

COTSon: Infrastructure for Full System Simulation

Eduardo Argollo, Ayose Falcón, Paolo Faraboschi, Matteo Monchiero, Daniel Ortega

HP Laboratories
HPL-2008-189

Keyword(s):
Full system simulation

Abstract:
Simulation is the primary technique for evaluating the performance of new proposals in
computerarchitecture. Speed and complexity have traditionally limited simulation to single-thread
processors running application-level code. This is no longer sufficient to model multicore systems
running current more complex workloads. COTSon's goal is to provide fast and accurate evaluation of
current and future computing systems, covering the full software stack and complete hardware models, by
targeting cluster-level systems composed of hundreds of multicore nodes connected through a standard
communication network. COTSon uses fast functional emulators and timing models to improve the
simulation accuracy at a speed sufficient to simulate the full stack of applications and OSs. Through a
robust interface between the functional and timing domain, COTSon leverages existing simulators for
individual sub-components, such as disks or networks. We abandon the idea of always-on cycle-based
simulation in favor of statistical sampling approaches that can trade accuracy for speed.

External Posting Date: November 6, 2008 [Abstact Only] Approved for External Publication

Internal Posting Date: November 6, 2008 [Fulltext]

To be published in Operating Systems Review, Vol 43, Num 1, January 2009

© Copyright Operating Systems Review 2009.

COTSon: Infrastructure for Full System Simulation

Eduardo Argollo Ayose Falcón Paolo Faraboschi
Matteo Monchiero Daniel Ortega

HP Labs — Exascale Computing Lab
{eduardo.argollo,ayose.falcon,paolo.faraboschi,matteo.monchiero,daniel.ortega}@hp.com

ABSTRACT
Simulation has historically been the primary technique used
for evaluating the performance of new proposals in computer
architecture. Speed and complexity considerations have tra-
ditionally limited its applicability to single-thread processors
running application-level code. This is no longer sufficient
to model modern multicore systems running the complex
workloads of commercial interest today.

COTSon is a simulator framework jointly developed by
HP Labs and AMD. The goal of COTSon is to provide fast
and accurate evaluation of current and future computing
systems, covering the full software stack and complete hard-
ware models. It targets cluster-level systems composed of
hundreds of commodity multicore nodes and their associ-
ated devices connected through a standard communication
network. COTSon adopts a functional-directed philosophy,
where fast functional emulators and timing models cooper-
ate to improve the simulation accuracy at a speed sufficient
to simulate the full stack of applications, middleware and
OSs.

This paper describes the changes in simulation philosophy
we embraced in COTSon to address these new challenges.
We base functional emulation on established, fast and vali-
dated tools that support commodity OSs and complex multi-
tier applications. Through a robust interface between the
functional and timing domain, we can leverage other exist-
ing simulators for individual sub-components, such as disks
or networks. We abandon the idea of “always-on” cycle-
based simulation in favor of statistical sampling approaches
that can trade accuracy for speed.

COTSon opens up a new dimension in the speed/accuracy
space, allowing simulation of a cluster of nodes several orders
of magnitude faster with a minimal accuracy loss.

Categories and Subject Descriptors
B.2.2 [Arithmetic and Logic Structures]: Performance
Analysis and Design Aids—Simulation, Verification, Worst-
case analysis; B.3.3 [Memory Structures]: Performance
Analysis and Design Aids—Simulation, Verification, Worst-
case analysis

General Terms
Measurement, Performance

Keywords
Full system simulation

1. INTRODUCTION
The ever-increasing complexity of computing systems has
made simulators the primary choice in their design and anal-
ysis. A correct simulation methodology helps researchers,
developers and system designers understand the impact of
their design decisions.

The panel discussion of the 2004 Intl. Symp. on Perfor-
mance Analysis of Systems and Software (captured in [30])
presents five important suggestions: 1) allow for multi-
processor and multithreaded simulation of operating sys-
tems (OS) and applications, 2) improve sampling techniques,
3) use higher-speed alternatives to cycle-accurate simula-
tion, 4) select benchmark suites that contain representative
and non-redundant benchmarks, and 5) make the method-
ology more robust and statistically based to allow for inde-
pendent validation and to facilitate comparability. In this
paper we present COTSon, a simulation framework that we
believe addresses all of these challenges.

Simulation can be decomposed into two complementary
tasks. Functional simulation “emulates” the behavior of the
target system, including the OS and common devices such as
disks, video, or network interfaces. An emulator is normally
only concerned with functional correctness, so the notion
of time is imprecise and often just a representation of the
wall-clock time of the host.

Functional simulators must be precise and have been histor-
ically used to verify correctness of systems and to do early
software development before the hardware is available. Re-
cently some emulators (such as SimOS [21] or QEMU [4])
became fast enough to approximate native execution. These
have evolved into virtual machines and hypervisors which
have been used to isolate, consolidate, encapsulate and also
provide hardware independence for application developers.

Timing simulation is used to assess the performance of a
system. It models the operation latency of devices simu-
lated by the functional simulator and assures that events
generated by these devices are simulated in a correct time
ordering. Timing simulations are approximations to their
real counterparts, and the concept of accuracy of a timing
simulation is needed to measure the fidelity of these simu-
lators with respect to existing systems. Absolute accuracy
is not always strictly necessary and in many cases it is not
even desired, due to its high engineering cost. In many situ-
ations, substituting absolute with relative accuracy between

different timing simulations is enough for users to discover
trends for the proposed techniques.

If we look at the trajectory of general purpose multicore
processors [6, 10, 18], we can see that the number of cores
per die is expected to grow quadratically with each new
generation. Some specialized parts are already appearing
with up to hundreds of cores [1, 3]. This trend broadens
the variability of architectural design choices, such as cache
hierarchy, heterogeneity, and use of lightweight cores. It also
adds enormous pressure to the simulation infrastructure.

A defining characteristic of simulators is the control rela-
tionship between their functional and timing components
[14]. In timing-directed simulation (also called execution-
driven), the timing model is responsible for driving the func-
tional simulation. The execution-driven approach allows
for higher simulation accuracy, since the timing can impact
the executed path. For example, the functional simulator
fetches and simulates instructions from the wrong path af-
ter a branch has been mispredicted by the timing simulation.
When the timing details of the branch simulation determine
that its prediction was wrong, it redirects functional simu-
lation on its correct path. All instructions from the wrong
path pollute the caches and the internal structures, just as
they would do on a normal branch misprediction.

On the other end of the spectrum, functional-first (also
called trace-driven) simulators let the functional simulation
produce an open-loop trace of the executed instructions that
can later be replayed by a timing simulator. Some trace-
driven simulators do not store the instruction traces, but
pass them directly to the timing simulator for immediate
consumption. A trace-driven approach can only replay what
was previously simulated. So, for example, it cannot play
the wrong execution path off a branch misprediction, since
the instructions trace only contains the correct paths in the
execution of the application. To correct for this, timing
models normally implement mechanisms to account for the
mispredicted execution of instructions, but in a less-accurate
way.

The control choice also impacts the engineering architec-
tures of both approaches. Execution-driven simulators are
normally programmed with their functional and timing sim-
ulators tightly coupled, which makes it easier for the timing
to control the functional. Trace-driven simulators are usu-
ally built using instrumentation libraries such as Atom [23]
or Pin [13], which simplify the functional simulation by run-
ning natively in the machine.

As a middle ground, Mauer et al. [14] propose a timing-
first approach where the timing simulator runs ahead and
uses the functional simulator to check (and possibly correct)
execution state periodically. This approach clearly favors
accuracy vs. speed and was shown to be appropriate for
moderately sized multiprocessors and simple applications.

Speed scalability and support for complex benchmarks
have become fundamental requirements, and we advocate
that another approach is needed, which we call functional-
directed. Speed requirements mandate that functional sim-
ulation should be in the driver’s seat and, with sufficient

speed, we can capture larger applications and higher core
counts. To overcome the accuracy limitations of traditional
trace-based approaches, we add a timing feedback mecha-
nism that periodically adjusts the speed of functional em-
ulation to reflect the timing estimates and hence give the
running application a more-precise timing correction.

COTSon is the simulation platform jointly developed by HP
Labs and AMD that follows this philosophy. In this paper
we present its development, capabilities, characteristics and
limitations. We describe the mechanisms we developed to
accelerate CPU simulation through dynamic sampling tech-
niques. We then describe the network synchronization mech-
anism that can parallelize simulation of clusters on clusters
with a negligible accuracy penalty. We finally present a more
forward-looking research use of COTSon in modeling a very
high-core-count (1000 cores) hypothetical machine.

2. DESIGN REQUIREMENTS
In this section we describe the design requirements of
COTSon. We explain the design decisions we have made.
The two factors that most influenced our design decisions
were the ability to trade-off accuracy for speed, and the abil-
ity to maintain and extend COTSon.

2.1 Decouple functional & timing simulation
COTSon offers decoupled functional and timing simulation
by defining a clear interface between both paths. The first
benefit of such an approach is the ability to reuse exist-
ing functional simulators. These are very complicated to
build and maintain, but on the other hand, there are plenty
of them being developed and maintained. COTSon’s func-
tional simulator uses AMD’s SimNowTM simulator1 [2].

COTSon’s decoupled architecture is highly modular. Many
interfaces have been designed and built with sufficient gener-
ality so that exchanging many of COTSon’s functionalities
is easy. This modularity enables users to select different
timing models, for example, depending on the particular ex-
periment. Moreover, it is easy to program new timing sim-
ulators or even adapt existing ones and incorporate them
into COTSon. The same is true about other timing models
such as network interface cards (NIC) or disk-timing models,
and even about simulation techniques such as the sampling
strategy being used. This versatility is what makes COTSon
a simulation platform.

2.2 Full-system simulation
The SimNow simulator functionally models most of the ex-
isting hardware that can be found on an AMD system. Other
companies and partners, including HP, develop their own
functional devices for the SimNow platform. Full-system
simulation means that all aspects of the system can be an-
alyzed by the simulator. All benchmarks that run inside an
AMD platform run unmodified in COTSon.

Sometimes difficulties arise when simulating a whole bench-
mark suite. Some applications use rare and unsupported
system calls. Under a full-system simulation this is rarely
the case, since everything that runs on the system being

1SimNow and AMD Opteron are trademarks of Advanced
Micro Devices, Inc.

simulated runs on the functional simulator and therefore on
the timing simulator.

A full-system simulator also enables the simulation of closed-
source, pre-built or legacy applications. For example, we
have used COTSon to install, tune, test and simulate Oracle
database installations. In order to do so, we gave an expert
remote access to a virtual machine environment where he
could install and tune our Oracle installation. Afterwards,
a snapshot of this virtual machine was repeatedly used for
different experiments.

We believe that COTSon’s approach delivers a platform that
may be used by many different kinds of users. Network
research, usually employing captured or analytically gener-
ated traces, may now use COTSon either to generate better
traces or to see the impact of their protocols and imple-
mentations under real network applications. Other kinds
of researchers, such as those interested in storage, OS, mi-
croarchitecture, and cache hierarchies may also benefit from
COTSon’s holistic approach, enabling the analysis and op-
timizations of whole systems.

2.3 Faster simulation speed means more data
Even though the speed of the simulation itself does not
change the results of the experiments, it is by far one of
the most important aspects of a simulation infrastructure.
A full-system model implementation may be five or six or-
ders of magnitude slower than the real system. One second
of execution of such system takes from one to over ten com-
pute days to simulate. Although several experiments may
be run in parallel (with the different parameters to analyze),
this approach is unsustainable because it limits the coverage
of the experiments.

COTSon is designed with simulation speed as one of its top
priorities. COTSon uses virtual machine techniques for its
functional simulation, e.g., just-in-time compiling and code
caching. The functional simulation is handled by the Sim-
Now simulator which has a typical slowdown of 10× with
respect to native execution. Other virtual machines such
as VMWare [20] or QEMU [4] have smaller slowdowns of
around 25%, but their lower functional fidelity and limited
range of supported devices make them unsuitable for a full-
system simulator.

To speed up timing simulation, we have analyzed both the
interfaces with the functional side and all the different de-
vice models to simulate. Normally, simulation bottlenecks
are in the CPU and memory hierarchy models. To speed
these up we have studied the use of simpler models together
with parameter-fitting techniques. We have also designed
our CPU timing interfaces with sampling in mind, since sam-
pling has been shown to speed up CPU simulation by orders
of magnitude.

2.4 Accuracy-vs.-Speed trade-offs
Simulators that target 100% accuracy are extremely expen-
sive in terms of development, validation and testing. Their
accuracy normally comes at the expense of other interesting
characteristics, such as simulation speed or broadness of the
experiments they can carry out, making them too rigid for
research purposes.

Speed and accuracy are inversely related, i.e., both cannot
be optimized at the same time. We believe that the highest
accuracy is not always needed for all kinds of experiments
such as initial design space explorations. Many techniques
such as sampling replace absolute fidelity with a highly sim-
ilar behavior on average. COTSon can thus approximate
with high confidence the total computing time of a partic-
ular application while not knowing its specific behavior at
every instant.

COTSon exposes an accuracy-vs.-speed trade-off to its users.
This enables them to skip uninteresting parts of the code
(such as initial loading) by simulating them at lower accu-
racy levels. It also allows for fast characterization of bench-
marks and systems for their subsequent detailed simulation.
All our proposed techniques follow this trade-off philosophy,
allowing the user to select, both statically and dynamically,
the desired trade-off.

2.5 Timing feedback
Trace-driven timing simulation lacks a communication path
from the timing to the functional simulation. The func-
tional simulation is independent of the timing simulation.
For many situations, especially unithreaded microarchitec-
ture research, this is not a severe limiting factor. Unfor-
tunately, more complex systems do change their functional
behavior depending on their performance.

One example of such a situation occurs in operating sys-
tems, which normally use a fixed time quantum to schedule
processes and threads. Threads in a multithreaded applica-
tion also exhibit different interleaving patterns depending on
the performance of each of the threads, which in some cases
may produce different functional behavior. On another level,
many networking libraries such as Message Passing Interface
(MPI) change their policies and algorithms depending on the
particular performance of the network.

Having timing feedback—a communication path from the
timing to the functional simulator—is crucial for studying
these kinds of situations. Since COTSon aims to be used as
a full-system simulator, pure trace-driven simulation cannot
be considered as an option. On the other hand, execution-
driven approaches with timing feedback are inherently very
complicated and hard to speed up using current virtual ma-
chine techniques. Instead of choosing any of these fixed ex-
tremes, COTSon follows a middle road, by combining sam-
pled trace-driven approaches with timing feedback.

COTSon makes its functional simulator run for a dynami-
cally set interval. This produces a stream of events which are
sent to the respective CPU timing models. At the end of the
interval, using the metrics from the CPU models (which in-
clude the whole memory hierarchy) a new IPC (instructions
per cycle) is fed back to the functional simulator. By select-
ing different interval sizes, the user can turn the accuracy-
vs.-speed knob either way. Moreover, COTSon’s approach
couples very well with sampling, enabling the user to select
just those intervals which are considered representative or
“interesting.” Another benefit is the capability of trace gen-
eration for off-line simulation on those occasions in which
trace-driven simulation is the selected path.

2.6 Scaling up and out
The very first suggestion from Yi et al. [30] is to enable mul-
ticore simulation. COTSon’s functional simulator, AMD’s
SimNow, is one of the few commercially available virtual
machines with an important commitment to multicore func-
tional simulation. COTSon currently supports simulation of
all existing AMD systems. In order to study future systems,
it is important to be able to simulate an unbounded number
of cores in a system. Simulating dozens or hundreds of cores
is not trivial, since it implies changes in the simulator, the
BIOS, and the OS.

Scaling out is also among COTSon features. Currently, over
75% of all systems in the Top 500 list [26] are clusters, and
they have become the de facto commodity option for both
high performance and scalability. COTSon’s approach to
simulating a cluster is radically different from previous ap-
proaches for simulating parallel machines. COTSon com-
bines individual node simulators to form a cluster simulator.

3. COTSON’S ARCHITECTURE
Figure 1 shows an overview of the COTSon architecture.
COTSon uses AMD’s SimNow simulator for the functional
simulation of each node in the cluster. The SimNow simu-
lator is a fast and configurable x86 and AMD64 platforms
simulator for AMD’s family of processors. It uses dynamic
compilation and caching techniques to speed up CPU simu-
lation. It provides an accurate model of a computer system
from the program, OS, and programmer point of view. It
is capable of booting a system with an unmodified BIOS
and OS, and executes any kind of complex application. The
SimNow simulator is able to simulate both uniprocessor and
multiprocessor systems, and includes full simulation of sys-
tem devices. The SimNow platform has an SDK available to
partners where new devices can be programmed that mimic
real hardware.

In order to add timing simulation to COTSon, HP Labs and
AMD have jointly augmented the SimNow simulator with
a double communication layer which allows any device to
export functional events and receive timing information from
them. All events are directed by COTSon to their timing
model, which is selected by the user. Each timing model
may describe which events it is interested in via a dynamic
subscription mechanism. There are two main types of device
communication: synchronous and asynchronous.

3.1 Synchronous simulation
Synchronous communication devices are those devices that
immediately respond with timing information for each event
received. Currently COTSon supports and has different tim-
ing models for synchronous devices such as disks and NICs.

One example of synchronous communication is the simu-
lation of a disk read by the functional simulator. The IDE
device is responsible for handling the read operation, finding
out the requested data and making it available to the func-
tional simulator. However, instead of issuing the equivalent
of an interrupt, the functional simulator issues a read event
with all the pertinent information to COTSon. COTSon de-
livers this event to a specific disk model which determines
its latency. The latency is used by the SimNow simulator to

schedule the functional interrupt that signals the completion
of the read.

3.2 Asynchronous simulation
A synchronous simulation approach is not viable for events
that happen at a high frequency. If each instruction exe-
cuted by the functional simulator had to communicate with
a timing model, the simulation would come to a halt. Virtual
machines benefit extraordinarily from caching the transla-
tions of the code they are simulating, and staying inside the
code cache for as long as possible. A synchronous approach
would mean that the simulation of each instruction would
have to leave the code cache, imposing a very big penalty.
On top of this, current CPU timing models are unable to
estimate the speed of each instruction by itself. Superscalar
microarchitectures have many instructions executing at the
same time, thus the concept of instruction latency must be
substituted with the average IPC.

Asynchronous communication is needed for these kinds of
devices. Asynchronous communication decouples the gener-
ation of events and its processing and the feedback of timing
information. Instead of receiving a call per event, the Sim-
Now simulator produces tokens describing dynamic events.
These tokens are parsed by COTSon and delivered to the
appropriate timing modules. At specific moments, COTSon
asks these timing modules for aggregate timing information
(in the form of IPC) and feeds it back to each of the func-
tional cores.

3.3 Asynchronous timing feedback interface
The IPC fed back into the functional cores is used by the
SimNow simulator to schedule the progress of instructions in
each core. Whenever COTSon provides a new IPC value, the
scenario in which applications and OS are being simulated
changes. The simulated system time evolves based on the
output from the timing modules.

Unfortunately, just programming the functional IPC with
the results of the CPU timing modules is not a good idea.
There are many situations in which the information from the
CPU timing modules has to be filtered and adapted before
passing it to the SimNow simulator. An example of this
occurs with small samples. If a particular core is mostly
idle, the number of instructions in that sample may not be
enough to get an accurate estimate of the IPC. Feeding back
the resulting IPC may reduce simulation accuracy.

Instead of forcing timing modules to implement all possi-
ble corrections needed, COTSon offers a timing feedback
interface that handles such corrections transparently to the
timing modules. One of the most interesting features of this
interface is the potential to correct and accurately predict
future IPC by using mathematical models such as Auto-
Regressive-Moving-Average (ARMA) model, which is bor-
rowed from the field of time-series forecasting.

3.4 Multicore instruction interleaving
AMD’s SimNow simulator is able to simulate multicore ar-
chitectures with a moderate number of cores, by “sequen-
tializing” the execution of the different cores. Each core is
allowed to run independently for some maximum amount of

Sampling

Asynchronous Events
Interleaved

Timing feedback

Timing feedback

0 1

Bus

0

COTSon Node

Core 0

Sampling

Asynchronous Events
Interleaver

Core 1

C0
D$

I$
L2$ Memory

Timing feedback

Timing feedback

Northbridge

Memory

Southbridge

SimNow (Functional)

HD 0 HD 1

Disk
Timer

0124... 3

C1
D$

I$
Bus

NIC
Timer

CPU and Memory Timer

Disk
Timer

NIC

012...

COTSon Node

Sampling

Asynchronous Events
Interleaved

Timing feedback

Timing feedback

01

Bus

0

COTSon Node

Network
Timer

Network Switch
(Functional)

Network Mediator

Figure 1: COTSon’s architecture

time, called multiprocessor synchronization quantum, which
can be programmed by COTSon. At the end of the synchro-
nization quantum, all the cores have reached the same point
in time.

The simulation of each core generates a series of events
that are stored into an asynchronous queue, following the
methodology described in Section 3.2. COTSon parses these
queues to build higher-level objects such as instructions. In-
stead of sending the instructions or memory accesses im-
mediately to the timing models, COTSon waits until it has
available instructions from all the cores and interleaves them
based on how the CPU timing models consider appropriate.

In most cases, the interleaving of instructions by the timing
modules differs from what the SimNow simulator has exe-
cuted, but this difference only impacts the perceived perfor-
mance of the application, and COTSon already handles that
through timing feedback. There are functional differences
that COTSon does not capture this way. An example of this
is an active wait by a spin lock. The functional simulator
may decide to spin five iterations before the lock is acquired,
while the timing simulator, depending on the model being
used, may determine that it should have iterated 10 times or
none. This discrepancy impacts the accuracy of the simula-
tion. Nevertheless, COTSon provides a mechanism, the mul-
tiprocessor synchronization quantum, which increases accu-
racy at the expense of a lower simulation speed. Another
possibility we have followed for certain experiments consists
of tagging all fine-grain synchronization mechanisms in the

application code being analyzed. When these tags arrive at
the interleaver, COTSon is able to simulate the pertinent
instructions based on timing information. Tagging synchro-
nization primitives offers the highest-possible simulation ac-
curacy.

3.5 Sampling
Asynchronous simulation of CPU cores is extremely slow.
The SimNow simulator has a typical slowdown of 10×, which
means that on average the execution of 1 native instruc-
tion takes 10 instructions in the code cache. Unfortunately,
timing simulation of one instruction may have a slowdown
between 10,000× and 100,000×. The functional simulation
inserts extra code in the code cache that dynamically gen-
erates events for the timing modules. The cycle-accurate
simulation of these events, namely instructions and mem-
ory accesses, involves fetching the instruction, decoding it,
renaming it, and so on.

Accurate timing simulation of a CPU core and memory hi-
erarchy is extremely slow compared to its functional simu-
lation. It is so slow that coupled cycle-accurate simulators
rarely try to optimize their functional simulation. After all,
it represents just a minuscule part of their total execution.

The best way of speeding up timing simulation is considered
to be sampling [31]. Sampling consists of determining what
are the interesting or representative phases of the simulation
and just simulating those. The results from these samples
are then combined to produce global results.

Sampling is central to asynchronous devices. The sampler
is selected by the user per experiment and is responsible for
deciding the representative phases of execution. It does so
by selecting the type of the current sample and its length,
i.e., COTSon asks the sampler what to do next and for how
long. The sampler may reply with a command to enter one
of four distinct phases: functional, simple warming, detailed
warming and simulation.

In the functional phase, an asynchronous device does not
produce any kind of events, and so runs at full speed. The
simulation phase is the opposite: COTSon instructs the de-
vice to produce events and sends them to the timing mod-
els. In order to remove the non-sampling bias from the
simulation, most samplers require that the timing models
be warmed up. COTSon understands two different warm-
ing phases: simple warming is intended for warming the
high-hysteresis elements, such as caches and branch target
buffers; detailed warming is intended for warming up both
high-hysteresis elements and also low-hysteresis ones, such
as reorder buffers and renaming tables. Normally the sam-
pler inserts one or several warming phases before switching
to simulation.

The sampler may be controlled from inside the functional
system via the use of special libraries and utilities. Users
may use them to annotate their applications which then send
finer-grain phase selection information to the sampler.

3.6 External networking
COTSon supports a NIC device. NIC devices are very sim-
ple and merely determine how long a particular network
packet takes to be processed by the hardware.

When a particular application needs to communicate using
the network, it executes some code that eventually reaches
the NIC. This produces a NIC event that reaches the NIC
synchronous timing model. The response time from the
timing model is then used by the functional simulator to
schedule the emission of the packet into the external world.
The packet is sent to an external entity which is called the
network mediator. Among the functionalities of the medi-
ator are those that allow the packet to reach the external
world. It also offers a Dynamic Host Configuration Protocol
(DHCP) for the virtual machines and allows the redirection
of ports from the host machine into the guest simulated sys-
tem.

3.7 Cluster networking
In order to simulate a whole cluster, COTSon instantiates
several COTSon node simulators, potentially in different
host machines. Each of them is a stand-alone application
which communicates with the rest via the network mediator.
The network mediator acts as a functional network switch,
directing network packets to the appropriate COTSon node
destination.

To simulate network latencies, the mediator relies on net-
work timing models, which determine the total latency of
each packet based on its characteristics and the network
topology. The latency is attached to each packet and is used
by the destination COTSon node simulator to schedule the
arrival of the packet.

The mediator is also responsible for the time synchroniza-
tion of all the node instances. Without synchronization,
each of the nodes simulated would see time advance at a
different rate. In real life this would be similar to assuming
all nodes have skewed system clocks which work at different
frequencies. Although this does not prevent most cluster ap-
plications from completing successfully, COTSon is unable
to report objective measurements from the timing simula-
tion. COTSon uses the mediator to synchronize all node
simulators and forces them to proceed in a controlled way.

4. RESEARCH CHALLENGES
The COTSon platform has involved an extraordinary
amount of development on both HP’s and AMD’s side. But
not everything has been development; many of the problems
we have encountered were new and needed research. In this
section, we present three research problems solved success-
fully by HP Labs, as well as the impact that this research
has had on COTSon.

4.1 Sampling to speed up CPU simulation
One of the first analyses done to COTSon revealed that the
biggest bottleneck to simulation performance was CPU sim-
ulation. The frequency of CPU events is several orders of
magnitude bigger than that of any other kind of device.
It was clear that optimizing simulation performance came
through optimizing CPU simulation.

Sampling techniques [11] selectively turn on and off timing
simulation, and are among the most promising for improv-
ing timing simulation. Other techniques, such as using a
reduced input set or simulating just an initial portion of
programs, also reduce simulation time, but at the expense
of accuracy. Sampling is the process of selecting appropriate
simulation intervals, so that the extrapolation of the simula-
tion statistics in these intervals well approximates the statis-
tics of the complete execution. Previous work has shown
that an adequate sampler can yield excellent simulation ac-
curacy. The two most cited samplers for microarchitectural
simulation are SimPoint [22] and SMARTS [29].

4.1.1 SMARTS
SMARTS employs systematic sampling. It makes use of sta-
tistical analysis in order to determine the number of instruc-
tions that need to be simulated in the desired benchmark
(number of samples and length of samples). As simulation
samples in SMARTS are rather small (∼1000 instructions)
it is crucial for SMARTS to keep micro-architectural struc-
tures such as caches and branch predictors warmed-up all
the time. For this reason, they perform a simple warming
(functional warming in SMARTS parlance) between sam-
ples. The statistical analysis consists of running a previous
profiling phase, i.e., a complete execution of the applica-
tion, to collect data and then determine the most appropri-
ate simulation points. This analysis can be done once per
benchmark and then reused for many experiments, as long
as the functional simulation of the benchmarks is not af-
fected by the timing simulation, i.e., no timing feedback is
ever allowed under SMARTS.

4.1.2 SimPoint
SimPoint also needs a full profile of the benchmarks. The
obtained profile of instructions is later processed using clus-
tering and distance algorithms to determine the best simu-
lation points. As with SMARTS, this off-line analysis works
just for this benchmark and input set, and must be redone
if any of the characteristics of the application changes. The
first SimPoint step performs an a priori static profiling of
the code being executed to create code signatures that rep-
resent the program’s behavior at different points during ex-
ecution. These signatures are then used to concisely deter-
mine which portion of the code is best to simulate. Re-
cent versions of SimPoint include clustering analysis and
other optimizations, such as multiple simulation intervals
and variable-length intervals, that improve SimPoint’s speed
and accuracy [5]. The simulation points obtained by Sim-
Point are used to gain an understanding of whole program
behavior and to greatly reduce simulation time by using only
representative samples.

In both SimPoint and SMARTS, the number and duration
of the full-timing simulation samples determine the total
simulation time and simulation accuracy. Results found in
the literature show that SMARTS is generally more accu-
rate than SimPoint. However, as the sampling selection
mechanism in SimPoint is faster, SimPoint offers the best
accuracy-vs.-speed trade-off [31].

4.1.3 Problems of existing samplers
Unfortunately, samplers like SMARTS or SimPoint assume a
stable and repeatable functional execution regardless of the
timing. In these scenarios, the off-line processing is accu-
rate and can determine the most representative parts of the
application as samples. In the presence of timing feedback,
these samplers cannot rely anymore on their sample selection
process. As we saw earlier, timing feedback is fundamental
for OS and multithreaded application analysis. Moreover,
SMARTS imposes a very heavy load, requiring dynamic in-
formation for each instruction, preventing COTSon from
ever running in the functional phase which produces the
biggest speed improvement.

4.1.4 Dynamic Sampling
Dynamic Sampling [7] dynamically adapts the timing sim-
ulation to the application characteristics (where application
includes the full system simulation). This approach has two
fundamental advantages: 1) it frees COTSon from the profil-
ing phase needed by both SMARTS and SimPoint, and 2) it
allows the experimenter to dynamically adjust the accuracy-
vs.-speed knob depending on the characteristics of the ap-
plication and the particular experiment being done.

The basis for Dynamic Sampling lies in the following: in
the process of simulating a complete system, a functional
simulator performs many different tasks and keeps track of
several statistics. The SimNow simulator works more or less
the same; it maintains a series of internal statistics collected
during the simulation. These statistics measure elements of
the simulated system as well as the behavior of its internal
structures. The statistics related to the characteristics of the
simulated code are similar to those collected by microproces-
sor hardware counters. For example, the SimNow simulator
maintains, among other statistics, the number of executed

instructions, memory accesses, exceptions, and bytes read
or written to or from a device. This data is inherent to the
simulated software and is a clear indicator of the behavior
of the running applications. The correlation of changes in
code locality with overall performance is a property that
other researchers have already established [12].

The SimNow simulator also keeps track of statistics of its
internal structures, such as the translation cache and the
software translation lookaside buffer (TLB, necessary for ef-
ficient implementation of simulated virtual memory). Intu-
itively, one can imagine that this second class of statistics
could also be useful to detect phase changes of the simulated
code. Our results show that this is indeed the case.

Dynamic sampling uses a sensitivity value that indicates the
minimum first-derivative threshold of the monitored variable
that triggers a phase change. The control logic of our algo-
rithm inspects the monitored variables at regular intervals.
Whenever the relative change between successive measure-
ments is larger than the sensitivity, it triggers a new simu-
lation interval with full timing.

Full timing

SMARTS
[0.5%, 7.4x]

EXC-300-1M-10
[3.9%, 4.3x]

SimPoint + prof
[1.7%, 9.5x]

EXC-500-10M-10
[6.7%, 9.1x]

SimPoint
[1.7%, 422x]

CPU-300-100M-10
[0.4%, 8.5x]

CPU-300-1M-100
[0.3%, 43x]

CPU-300-1M-�
[1.1%, 158x]

I/O-100-1M-�
[1.9%, 309x]

1

10

100

1000

0% 1% 2% 3% 4% 5% 6% 7%

S
im

u
la

ti
o

n
 S

p
ee

d
u

p
 (

vs
. f

u
ll

ti
m

in
g

)

Accuracy Error (vs. full timing)

Figure 2: Dynamic sampling results

Figure 2 shows a summary description of the speed vs. accu-
racy trade-offs of the proposed Dynamic Sampling approach
and how it compares with SMARTS and SimPoint sampling
techniques. In these experiments, we simulate the whole
SPEC CPU2000 benchmark suite [24] using the reference
input until completion or until they reach 240 billion in-
structions, whichever occurs first.

On the x axis we plot the accuracy error versus what we
obtain in a full-timing run (smaller is better). On the log-
arithmic y axis we plot the simulation execution speedup
versus the full-timing run (larger is better). Each point rep-
resents the accuracy error and speed of a given experiment
averaged for all the benchmarks, all normalized to a full tim-
ing run (speed=1, accuracy error=0). The graph shows four
square points: full timing, SMARTS, and SimPoint with
and without considering profiling and clustering time. Cir-
cular points are some interesting results of Dynamic Sam-
pling, with various configuration parameters. The terminol-
ogy used for these points is “AA-BB-CC-DD”, where AA is the
SimNow internal statistic that is monitored (CPU for code
cache invalidations, EXC for code exceptions, and I/O for
I/O operations), BB is the sensitivity value that determines

phase change, CC is the interval length (in number of in-
structions), and DD is the maximum number of consecutive
functional intervals that can exist between two consecutive
simulation intervals.

The dotted line shows the Pareto optimality curve highlight-
ing the “optimal” points of the explored space. A point in
the figure is considered Pareto optimal if there is no other
point that performs at least as well on one criterion (accu-
racy error or simulation speedup) and strictly better on the
other criterion. Note that both SMARTS and SimPoint are
in (or very close to) the Pareto optimality curve, which im-
plies that they provide two very good solutions for trading
accuracy vs. speed.

The four Dynamic Sampling results in the left part of the
graph are particularly interesting. These reach accuracy er-
rors below 2%, and as little as 0.3% (in “CPU-300-1M-100”).
The difference between these points is in the speedup they
obtain, ranging from 8.5× (similar to SMARTS) to an im-
pressive 309×. An intermediate point with a very good accu-
racy/speed trade-off is “CPU-300-1M-∞”, with an accuracy
error of 1.1% and a speedup of 158×.

4.2 Scaling out: Cluster simulation
COTSon distributes the simulation of the different cores over
multiple hosts. Synchronizing these COTSon node instances
can be accomplished using Parallel Discrete Event Simula-
tion (PDES) techniques [9, 15], all of which basically require
simulation to synchronize at given intervals, called quanta.
Unfortunately, doing so in a straightforward way implies
forcing very small synchronization quanta, smaller than the
shortest simulated network latency. For modern low-latency
fabrics with round-trips of few microseconds, the overhead
of perfect synchronization would cause about two orders of
magnitude slowdown in cluster simulations.

We have implemented an adaptive quantum synchroniza-
tion technique [8] that follows COTSon’s accuracy-vs.-speed
trade-off philosophy. Since applications are not always send-
ing packets, they do not need to work at the smallest syn-
chronization quantum during intervals where communica-
tion is sparse. Thus with this technique, in the absence of
packets, simulation accelerates to the highest possible per-
formance by increasing the granularity of synchronization.
As soon as packet traffic increases, simulation quickly de-
celerates to the smallest synchronization quantum, to retain
simulation accuracy.

As nodes advance at different speeds, it may happen that
some packets reach their destination when this has already
passed their delivery time. In these situations COTSon de-
livers these straggler packets immediately, but some accu-
racy is lost due to the late delivery. Since the number of
straggler packets is kept small, COTSon manages to keep
the total impact on accuracy bounded, while still speeding
up simulation considerably. However, the price to pay is
making simulation non-deterministic.

Figure 3 shows a summary description of the speed vs. ac-
curacy trade-offs of two configurations of adaptive quantum
synchronization and how they compare with the experiments
run with bigger quanta. The results shown in this figure cor-

respond to a cluster with 8 nodes. We present two sets of
results, a first one using the NAS benchmark suite [17], and
a second one using the NAMD benchmark [19].

NAS 10

NAS 100

NAS 1000

NAS dyn 1

NAS dyn 2

NAMD
10

NAMD 100

NAMD 1000

NAMD dyn 1

NAMD dyn 2

1

10

100

0% 10% 20% 30% 40% 50% 60% 70%

S
im

u
la

ti
o

n
 S

p
ee

d
u

p

Accuracy Error

Figure 3: Adaptive quantum results

On the x axis we plot the relative accuracy error, as a per-
centage, with respect to the baseline, quantum = 1µs, thus
smaller values represent better accuracy. On the logarithmic
y axis we plot the simulation execution speedup with respect
to the same baseline. Each point represents the accuracy er-
ror and speed of a given experiment. Our two configurations
have been tagged as dyn 1 (using a 3% acceleration factor)
and dyn 2 (5% acceleration).

The dotted lines show the Pareto optimality curve for the
two benchmark suites, highlighting the “optimal” points of
the explored space. All adaptive configurations lie in or very
near the Pareto curve, and can thus be considered nearly
optimal. COTSon’s novel approach to cluster simulation
achieves an order of magnitude faster cluster experiments
while maintaining acceptable accuracy.

4.3 Scaling up: Manycore simulation
The obvious way of scaling up a full system simulator is to
adapt its functional simulation to enable a larger number
of functional cores. Although COTSon is already working
on this aspect, its applicability is not immediate, since both
the BIOS and the OS need substantial changes that enable
them to manage a large number of cores in an efficient way.

In parallel with the more general approach, COTSon has im-
plemented a novel technique [16], which — although more
limited in its applicability — shows great potential for a
quick study of several high-performance computing bench-
mark suites. COTSon converts time-multiplexed threads
into space-multiplexed threads, by transforming software
threads that were previously mapped to hardware threads
into threads mapped to each of the cores. We believe that
this approach, which has already been used successfully in
several research papers [25, 27], is an important first step
towards the simulation of chip multiprocessors and future
manycore architectures.

COTSon augments the functional simulator to identify the
instruction streams. Instructions corresponding to differ-
ent software threads are detected and tagged. We manually
modify the source code of the OS (specifically, a simple call
inside the context switch routine), which enables COTSon

to detect task changes in the system and determine which
threads and processes are executing at each moment.

Once instructions from the different software threads are
tagged, COTSon dynamically maps each instruction flow
into the corresponding hardware core of the simulated many-
core architecture. The inherent thread synchronization is
also taken into account by annotating the synchronization
points of the application. COTSon isolates synchronous op-
erations such as locks and barriers, and maps them onto the
target manycore architecture. COTSon uses annotation to
correctly simulate them and also to remove the effects that
certain implementations, such as spinning locks, may have
on the functional simulation from which they are derived.
Discarding these effects, and others such as I/O device sim-
ulation and certain parts of the OS, is crucial since they are
no longer meaningful under the target architecture.

COTSon enhances its interleaving mechanism to capture
these annotations and separate software threads and direct
them into the different models for the cores. The fact that
the interleaver needs instructions from all the cores to pro-
ceed poses an interesting problem. If the underlying OS de-
cides not to schedule a thread, COTSon has to store all the
instructions from other threads until all threads are sched-
uled. This causes an important scalability issue: the amount
of memory depends on OS scheduling and can quickly grow
out of control. To circumvent this problem, COTSon feeds
back scheduling information to raise the priority of software
threads with a low number of instructions.

Figure 4 shows the accumulated IPC (throughput) over time
of two SPLASH-2 [28] benchmarks, FFT and Barnes, exe-
cuting in a manycore machine with a varying number of
cores (64–1024 cores). Each line in the graph corresponds
to a different number of cores; the y axis shows accumu-
lated IPC, while the x axis shows number of cycles (note
that executions with more nodes take fewer to complete). In
these simulations, COTSon simulates an ideal machine, with
each core having an in-order pipeline and a constant-latency
memory system. These experiments are thus useful to un-
derstand the intrinsic scaling limitations of an application
due to synchronization and dataset. As shown in Figure 4,
FFT scales almost linearly, achieving the maximum IPC for
most of its execution time. On the other hand, Barnes shows
some phases that do not scale at all, lasting almost the same
regardless the number of cores. These phases (building tree)
are the main bottleneck of this application and prevent it
from achieving peak performance for a high core count.

5. CONCLUSIONS
The COTSon project started in 2006 with the aim of build-
ing a simulation infrastructure that could predict the per-
formance of existing and future computer systems. At that
time, there was no tool that could measure the performance
of a full system composed of hundreds of multicore, multi-
processor nodes, including the full software stack and all the
system devices like network cards or disks, in an affordable
amount of time.

Today COTSon is a mature platform whose adoption is
growing inside and outside HP Labs. Due to its capabilities
to dynamically adjust accuracy and speed, COTSon can be

0

200

400

600

800

1000

0 200 400 600 800 1000

IP
C

cycle (x 103)

���� ����	
�� ����	 �� ����	�
� ����	 ��� ����	
(a) FFT

0

200

400

600

800

1000

0 5 10 15 20

IP
C

cycle (x 106)

��� �����
�
� �������� �����
�� ����� �� �����

(b) Barnes

Figure 4: IPC over time for two SPLASH-2 bench-

marks and number of cores ranging from 64 to 1024

used at very different levels. On the one hand, at a microar-
chitectural level, it can be used by researchers in computer
architecture wanting to measure the performance of their
new branch predictor or cache prefetching algorithm. On
the other hand, at the system level, COTSon can be used
as a bid-desk tool to optimize the combination of comput-
ing resources to match customer requirements in terms of
performance/power and cost.

We plan to extend COTSon in several ways. We have devel-
oped an SDK so that COTSon users can incorporate their
CPU timing and power models into the simulation infras-
tructure. As COTSon gets more widely used by the re-
search community, we expect that many new features will
be included in the existing infrastructure, such as reliability
measurement tools or profiling and visualization tools.

Acknowledgments
We thank the AMD SimNow team for their contributions to
the COTSon infrastructure.

6. REFERENCES
[1] Ambric. Massively Parallel Processor Array

technology. http://www.ambric.com.

[2] R. Bedicheck. SimNow: Fast platform simulation
purely in software. In Hot Chips 16, Aug. 2004.

[3] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce,
V. Leung, J. MacKay, and M. Reif. TILE64 processor:

A 64-core SoC with mesh interconnect. In Proceedings
of the International Solid-State Circuits Conference
(ISSCC 2008), Feb. 2008.

[4] F. Bellard. QEMU, a fast and portable dynamic
translator. In USENIX 2005 Annual Technical Conf.,
FREENIX Track, pages 41–46, Apr. 2005.

[5] B. Calder. SimPoint.
http://www.cse.ucsd.edu/∼calder/simpoint.

[6] J. Dorsey, S. Searles, M. Ciraula, S. Johnson,
N. Bujanos, D. Wu, M. Braganza, S. Meyers, E. Fang,
and R. Kumar. An integrated quad-core Opteron
processor. In IEEE International Solid-State Circuits
Conference (ISSCC 2007), Feb. 2007.

[7] A. Falcón, P. Faraboschi, and D. Ortega. Combining
simulation and virtualization through dynamic
sampling. In Proceedings of the IEEE International
Symposium on Performance Analysis of Systems &
Software, Apr. 2007.

[8] A. Falcón, P. Faraboschi, and D. Ortega. An adaptive
synchronization technique for parallel simulation of
networked clusters. In Proc. of the 2008 IEEE
International Symp. on Performance Analysis of
Systems & Software, Apr. 2008.

[9] R. M. Fujimoto. Parallel discrete event simulation.
Commun. ACM, 33(10):30–53, 1990.

[10] M. Gschwind, H. P. Hofstee, B. Flachs, M. Hopkins,
Y. Watanabe, and T. Yamazaki. Synergistic
processing in Cell’s multicore architecture. IEEE
Micro, 26(2):10–24, 2006.

[11] T. Lafage and A. Seznec. Choosing representative
slices of program execution for microarchitecture
simulations: A preliminary application to the data
stream. Workload Characterization of Emerging
Computer applications, pages 145–163, 2001.

[12] J. Lau, J. Sampson, E. Perelman, G. Hamerly, and
B. Calder. The strong correlation between code
signatures and performance. In Proceedings of the Intl.
Symposium on Performance Analysis of Systems and
Software, pages 236–247, Mar. 2005.

[13] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and
K. Hazelwood. Pin: Building customized program
analysis tools with dynamic instrumentation. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 2005.

[14] C. J. Mauer, M. D. Hill, and D. A. Wood. Full-system
timing-first simulation. In SIGMETRICS ’02:
Proceedings of the 2002 ACM SIGMETRICS
international conference on Measurement and
modeling of computer systems, pages 108–116, New
York, NY, USA, 2002. ACM.

[15] J. Misra. Distributed discrete-event simulation. ACM
Comput. Surv., 18(1):39–65, 1986.

[16] M. Monchiero, J.-H. Ahn, A. Falcón, D. Ortega, and
P. Faraboschi. How to simulate 1000 cores. In
Workshop on Design, Architecture and Simulation of
Chip Multiprocessors (dasCMP’08), Nov. 2008.

[17] NASA Ames Research Center. The NAS parallel
benchmarks. http://www.nas.nasa.gov/Resources/
Software/npb.html.

[18] U. G. Nawathe, M. Hassan, L. Warriner, K. Yen,
B. Upputuri, D. Greenhill, A. Kumar, and H. Park.

An 8-core 64-thread 64-bit power efficient SPARC SoC
(Niagara2). In Proceedings of the International
Solid-State Circuits Conference (ISSCC 2007), pages
108–109, 2007.

[19] J. C. Phillips, R. Braun, W. Wang, J. Gumbart,
E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel,
L. Kale, and K. Schulten. Scalable molecular dynamics
with NAMD. Journal of Computational Chemistry,
26(16):1781–1802, Oct. 2005.

[20] M. Rosenblum. VMware’s virtual platform: A virtual
machine monitor for commodity PCs. In Hot Chips
11, Aug. 1999.

[21] M. Rosenblum, S. A. Herrod, E. Witchel, and
A. Gupta. Complete computer system simulation: The
SimOS approach. IEEE Parallel Distrib. Technol.,
3(4):34–43, 1995.

[22] T. Sherwood, E. Perelman, G. Hamerly, and
B. Calder. Automatically characterizing large scale
program behavior. In Proceedings of the 10th Intl.
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 45–57, Oct.
2002.

[23] A. Srivastava and A. Eustace. ATOM — a system for
building customized program analysis tools. In
Proceedings of the ACM Conference on Programming
Language Design and Implementation (PLDI), 1994.

[24] Standard Performance Evaluation Corporation. SPEC
CPU2000. http://www.spec.org/cpu2000.

[25] S. Thoziyoor, J. H. Ahn, M. Monchiero, J. B.
Brockman, and N. P. Jouppi. A comprehensive
memory modeling tool and its application to the
design and analysis of future memory hierarchies. In
Proc. of the 35th Annual International Symposium on
Computer Architecture, June 2008.

[26] TOP500 Project. TOP500 Supercomputer Sites.
http://www.top500.org.

[27] D. Vantrease, R. Schreiber, M. Monchiero,
M. McLaren, N. P. Jouppi, M. Fiorentino, A. Davis,
N. Binkert, R. G. Beausoleil, and J. H. Ahn. Corona:
System implications of emerging nanophotonic
technology. In ISCA ’08: Proceedings of the 35th
International Symposium on Computer Architecture,
pages 153–164, 2008.

[28] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 programs: Characterization
and methodological considerations. In Proc. of the
22nd Annual International Symposium on Computer
Architecture, pages 24–36, June 1995.

[29] R. E. Wunderlich, T. F. Wenisch, B. Falsafi, and J. C.
Hoe. SMARTS: Accelerating microarchitecture
simulation via rigorous statistical sampling. In
Proceedings of the 30th Annual Intl. Symposium on
Computer Architecture, pages 84–97, June 2003.

[30] J. J. Yi, L. Eeckhout, D. J. Lilja, B. Calder, L. K.
John, and J. E. Smith. The future of simulation: A
field of dreams. Computer, 39(11):22–29, 2006.

[31] J. J. Yi, S. V. Kodakara, R. Sendag, D. J. Lilja, and
D. M. Hawkins. Characterizing and comparing
prevailing simulation techniques. In Proceedings of the
11th Intl. Conference on High Performance Computer
Architecture, pages 266–277, Feb. 2005.

