[LaBs™)

Demos2k as a Bridge to Formal Methods

Richard Taylor and Chris Tofts
HP Laboratories
HPL-2008-184

Keyword(s):
Concurrency, Multi Core, Parallelism, Formal, Analysis, Simulation, Visualisation

Abstract:

With multi core computing systems becoming commonplace it has been recognised that their full
potential can only be exploited by using explicitly parallel programming solutions. It has long
been known that this class of programs is difficult to constrcut correctly, difficult to demonstrate
efficient and a major problem to maintain. Although formal approaches to these programming
situations have demonstrated many point successes, their widespread adoption has been limited
by the (reasonable) belief that they are too technically challenging and time consuming to deliver
value to a project. In this paper we illustrate, via an extended example, how a formally based
process based simulation language (DEMOS2K) provides a mid point between concept,
implementation and formal analysis. Furthermore, regarded as a rapid software prototyping
system it gives a rapid visualisation of how the algorithm concept will execute in a concurrent
setting.

External Posting Date: October 21, 2008 [Fulltext] - Approved for External Publication

Internal Posting Date: October 21, 2008 [Fulltext] [ﬁﬂ

© Copyright 2008 Hewlett-Packard Development Company, L.P.

DEMOS2K a Bridge to Formal Systems Analysis

Richard Taylor & Chris Tofts
HP Laboratories Bristol,
{richard.taylor, chris.tofts}@hp.com

October 13, 2008

1 Introduction

The prospect of large number multiple core processors and the need to exploit their computational power
to the full, has re-ignited interest in the construction of explicitly parallel[?] coded solutions. It has been
observed that to fully exploit the power of these processors we will need to change the way in which we write
programs for them. Equally, it has long been understood that writing parallel programs is a demanding and
error prone task, with the cause of the errors often being difficult to trace and remove.

On the other side there has long been a view that ‘formal’ analysis of programs can help reduce the number
of errors and potentially improve productivity in complex programming settings. However, widespread
adoption of these methods has been extremely limited. Usually they are regarded as fit only for situations
solely where there is an immediate threat to life if the constructed system fails to perform adequately. The
lack of widespread adoption of formal techniques can be attributed to many potential factors:

e the skill level (expense/rarity) of the staff required to deploy them;

e the time ‘wasted’ in constructing the formal model, could have been coding;
e the ‘lack’ of detail in the formal model, too abstract — ‘not the system’;

e the need to abstract into the formal system to get an effective result;

e the use of raw mathematical forms which do not provide the kinds of development support environment
programmers are used to;

e the difficulty of debugging the models themselves'

e given the ‘linguistic’ gap between implementation and formal models, believing that the results of the
formal analysis apply to the problem at hand;

e identifying what questions should (or could) be (effectively) asked within the formal analysis.

The problems identified above span the major problems in comprehending computational systems. One
the one hand these are inherently formal objects at the level of presentation — almost all systems are provided
(code) in a syntactically formal system. On the other hand attempting to understand the system at that level
of detail is often unnecessary — we need to abstract. The presence of an ultimately formal basis leads to a belief
that there is neither a need or any value in abstraction in the setting of analysing computational systems,
which stands in contrast to the conventional approaches to understanding the complexity of algorithms!

To bridge this contradiction the programmer needs a solution representation system with several impor-
tant properties:

1. it encourages the programmer to abstract to the ‘core’ of the problem;

2. whilst giving them confidence that they have captured it.

LOne of the hardest problems is knowing that a formal model ‘correctly’ captures the system problem under consideration.

3. it gives them an effective method of model ‘debugging’;
4. it allows them to observe dynamic properties of their system (as a model);
5. it permits them to ‘see’ the kind of questions of the system they should ask.

To this end we developed the DEMOS2K system — the basic concept was to have a simulation frame
which itself was well defined? and lends itself to the construction of models of the programming problem,
rather than implementations. It is interesting to note that the construction of detailed simulations is itself
as hard a project as constructing a full implementation, and therefore is best deferred to the point where
the proposed solution is sufficiently well understood, and justified, as to support the effort.

Throughout the rest of this paper we will provide a brief introduction to the language DEMOS2K,
and present a motivating example, a COMA style concurrent memory management protocol system. We
illustrate how that system can be implemented within DEMOS2K, and that the conceptual gap between
the DEMOS2K implementation and a formal analysis is sufficiently small to be a much smaller challenge
than proceeding directly from a detailed implementation. Finally we illustrate how the COMA model can
be moved into a ‘full’ formal analysis and the nature of the information which can be derived in that setting.

2 DEMOS2K

DEMOS2K is a direct descendant of Demos [?] and is a process oriented discrete event simulation language
which was initially defined as an extension to the Simula [?] language. The new version [?] has little changed
syntactically from the original other than in how entities slave themselves to others. Demos has essentially
3 components.

1. entities, defined as instances of classes;

2. resources;

3. bins.

These elements all have definitional forms:

1. entity(name,className,offfset) and class name=body
2. res(foo,amt);

3. bin(foo,amt);.

Entities are the active elements of the system, resources can be thought of a semaphores and bins as
points of asynchrony. Entities interact with other elements of the system in the following manner:

1. getR(resN,amt) and putR(resN,amt) respectively claim and free the amt of resource resN, an entity
cannot return amounts of resource it does not own;

2. getB(binN,amt) and putB(binN,amt) respectively claim and free the amt of bin binN;
3. sync(name) slaves the current entity on name;

4. getS(syn,amt) and putS(syn,amt) respectively claim and free the amt of sync syn, an entity cannot
return amounts of sync it does not own.

5. Entity(name,className,offset) spawns a new instance of className called name at time offset into the
future;

6. Hold(ti) advances the simulation clock ti into the future.

2This actually means that the system has to have a valid formal semantics, which in practice means it needs two which can
be compared for consistency! In this case both operational [?, ?], denotational [?, ?, ?] with the comparison in [?]

Collectively getR(resN,amt), getB(binN,amt) and getS(syn,amt) are refered to as acquisitions. Are we
permit the following compound operations on them:

1. reqlacql,...,acqN] requires that all of the requests can be granted simultaneously before the entity can
proceed.

2. try [reql] then Bdl etry [req2] then Bd2 ... etry [regN] then BdN; will try each of the requests in turn
until one can be satisfied, otherwise it blocks until one can be satisfied. Often used with ... etry [] then
hold(t) as a non-blocking test.

Finally we allow loops
1. repeat body executes body forever;
2. do n body executes body n times, usually used in setup

3. while [req] body as long as the requirement can be met execute the body. Note a requirement can be
a boolean.

A demos program consists of an entity (conventionally referred to as main) that sets up class and other
definitions and then invokes some entities to form the running system.

3 An example - COMA protocol

A basic component of the COMA protocol is the maintenance of a list of processors which have a current
valid copy of the data, a so-called wvalidity chain. One of the processors will be distinguished as a directory
node, and have the task of maintaining a pointer to the head of this validity chain, and will be the processor
to which the remaining client processors will initially look for a valid copy of the data. Furthermore, the
final element in the validity chain will have a pointer back to the directory node.

In each processor the data can be in one of three states:

e cxclusive: this processor has the only valid copy of the data;
e shared: this processor and at least one other have a valid copy of the data;
e invalid: this processor does not have a valid copy of the data.

The COMA protocol resides in the memory-management unit that controls the interaction of a processor
with its local memory and mediates the exchange of data with the communication bus. Reading the value
of some data by some processor proceeds as follows. If the local copy of the data is in the state shared or
exclusive then the reading proceeds unhindered; otherwise, it stalls until a valid copy of the data is obtained.

A valid copy of the data is obtained by issuing a read request to the directory. The directory’s response
to such a request is then dependent on the state of its own data:

o If the directory has a valid copy of the data (that is, it is in the exclusive or shared state), it sends
the data to the requesting processor along with a pointer to the first client in the validity chain, and
sets its own status to shared; when it receives the data, the requesting processor moves into the shared
state and points to this next client in the chain.

e If the directory is in the invalid state, it forwards the read request to the first client in the validity
chain, which in turn passes the data to the requesting process along with a pointer to the next processor
in the validity chain, marking the requesting processor as the new next element in the chain, and again
sets its own status to shared; again when it receives the data, the requesting processor moves into the
shared state and points to this next client in the chain.

Writing a new data value by some processor proceeds in a similar vein. If the local copy of the data is in
the state exclusive then the writing proceeds unhindered; otherwise it must first obtain exclusive access by
issuing a write request to the directory. The directory’s response to such a request is to send an invalidation
request along the validity chain, and when the request comes back to the directory, to give the requesting

processor exclusive access; the directory sets a pointer to this process as the head of the validity chain, and
the process itself points back to the directory.

When a new data value is written by some processor, the local value is assumed to be valid; this is to
facilitate a partial updating of the current data. Hence if the local copy of the data is in the state invalid,
it must request a valid copy of the data from the directory along with the granting of the write privilege. If
the directory has a valid copy, invalidation proceeds as described; otherwise the directory actually issues an
invalidate with data request along the validity chain, which results in a valid copy of the data being returned
to the directory from the last processor in the validity chain.

The detailed definitions of the behaviour of the COMA protocol derived from a state-transition system
generated from the C code implementing the system simulator [?] is presented in Appendix ?7.

4 COMA in DEMOS2K

Since their is considerable detail in the protocol we shall just present the implementation of one client state
in full below. The full protocol in DEMOS2K can be found in Appendix ??. The client definition is as
follows:

class ClientS(number,next)=
{local var target=0;
local var dest=0;
local var gID=0;
local var gNext=0;
trace("%v to %v",number,next);
try [getvb(invalid, [target],target==number)]
then {hold(transfer);
trace("put invalid %v",next);
putvb(invalid, [next]);
entity(ClientI,ClientI (#number),0);
}
etry [getvb(readForward, [target,dest],target==number)]
then {hold(transfer);
trace("ReadForward number %v next %v req %v",number,next,dest);
putvb(grant, [dest,number]) ;
entity(ClientShared,ClientS (#number,#next),0);
}
etry [getvb(LocalR, [dest],dest==number)] then
{entity(ClientShared,ClientS (#number,#next),0); }
etry [getvb(LocalW, [dest],dest==number)] then
{putvb(write, [number]);
getvb(invalid, [target] ,target==number) ;
hold(transfer);
trace("put invalid %v",next);
putvb(invalid, [next]);
getvb(grant, [gID,gNext] ,gID==number) ;
entity(ClientEx,ClientEX (#number),0);

The client makes a choice between:

1. becoming invalid, another process wants to write to the data, in which case it passes the invalidation
signal on the the next sharing element, and then becomes invalid;

2. have a readForward in which case it grants the request and tells the destination to point at it is the
holder of the data;

3. have a local read, which it can obviously perform as it has a copy of the data;

4. on a local write, it needs to have sole possession of the data, so sends a write request to the directory,
it must then wait for the invalidation chain to ‘pass through’ and then wait for the grant, after the last
sharing process has handled the invalidation

This is a fairly direct implementation of the requirements of the transition table. The rest of the definition
for the invalid and exclusive states proceeds in the same manner. Similarly, we have a dual definition for
the directory process. Notice that we can have as many copies of this entity as we desire, and use them for
visualisations of the protocol at work, alongside exploration of its performance.

There still remains the question however, even if the simulation ‘runs correctly’ with many processes
and for long simulated times, is the protocol correct? To answer that question we can translate the state
transition definitions into a process algebra such as CCS [?].

5 COMA in CCS

In the case of 1 directory and 2 clients we can expand the DEMOS2K]?] definition to a process algebra one[?],
suitable for analysis with the Edinburgh Concurrency Workbench [?], by concretising all of the values. This
is a straightforward mechanical operation which could potentially be automated.

We must explicitly record which other processors the client is sharing the data with. In the following
state the client is sharing data with the directory (‘client 07).

agent CLIENT1s0 readl.’readgl.CLIENT1s0
writel.CLIENT1sOWP
invl.’inv0.CLIENT1i
invdl.’invd0O.CLIENT1i
oneva.CLIENT1s0
readfl12.error.0

readf10.error.0 ;

+ 4+ 4+ 4+ + +

Notice that the directory should be handling any read requests and not forwarding them to this client, so if
they are received then they must be erroneous.

If the local processor wants to have exclusive access then we must negotiate with the directory for that.
This is essentially the PendingValid state.

agent CLIENT1sOWP =

’wrl.invl.’inv0.wrgl.’writegl.excll.CLIENT1e
invl.’inv0.’wril.wrgdl. ’writegl.excll1.CLIENT1e
invdl.’invd0.’wril.wrgdl. ’writegl.excl1l.CLIENT1e
readf10.’rdr0.CLIENT1sOWP

oneva.CLIENT1sOWP

readfl2.error.0 ;

+ o+ + 4+

In the following we describe the situation where client 1 is sharing with client 2. It cannot tell whether
it is also sharing with the directory, so therefore it cannot detect forwarding errors.

agent CLIENT1s2

readl.’readgl.CLIENT1s2
writel.CLIENT1s2WP
invl.’inv2.CLIENT1i
invdl.’invd2.CLIENT1i
readf10.’rdg0.CLIENT1s2
oneva.CLIENT1s2
readfl12.error.0 ;

+ 4+ 4+ + + +

The following represents the PendingValid state when Client 1 is pointing at Client 2.

agent CLIENT1s2WP =

’wrl.invl.’inv2.wrgl.’writegl.excll.CLIENT1e
invl.onenva.’inv2.’wril.wrgdl. ’writegl.excll.CLIENT1e
invdl.onenva.’invd2.’wril.wrgdl.’writegl.excll.CLIENT1e
readf10.’rdr0.CLIENT1s2WP

oneva.CLIENT1s2WP

readfl12.error.0 ;

+ 4+ 4+ 4+ 4

6 Verification

Given the process algebra model further analysis requires some notions of what it is for the system to be
correct. From executing the model it is straightforward to identify that one would at least require the
following:

1. at least one process claims to own the data at all times;

2. if a process makes a read request eventually it gets to read the data;

3. if a process makes a write request eventually it gets to write to the data.

4. if a process has exclusive access to the data, then no other process claims to have access.

All of these statements can be readily converted into the ‘temporal macros’[?] version of the modal u
[?] validation engine of the workbench. As an example we present the formulae for the final correctness
condition:

Box [exclO] (“<<oneva>>T & ~<<twova>>T) ;
Box [excl1l]("<<dirva>>T & ~<<twova>>T) ;
Box [excl2](“<<dirva>>T & ~<<oneva>>T) ;

proposition ExclO

proposition Excll

proposition Excl2

And indeed with the complete system definition this condition is valid.

7 Conclusions

DEMOS2K? allows (well frankly forces) the user to present concurrent systems at an appropriate level of
abstraction®. A level of detail which lies between that of a full implementation and that required for formal
analysis, as illustrated in Figure ??7. Given that it is underpinned by a formal semantics, the system as
defined in DEMOS2K provide a precise unambiguous account of its functioning. The DEMOS2K execution
framework permits interactions with the dynamics of the model which allow the system describer to evaluate
whether their implementation has a degree of ‘face’ correctness before (or not) proceeding to the difficulties
of formal analysis. Obviously, if face correctness cannot be achieved then the designer is likely to conclude
that a different solution is required and redesign accordingly.

The ‘evidence’ from the DEMOS2K executions of the model help the identification of critical validation
requirements, and the consequent design of the formal model so that the relevant observations can be
successfully made. The combination of the execution level validation achieved by the DEMOS2K simulation
and the formal analysis provides a strong evidence base that the concurrent system design under consideration
does in fact function correctly.

Acknowledgements: Thanks to Faron Moller and Graham Birtwistle for far too much help in this space.
Any paucity of expression is ours and ours alone.

3Download available from www.demos2k.com
40ne advantage of this form of software prototyping is that it is not releasable as usable code!

Implementation

Conceptual
maodel

Conceptual
medel

Implementation

Figure 1: The conceptual distances between various modes of understanding of a concurrent system design.
It is important to remember that in comprehension tasks it is the length of each step which dictates the
difficulty, and two simple steps are usually much easier than one big one!

References

[ABS86] Archibald, J. and J-L. Baer. Cache coherence protocols: evaluation using a multi-processor
simulation model. ACM Transactions on Computer Systems 4(4):272-298, 1986.

[Bri79] G. Birtwistle. DEMOS — a system for discrete event modelling on Simula. Macmillen, London,
1979.

[Bir73] G. Birtwistle, O-J. Dahl, B. Myhrhaug, and K. Nygaard. Simula begin. Studentlitteratur, Lund,
Sweden, 1973.

[Bir85) G. Birtwistle, P.A.Luker, G.Lomow, and B.Unger. Process style packages for discrete event
modelling: Experience from the transaction, activity, and event approaches. Transactions of
The Society for Computer Simulation, 2(1):25-56, 1985.

[BPT93] G. Birtwistle, R. Pooley, and C. Tofts. Characterising the Structure of Simulation Models in
CCS. Transactions of the Society for Computer Simulation, 10(3):205-236, 1993.

[BT93a] G. Birtwistle and C. Tofts. Operational Semantics of Process-Oriented Simulation Languages.
Part 1: 7Demos. Transactions of the Society for Computer Simulation, 10(4):299-333, 1993.

[BT93b] G. Birtwistle and C. Tofts. Operational Semantics of Process-Oriented Simulation Languages.
Part 2: pDemos. Transactions of the Society for Computer Simulation, 11(4):303-336, 1994.

[BT96] G. Birtwistle and C. Tofts. Relating Operational and Denotational Descriptions of mDemos.
Simulation Practice and Theory, 5(1):1-33, 1997.

[BT0la] G. Birtwistle and C. Tofts. Getting Demos Models Right - Part I: Practice. to appear Transac-
tions of the Society for Computer Simulation, 2001.

[BT01b] G. Birtwistle and C. Tofts. Getting Demos Models Right - Part II: ... and Theory. to appear
Transactions of the Society for Computer Simulation, 2001.

[BT0lc] G. Birtwistle and C. Tofts. Operational Semantics of DEMOS 2000. Techni-
cal Report Number HPIL-2001-263, Hewlett Packard Research Laboratories, Bristol,
http://www.hpl.hp.com/techreports/2001/ 2001.

[CPS93] Cleaveland, R., J. Parrow and B. Steffen. The Concurrency Workbench: A semantics based tool

for the verification of concurrent systems. ACM Transactions on Programming Languages and
Systems 15:36-72, 1993.

[EO94] Eriksson, L-H. and F. Orava. Analysing a w-calculus specification of a cache coherence protocol.
Research Report, Swedish Institute of Computer Science, November 1994.

[GLL490] Gharachorloo, K., D. Lenoski, J. Laudon, P. Gibbons, A. Gupta and J. Hennessy. Memory
consistency and event ordering in scalable shared-memory multiprocessors. In Proceedings of the
17th ISCA, ppl15-26, 1990.

[HLH91] Hagersten, E., A. Landin and S. Haridi. DDM: a cache-only memory architecture. Research
Report R91:19, Swedish Institute of Computer Science, 1991.

[Lam79] Lamport, L. How to make a multiprocessor computer that correctly executes multiprocess pro-
grams. IEEE Transactions on Computers C-28(9):690-691, 1979.

[Mil89] Milner, R. Communication and Concurrency. Prentice Hall International, 1989.

[MP92] Manna, Z. and A. Pnueli. The Temporal Logic of Reactive Systems: Specification.
Springer-Verlag, 1992.

[Mol91] Moller, F. The Edinburgh Concurrency Workbench (Version 6.0). Department of Computer
Science Technical Note LFCS-TN-34, University of Edinburgh, Edinburgh, Scotland, August
1991.

[Sau95) A. Saulsbury. State transition table from COMA cache coherence simulator. Personal communi-
cation, 1995.

[SDOS] Serial computing is dead; the future is parallelism SearchDataCenter.com, 30 Jun 2008 http://
searchdatacenter.techtarget.com/news/article/0,289142,5id80_gci1319113,00.html#

[SIG92] Stenstrom P, T. Joe and A. Gupta. Comparative performance evaluation of cache-coherent
NUMA and COMA architectures. In Proceedings of the 19th ISCA, pp80-91, 1992.

[Ste90] Stenstrom P. A survey of cache coherence schemes for multiprocessors. Computer 23(6):12-24,
1990.
[Sti92] Stirling, C. Modal and temporal logics for processes. In Logics for Concurrency: Structure

vs Automata. G. Birtwistle and F. Moller (editors), Springer-Verlag, 1995.

[TB9g] C. Tofts and G. Birtwistle. A denotational semantics for a process-based simulation language.
ACM Transactions on Modelling and Simulation, 8(3):281-305, 1998.

[Tof01] C. Tofts, HOLOS A Simulation and Multi Mathematical Modelling Tool, HPL-2001-276, http:
//www.hpl.hp.co.uk/techreports/2001/HPL-2001-276.pdf

[ZB93] Zucker, R.N. and J-L. Baer. A performance study of memory consistent models. In Proceedings
of the 19th ISCA, pp2-12, 1993.

A COMA state transition definitions

ynm papyvauL

o8essowt qrosqe
PporepIRAU]PI[RAUSUIPUSJ —

preAu]
1oyutod __ JnoyjIMm 9yepI[eAUul
as[o
OPONMII(._ MOY}LM PojepI[eAul
(FAON"TTAN==103u10d) J1

JnoYIM 23DPYDAUY

o8essowl qIosqe
PojepI[eAUPIRAUISUIPUS J «—

HAONINN = Iejurod
prreau] «—
SPONII(] __ ®Yep + YIim pajepreaut

pireauy «—

JTojutod __ Ujim ojepreaut
EHE]

OPONIIJ __ ©3ep + Ujlm pojepieaur
(AAON-TTAN==13utod) J1

Yypum 210pyvauy

159nbos 2714m

paounoq bai pu urp

PALDYS DYDY LD

9pONII(__ papunoq bai p1 ap

poreyg «—
OPONII(] __ ®BYRp + poleys aye} 1Ip

OPONII(] __ ®Yep + poleys aye} IIp

159nba.s pa.L LI

ndo j1elsax

poIeyg «—
13d-e8essowr = I10jutod

IR UI Y

PaUDYS 23D]

OPONII(__ 9sonbax peox
1 [eul8LIo = Io9sonbal :3swr oxej

SPONII(__ 3senbai peax
I93sonbar TeurSuio = I19)senbax :Ssw oxej

pareys «—
Io)senbel ___ ejep + paieys oye)
Iogsenbear = 1ejurod

HAON TINN = 13d-o8essow

I9gsenbal __ ®ejep + poieys oye}
I99senboar = 1ejurod
1oqutod = 1pd-o8essowu

pmf 359nbas pDIL

9pONII(__ jsenbail pear

159nba.L pva.L PIIUNOQ

159nbas poIL

pireAUISUIpUSJ «—

OPONII(J ___ 3sonbax ojuam
(epoNsIYI,)[epoN = d-1oisenbar-oSessow
Jey NV [eqO[S puy

ndo puadsns

sojorduoo o3rIm

pIreASwpUSg —

OPONII(J ___ 3sonbax ojuam
(epoNSsIYI,)[epoN = d-1oisenbar-oSessowu
Jey NV [eqO[S puy

ndo puadsns

27%4m ndo

pIreAuSuIpuaJ «—

SPONII(__ 3senbai peax
(epoNSsIYI,)IepoN = d-1oisenbar-oSessowu
Jey NV [eqO[S puy

ndo puodsns

sogordwiod peal

sojorduwod peax

poaL ndo

prpauburpua g

prauy

201SN]ITH]

paanyg

10

ynm papyvauL

o8essowt qrosqe
PporepIRAU]PI[RAUSUIPUSJ —

preAu]
1oyutod __ JnoyjIMm 9yepI[eAUul
as[o
OPONMII(._ MOY}LM PojepI[eAul
(FAON"TTAN==103u10d) J1

JnoYIM 23DPYDAUY

o8essowl qIosqe
PojepI[eAUPIRAUISUIPUS J «—

HAONINN = Iejurod
prreau] «—
SPONII(] __ ®Yep + YIim pajepreaut

pireauy «—

JTojutod __ Ujim ojepreaut
EHE]

OPONIIJ __ ©3ep + Ujlm pojepieaur
(AAON-TTAN==13utod) J1

Yypum 210pyvauy

159nbos 2714m

paounoq bai pu urp

PALDYS DYDY LD

9pONII(__ papunoq bai p1 ap

poreyg «—
OPONII(] __ ®BYRp + poleys aye} 1Ip

OPONII(] __ ®Yep + poleys aye} IIp

159nba.s pa.L LI

ndo j1elsax

poIeyg «—
13d-e8essowr = I10jutod

IR UI Y

PaUDYS 23D]

OPONII(__ 9sonbax peox
1 [eul8LIo = Io9sonbal :3swr oxej

SPONII(__ 3senbai peax
I93sonbar TeurSuio = I19)senbax :Ssw oxej

pareys «—
Io)senbel ___ ejep + paieys oye)
Iogsenbear = 1ejurod

HAON TINN = 13d-o8essow

I9gsenbal __ ®ejep + poieys oye}
I99senboar = 1ejurod
1oqutod = 1pd-o8essowu

pmf 359nbas pDIL

9pONII(__ jsenbail pear

159nba.L pva.L PIIUNOQ

159nbas poIL

pireAUISUIpUSJ «—

OPONII(J ___ 3sonbax ojuam
(epoNsIYI,)[epoN = d-1oisenbar-oSessow
Jey NV [eqO[S puy

ndo puadsns

sojorduoo o3rIm

pIreASwpUSg —

OPONII(J ___ 3sonbax ojuam
(epoNSsIYI,)[epoN = d-1oisenbar-oSessowu
Jey NV [eqO[S puy

ndo puadsns

27%4m ndo

pIreAuSuIpuaJ «—

SPONII(__ 3senbai peax
(epoNSsIYI,)IepoN = d-1oisenbar-oSessowu
Jey NV [eqO[S puy

ndo puodsns

sogordwiod peal

sojorduwod peax

poaL ndo

PaIDPUDAUTPYDAUIBUIPUD]

pYyvA burpua g

prpauybupua g

11

wvoZmEH == pmuwwm_oob o

oYy PayPIDOLL

do A1090011p [[RISUN OS[R
pieauy I «—
__ ®Iep + 9[qrUS 9jlIM
I99senbar = 1ojurod
®)RP POATEDDI PIRMIO]
EHE]
ndo jre}sox
QAISII[OXH] II(] «—
ejep 108
OPONSIYJ, == I199sonbau) Ju

ypm pagprwauy

moypm 2P

ypm appyauy

[—_ quEVQM 9)LIM PIOoUNoq

Suipusd Ii(J «—
103senboar = 1ojutod
Tojutod __ yim ojeprpeaur

preauy I «—
103sonboar = 1ojurod
Iogsenbel __ ejep + o[qeus 9jlim

Surpued I «—
1juiod __ noYIIm S)epi[eAur

1s9nbos 2914Mm

wjutod __ jsenbex peax Ip

PaoUnoq bos pa arp

ndo jre}sax

pareqs uq «—
ejep 108

PaUDYS IYDY AL

759mboL pvoL Lip

PaIDYS 2YD]

pmJ 1sonbad poa.

759MbaL PoaL Padunoq

1 ___ 9senbax peex peounoq

yutod __ pmy gsenbar peox

paleys I <
ejep + poIeys oxe}
I193seonboar = 1ejutod
HAON TINN = 1d-eSessow

199sonbax

I99sonbaa vlRp + poreys oxe)
193senboar = 1ejurod

Tejutod = 19d-o8essown

159mbat pvoL

pa[[eISSuIpusg I —

JTojutod __ Ujim ojeprfeaut
(epoNSIYT,)[PPON = d-101senbar-oSessow
Fey NV 1eqo[S puy

ndo puadsns

sogorduwod oLIm

pa[[eISSuIpUD (] —

Jojutod __ Jnoyjm ojyepieaut
(9PONSIUL)AIPPON = d-191senbai-eSesseur
Sey NV 1eqo[s puy

ndo puadsns

9714m ndo

pa[[eISSUIpUS] II(]

Toyutod ___ 9senbex peox aip
(epoNSIYI,)JIPPOoN = d-101sonbar-oFessowr
Jey NV 1eqo[S puy

ndo puadsns

sojorduwiod peal

sojo1dwod peal

pwas ndo

paymisburpuad v

pyvaury Lvg

20ISN)OTH (]

paanyg uq

12

B COMA in DEMOS2k

cons getRate=negexp(20);
cons ReadWrite=bin(1,0.95);
cons transfer=negexp(l);
cons clients=50;

cons Range=puni(0,clients);

bin(LocalR,0);
bin(LocalW,0);
bin(grant,0);
bin(read,0);
bin(write,0);
bin(invalid,0);
bin(readForward,0);

class ExclusiveD=
{local var dest=0;
try [getvb(read, [dest],true)]
then {trace("Eread %v",dest);
hold(transfer);
putvb(grant, [dest,0]);
entity(SharedD,SharedD (#dest),0) ;
}
etry [getvb(write, [dest],true)]
then {trace("Ewrite %v",dest);
hold(transfer);
putvb(grant, [dest,0]);
entity(InvalidD,InvalidD(#dest),0);
}
etry [getvb(LocalR, [dest],dest==0.0)] then
{entity(EX,ExclusiveD,0);}

etry [getvb(LocalW, [dest],dest==0.0)] then
{entity(EX,ExclusiveD,0);}
}

class SharedD(current)=
{local var dest=0;
local var invD=0;

trace("Scurrent %v",current);
try [getvb(read, [dest],true)]
then {trace("read %v",dest);
hold(transfer);
putvb(grant, [dest,current]);
entity(SharedD,SharedD (#dest) ,0) ;
}
etry [getvb(write, [dest],true)]
then {trace("write %v",dest);
hold(transfer);
trace("Start invalid %v",current);
putvb(invalid, [current]);
getvb(invalid, [invD],invD==0) ;
trace("Granting write %v",dest);
putvb(grant, [dest,0]);
entity(InvalidD,InvalidD(#dest),0);
}
etry [getvb(LocalR, [dest],dest==0.0)] then
{entity(SharedD,SharedD (#current),0);}
etry [getvb(LocalW, [dest],dest==0.0)] then
{hold(transfer);
putvb(invalid, [current]);
getvb(invalid, [invD],invD==0) ;
entity(EX,ExclusiveD,0);
}
}

13

class InvalidD(current)=
{local var dest=0;
local var test=0;
trace("Icurrent %v",current);
try [getvb(read, [dest],true)]
then {trace("Iread %v",dest);
hold(transfer);
putvb(readForward, [current,dest]);
entity(InvalidD,InvalidD(#dest),0);
¥
etry [getvb(write, [dest],true)]
then {trace("Iwrite %v",dest);
hold(transfer);
trace("start invalid %v",current);
putvb(invalid, [current]);
getvb(invalid, [test],test==0.0);
putvb(grant, [dest,0]);
entity(InvalidD,InvalidD(#dest),0);
}
etry [getvb(LocalR, [dest],dest==0.0)] then
{hold(transfer);
putvb(readForward, [current,0.0]) ;
getvb(grant, [dest,test] ,dest==0.0);
entity(SharedD,SharedD (#current),0);
}
etry [getvb(LocalW, [dest],dest==0.0)] then
{hold(transfer);
trace("start invalid %v",current);
putvb(invalid, [current]);
getvb(invalid, [test],test==0);
entity(EX,ExclusiveD,0);
}
}

class ClientI(number)=
{local var dest=0;
local var gID=0;
local var gNext=0;

try [getvb(LocalR, [dest],dest==number)] then
{putvb(read, [number]) ;
getvb(grant, [gID,gNext] ,gID==number) ;
entity(ClientShared,ClientS (#number,#gNext),0);
}

etry [getvb(LocalW, [dest],dest==number)] then
{putvb(write, [number]) ;
getvb(grant, [gID,gNext] ,gID==number) ;
entity(ClientEx,ClientEX (#number),0);

}

}

class ClientS(number,next)=
{local var target=0;
local var dest=0;
local var gID=0;
local var gNext=0;
trace("%v to %v",number,next);
try [getvb(invalid, [target],target==number)]
then {hold(transfer);
trace("put invalid %v",next);
putvb(invalid, [next]);
entity(ClientI,ClientI (#number),0);
}
etry [getvb(readForward, [target,dest],target==number)]
then {hold(transfer);
trace("ReadForward number %v next %v req %v",number,next,dest);
putvb(grant, [dest,number]) ;

14

try [dest==0.0] then {entity(ClientShared,ClientS(#number,#next),0);}
etry [] then {entity(ClientShared,ClientS(#number,#next),0);}
}

etry [getvb(LocalR, [dest],dest==number)] then

{entity(ClientShared,ClientS (#number,#next),0); }

etry [getvb(LocalW, [dest],dest==number)] then

{putvb(write, [number]) ;

getvb(invalid, [target] ,target==number) ;

hold(transfer);

trace("put invalid %v",next);

putvb(invalid, [next]);

getvb(grant, [gID,gNext] ,gID==number) ;

entity(ClientEx,ClientEX (#number),0) ;

}

}

class ClientEX(number)=
{local var target=0;
local var dest=0;

trace("Got exclusive %v",number);
try [getvb(invalid, [target],target==number)]
then {hold(transfer);
putvb(invalid, [0.0]);
entity(ClientI,ClientI (#number),0);
}
etry [getvb(readForward, [target,dest],target==number)]
then {hold(transfer);
trace("ReadForward number J%v req %v",number,dest);
putvb(grant, [dest ,number]) ;
entity(ClientShared,ClientS (#number,#0.0),0);
}
etry [getvb(LocalR, [dest],dest==number)] then
{entity(ClientEx,ClientEX (#number),0); }
etry [getvb(LocalW, [dest],dest==number)] then
{entity(ClientEx,ClientEX (#number),0);}
}

class work=

{repeat

{hold(getRate);
try [ReadWrite==1] then {putvb(LocalR, [Rangel);}
etry [] then {putvb(LocalW,[Rangel);}

}

}

entity(EX,ExclusiveD,0);
var i=1;do clients {entity(ClientI,ClientI(#i),0);i:=i+1;}
entity(W,work,0);

ho1d (100000) ;
close;

15

