops
#instrs. (×109) max scaling #instrs. (×109) max scaling

Barnes 16 K particles 1.7-2.1 1024 64 K 9.5 1024 yes
Cholesky tk15.O 0.4-0.7 1024 tk29.O 1-1.9 1024 yes
FFT 64 K points 0.03-0.04 256 1 M 0.6-0.7 1024
FMM 16 K particles 2.9 128 64 K 10 1024 yes
LU 512×512 0.35-0.7 1024 2048×2048 22-43 1024
Ocean 258×258 0.45-0.7 1024 1026×1026 6.3-6.8 1024
Radiosity room 1.5-1.6 1024 largeroom 4.0-4.7 512 yes
Radix 1 M integers 0.07-0.1 1024 16 M 1.1-1.2 1024
Raytrace car 0.7 1024 balls4 6.5 1024
Volrend head 1-1.9 1024 - - - yes
Water-spatial 512 molecules 0.6 64 32 K 37 1024

Table 3: Comparison with the original SPLASH-2 re-
sults ((SPLASH-2 − our results)/our results)

Number of cores
16 32 64

Barnes - - -15%
Cholesky - - 20%
FFT - - -
FMM - - -20%
LU - - -
Ocean - - -7%
Radix 10% 10% 10%
Radiosity -30% -30% -30%
Raytrace -50% -50% -55%
Water-spatial - - 10%

the architecture emulated by the functional simulator, those
benchmarks that feature dynamic job scheduling might in-
cur higher accuracy loss with our approach. This same
problem was observed by Goldschmidt and Hennessy [11]
for the Tango-lite simulator. Nevertheless, they report
limited inaccuracies for the applications they used (the
SPLASH benchmarks). Similar conclusions were obtained
by Eggers and Kats [10] for trace-driven simulation.

Figure 7 replicates the results reported in the original
SPLASH-2 paper [29]. Table 3 shows the differences be-
tween the two sets of results. Since we visually estimated
the numbers, we only report those differences greater that
5%. For less that 16 cores, our results almost perfectly
match those in the SPLASH-2 paper, so we do not show
the numbers in the table.

As the simulation infrastructures used in both cases are
different, we obviously cannot expect a perfect match in the
simulation results, but ultimately the trend should be very
similar. For example, the host platform, the OS, and the
ISA are completely different. While the SPLASH-2 paper
uses MIPS, our simulator is based on x86 64.

By looking at the original graphs, the main differences
are for Raytrace and Radiosity, while for the other bench-
marks we generally predict just a slightly worse scaling (dif-
ferences bound to 20%). The mismatch is mainly because

we differently account for the initialization of these bench-
marks.

Figure 8(a) shows the amount of synchronization cy-
cles out of the execution time for each benchmark and each
configuration. Our predictions (32 cores) also match those
made in the SPLASH-2 paper, with few exceptions.

In Figure 9(a), we report the results for the scaling up
to 1024 threads. Note that most benchmarks do not scale
due to their small dataset, except for Barnes, which shows a
moderate speedup (280× at 1024 cores). Figure 9(b) shows
the results we obtained by increasing the dataset. Some
benchmarks (FFT, Water-Spatial, Ocean, and Radix) scale
meaningfully (600× at 1024 cores); we could indeed scale
up the dataset of these benchmarks by at least 16×. LU is
an exception, since it is limited by the synchronization—it
scales up to 380× at 1024 cores. Other benchmarks scale
less clearly since dataset, synchronization, and algorithm
properties may interact. For example, Cholesky gains very
little with respect to Figure 9(a), but besides the possibly
small dataset, this benchmark is limited by fine-grain lock
synchronization. Raytrace has a clear speedup by increas-
ing the dataset (3×), but due to the fine-grain synchroniza-
tion (similar to Cholesky), it does not scale with the number
of cores. These trends are confirmed by Figure 8 that shows
how the synchronization fraction decreases for the bench-
marks that scale up.

Figure 10(a) shows the simulation speed for all configu-
rations. We run our experiments on a simulation farm com-
posed of AMD Dual-Core Opteron at 2.8GHz and 8GB of
RAM. The average simulation speed is around 1M instruc-
tions per second for 1 core. For 1024, simulation speed de-
creases to 0.7M instructions per second (a 30% drop). Most
of the additional slowdown is due to the synchronization.
For FMM and Cholesky, simulation speed drops by 50%.
These indeed have the highest synchronization component
as shown in Figure 8.

Memory usage (reported in Figure 10(b)) is a critical as-
pect of our simulation flow. The upper bound for all applica-
tions and configurations is 8GB, corresponding to the mem-
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Figure 7: SPLASH-2 scaling on the default dataset (DS1) up to 64 cores
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Figure 8: Fraction of the execution time spent in synchronization

ory installed in the simulation host used for the experiments.
Approximately ∼2GB of memory are used by the baseline
full-system simulator (HP Lab’s COTSon + AMD’s Sim-
Now) itself. On top of that, many applications remain in the
3–4GB range and only a few grow up to nearly 8GB.

5 Conclusions

Virtually all next-generation high-performance comput-
ing systems will use multi-core parts. Looking at the tra-
jectory of many-core roadmaps, we can easily envision a
future with hundreds or thousands of shared-memory cores
in a single CPU. One of the challenges in designing these

systems is projecting their performance, but today no full-
system simulator is capable of simulating such a large-scale
multi-core processor.

In this paper, we present an approach that represents an
important first step towards the simulation of chip multipro-
cessors of an arbitrary number of cores. By converting time-
multiplexed threads into space-multiplexed threads, we cre-
ate a virtual chip multiprocessor in which software threads
that were previously mapped to hardware threads are now
mapped to CPU models, each of them simulating one of the
CMP cores.

Our approach is based on full-system simulation tech-
nology which is used to run a many-thread application,
whose threads are dynamically mapped into independent
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Figure 9: SPLASH-2 scaling up to 1024 cores
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Figure 10: Simulation speed and Memory usage (DS2)

cores. Our experiments show that the simulator can scale
up to 1024 cores with an average simulation speed over-
head of only 30% with respect to the single-core simula-
tion. We successfully used our approach on the SPLASH-2
benchmark suite, giving meaningful insights on the intrin-
sic scaling behavior of these applications. We also showed
that the original dataset of the SPLASH-2 limits the scal-
ability of these applications for the large number of cores
we are targeting. By scaling up the dataset, we achieved a
speedup in the range of 600–700× for a subset of 4 out of
10 benchmarks, while other applications are limited by ei-
ther the synchronization or the poor scaling of the dataset
itself.

This work highlights important directions in building

a comprehensive tool to simulate many-core architectures
that might be very helpful for the future research in com-
puter architecture. If we look beyond simple SPLASH-2-
like benchmarks, the biggest challenge we envision is ad-
dressing the simulation of applications whose behavior is
heavily timing-dependent, especially those relying on im-
plicit synchronization.

Finally, putting together full-system simulation and tim-
ing simulation opens up new opportunities for system-level
analysis. We plan to investigate the problems relative to
the faithful simulation of these aspects within our frame-
work to eventually being able to evaluate the performance
implication of the OS and I/O subsystem in the context of
many-core architectures.
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