
 

                                                      
       

 
 
 
 
 
 
 
Keyword(s):   
 
 
 
Abstract: 
 

 

 

 
                                                                                                      
                                                                                                                      
 

  

   

                                                       

©  

A content integrity service for digital repositories

Stuart Haber, Pandurang Kamat, Kiran Kamineni

HP Laboratories
HPL-2008-177

integrity, longevity, archive, repository

We present a "content integrity service" for long-lived digital documents, especially for objects stored in
digital repositories. The goal of the service is to demonstrate that information in the repository is authentic
and has not been unintentionally or maliciously altered, even after its bit representation in the repository
has undergone one or more transformations. We describe our design for an efficient, secure service that
achieves this, and our implementations of two prototypes of such a service that we developed, most
recently for DSpace. Our solution relies on one-way hashing and digital time-stamping procedures. Our
service applies not only to transformations to archival content such as format changes, but also to the
introduction of new cryptographic primitives, such as the new one-way hash function family that will be
chosen by NIST in the competition that was recently announced [10]. In the face of recent attacks on hash
functions, this feature is absolutely necessary to the design of an integrity-preserving system that is meant
to endure for decades.

External Posting Date: October 21, 2008 [Fulltext]          Approved for External Publication
Internal Posting Date: October 21, 2008 [Fulltext]

Published and presented at OR 2008, 3rd International Conference on Open Repositories, Southampton, UK, April 2008.

Copyright OR 2008, 3rd International Conference on Open Repositories



A content integrity service for digital repositories
Paper supporting a presentation at the general session of Open Repositories 2008,

Southampton, UK

Stuart Haber
Hewlett-Packard Labs
stuart.haber@hp.com

Pandurang Kamat
WINLAB, Rutgers University
pkamat@winlab.rutgers.edu

Kiran Kamineni
University of Illinois at Chicago
kiran.kamineni@gmail.com

April 2008

Abstract

We present a “content integrity service” for long-lived digital documents, especially
for objects stored in digital repositories. The goal of the service is to demonstrate
that information in the repository is authentic and has not been unintentionally or
maliciously altered, even after its bit representation in the repository has undergone
one or more transformations. We describe our design for an efficient, secure service
that achieves this, and our implementations of two prototypes of such a service that
we developed, most recently for DSpace. Our solution relies on one-way hashing and
digital time-stamping procedures.

Our service applies not only to transformations to archival content such as format
changes, but also to the introduction of new cryptographic primitives, such as the new
one-way hash function family that will be chosen by NIST in the competition that was
recently announced [10]. In the face of recent attacks on hash functions, this feature
is absolutely necessary to the design of an integrity-preserving system that is meant to
endure for decades.

1 Introduction

Information in a digital repository can include complex multi-part documents. In a long-
term repository these documents may be expected to undergo multiple transformations
during their lifetime, including, for example, format changes, and modifications to sub-
parts and to accompanying metadata. Skeptical users of a digital repository may desire,
or in some cases may be legally required, to verify the integrity of records that they have
retrieved from the repository.

All typical algorithmic techniques for verifying the integrity of a digital object begin
with a representation of the object in question as a sequence of bits. When digital objects
are transformed in any nontrivial way, their bit representations are changed as well, so that
these algorithmic techniques no longer apply to the transformed object. In fact, it is the
usual aim of a cryptographic technique for proving integrity that it “fail”—more precisely,
that it correctly succeed in proving lack of integrity—when even a single bit in the object’s
representation is changed.

We have designed an efficient and secure Content Integrity Service (CIS) that solves this
problem [5], and we have implemented it as a service for two different platforms:

1



• HP’s Digital Media Platform, a service-oriented architecture for content processing
and storage [3];

• the DSpace open-source repository platform [11, 4].

We contributed our Dspace implementation to the DSpace SourceForge repository [12]. We
invite administrators of DSpace to use it immediately, and implementors of other repository
systems to adapt it to their own systems.

The essence of our solution is to use a secure digital time-stamping system, first to
time-stamp every document at ingestion into the archive, storing the resulting time-stamp
certificate in the archive with the document; and second to produce an auditable record
of every transformation to a document in the archive, in such a way as to verifiably link
the time-stamp certificate for the transformed version of the document to its original form.
This is described in greater detail in §3.2.

Our solution does not require public-key techniques at all. As we explain in §3.1 be-
low, current public-key implementations are inappropriate for use in long-lived repository
systems.

2 Implementations

2.1 HP Digital Media Platform

Our first implementation of CIS was built in 2004 as a service for a prototype of HP’s Digital
Media Platform (DMP), a service-oriented architecture for content processing and storage
[3, 5].

The repository data model of DMP is a directed graph with nodes, resources, and literals
linked by labelled edges called properties, similar to the architecture of (e.g.) the JSR 170
Content Repository for Java [8]. All complex documents in the repository are represented
using this model. Each subcomponent of a multi-part document is represented as a resource.
Nodes are used to represent hierarchy within the document, and literals are strings that may
represent metadata. Properties belong to nodes and link them to other nodes, resources or
literals. The nodes and resources are named using Uniform Resource Identifiers (URIs).

2.2 DSpace

In 2007 we implemented CIS for the DSpace open-source repository platform [11, 4]. In
DSpace, complex documents are called “items”. CIS is integrated into DSpace’s natural
workflow so that CIS certificates are automatically created when an item is ingested into
the repository, and when an item is updated in any way.

We implemented a simple versioning system for DSpace items in order to handle up-
dates.1 Users of the DSpace repository can make a “verify” call in order to check the
validity of any version of a stored item.

In tests of our system, CIS added no noticeable slowdown to the ordinary operations of
DSpace.

We give some further details of our implementations in §3.3 below, after explaining our
algorithm.

1This is separate from the 2007 Google Summer of Code project to implement a versioning system for
DSpace.

2



3 How it works

3.1 Background

The basic building blocks of our solution are cryptographic hash functions and time-stamping
procedures, which we briefly explain here. Throughout this article we refer to the objects
of concern in a digital archive or repository simply as ”documents”.

A cryptographic hash function or one-way hash function is a fast procedure H that
compresses input bit-strings of arbitrary length to output bit-strings (called hash values) of
a fixed length, in such a way that it is computationally infeasible to find two different inputs
that produce the same hash value. (Such a pair of inputs is called a collision for H.) For
any digital document x, its hash value v = H(x) can be used as a proxy for x, as if it were
a characteristic “fingerprint” for x, in procedures for guaranteeing the bit-by-bit integrity
of x [9, Chap. 9].

A digital time-stamping scheme is a procedure that solves the following problem: given
a digital document x at a specific time t, produce a time-stamp certificate c that anyone
can later use (along with x itself) to verify that x existed at time t. Certificates that will
pass the verification test should be difficult to forge. There are two different families of
time-stamping algorithms, those using digital signatures and those based entirely on hash
functions [6].

In what is sometimes called a hash-and-sign time-stamping scheme, the time-stamp
certificate for a document consists of a digital signature computed by a Time-Stamping
Authority (TSA) for the document and the time of signing. This has two major drawbacks
as a tool for long-term archives: (1) It requires the assured existence of trustworthy key-
validity history data, in order to check the validity of the TSA’s public verification key. It
is a problem for any TSA to manage such a key-validity database over extended periods
of time, let alone integrating it with currently deployed commercial PKIs (public-key in-
frastructures). To be charitable, not many current PKI systems make a serious effort to
build this component with an eye towards long-lasting secure use of the system (and some
of them completely ignore it). (2) The trustworthiness of the certificate depends entirely on
an assurance that the TSA’s private signing key has never been compromised. This is an
unacceptable premise for a long-term archive.

For the CIS, we chose a different time-stamping technique called hash-linking. In this
technique, the hash value of the document to be time-stamped is combined with other hash-
values received during the same time period to create a witness hash value. This value is then
published by the TSA as a widely witnessed event. Hash-linking makes it computationally
infeasible for an adversary to back-date a document, since that would entail computing hash
collisions for the witness values or for their hash-function preimages. This technique relies
only on the collision-resistance properties of hash functions, and does not have any secrets
or keys that need to be securely protected over extended periods of time [7, 1, 2].

3.2 Our solution

Before describing our general solution, we first discuss the special case of a particular kind
of transformation to a document, namely a method for updating its integrity certificate.

3.2.1 Renewing integrity certificates

Here we describe the process of “renewing” digital time-stamps [1]. The need for this is
motivated by the fact that, with advances in computational power and resources, as well as
the discovery of entirely new cryptanalytic algorithms, particular instances of cryptographic
primitives that were secure when they were first deployed may become insecure several years
later. In the last three years, the cryptographic community has been surprised by powerful
new attacks on most of the widely used hash functions [15, 14]. In response, NIST has

3



recently announced an international competition for the design of a new family of one-way
hash functions, similar to the process that led to the adoption of the Advanced Encryption
Standard (AES) [10].

Suppose that an implementation of a particular time-stamping system is in place, and
consider the pair (d, c1), where c1 is a valid time-stamp certificate (in this implementation)
for a particular document d. Now suppose that some time later an improved time-stamping
system is implemented and deployed—by replacing the hash function used in the original
system with a new hash function, or even perhaps after the invention of a completely new
algorithm. Is there any way to use the new time-stamping system to buttress the guarantee
of integrity supplied by the certificate c1 in the face of potential later attacks on the old
system?

One could simply submit d as a request to the new time-stamping system; but this would
lose the connection to the original time of certification. Another possibility is to submit c1

as a request to the the new time-stamping system. But that would be vulnerable to the
later existence of a devastating attack on the hash function used in the computation of c1,
as follows: if an adversary could find another document d′ with the same hash value as d,
then he could use this renewal system to back-date d′ to the original time.

Suppose instead that the pair (d, c1) is time-stamped by the new system, resulting in
a new certificate c2, and that some time after this is done (i.e. at a definite later date),
the original method is compromised. The certificate c2 provides evidence not only that
the document contents d existed prior to the time of the new time-stamp, but that it
existed at the time stated in the original certificate, c1; prior to the compromise of the
old implementation, the only way to create a valid time-stamp certificate was by legitimate
means.

Observe that the security offered by an “updated” time-stamp certificate computed as
above depends on the arguably questionable assumption that the first time-stamping system
will not be compromised until a definite time after the second system was launched. But in
practice, this is not an unreasonable assumption. Advances in cryptanalytic attacks on hash
functions typically proceed incrementally (as in the case of the attacks cited above [15, 14]),
and well before a hash function is completely broken, fielded systems can swap in a new
hash function.

3.2.2 Auditable transformation history

Next we show how a similar approach can handle our general problem. For simplicity, we
begin with the case where we are only interested in enabling the authentication of an entire
document (as opposed to making this possible as well for parts of the document). In its
original form, let d denote the bit-string representation of the document in file format f ,
and let us suppose that d is time-stamped at time t, with resulting time-stamp certificate
c. We will write c = TS(d; t) to indicate that the certificate is for input consisting of the
document d, and it was computed at time t.

Now suppose that at some later time t′, it is decided to make a format change to format
f ′, using a particular conversion or migration procedure. Let d′ denote the bit-string repre-
sentation of the resulting document. Simply computing a new time-stamp certificate for d′

would lose the connection between d′, the new representation of the document, and its origi-
nal version. The aim rather is to memorialize—and enable later verification of—this format
conversion, while preserving the assurance of integrity all the way back to that of the original
form of the document. We can do this by adapting the procedure for renewing time-stamps
described above. Let i denote a standard way of describing an invocation of the migration
procedure used to convert from format f to format f ′, perhaps including file-names and
other useful meta-data for input and output files d and d′, respectively. Then, immediately
after performing the conversion, a new time-stamp request for [d, d′, i, c] is submitted, and
the resulting time-stamp certificate c′ = TS(d, d′, i, c; t′) is stored with the document in the

4



archive. The new certificate c′ can be used to verify the integrity of the latest form of the
original document.

Assuming the integrity of i as a description of the transformation and the security of the
time-stamping system we use, the only way to compromise the security of our solution is to
compute collisions for the hash functions used.

Variations on the technique just described can be applied to complex transformations
to one or more pieces of a multi-part document, including format conversions, annotations,
additions of metadata, and later modifications of the document; these modifications can
include the steps of a business workflow, or document redaction, for example. Naturally,
transformations can follow one another, and each one can be certified by a CIS certificate.

As far as we are aware, this problem was never seriously addressed before our first
publication on the subject [5], perhaps because researchers did not realize that the problem
has a simple, secure solution.

3.3 Implementation details

Both of our implementations were designed so that they can use any third-party time-
stamping system at all. We chose to use the hash-linking time-stamping service provided
by Surety, LLC [13].

We handled the job of naming transformations in two different ways in our two implemen-
tations. In HP’s Digital Media Platform (DMP), transformations on content are represented
as workflow descriptions expressed as XML documents, and our implementation used this
XML representation of a transformation as its invocation i. In our DSpace implementation,
transformations are updates to items, which can only be made by repository administrators,
and we record the administrator’s free-text description of an update as its invocation i.

As mentioned in §2.1 above, documents in DMP are represented as directed graphs con-
sisting of vertices called nodes, resources, and literals, linked by labelled edges called prop-
erties. An entire document is identified by the URI of its root node. To certify a multi-part
document, the service computes a hash value for the entire document graph. Specifically, our
algorithm hashes the graph in a lexicographically ordered depth-first traversal, beginning
at the root, to recursively hash all the nodes, resources and literals that form the graph. At
each level, intermediate hash values capture the bit-string representation of the resources
and literals as well as the structure of the graph itself. The algorithm avoids any cycles
during its traversal of the graph. The document’s hash value is then sent as a time-stamp
request to a TSA. The hash value and the resulting time-stamp certificate are stored in the
repository, linked to the document graph.

For both of our implementations, when we modified content or certificates in the repos-
itory (by circumventing the system’s usual permissions), verifications of CIS certificates
failed, as they should do.

4 Future work

We look forward to working with the community in order to make it possible for all content in
institutional repositories to be accompanied by cryptographically strong proofs of integrity.

In particular, we plan to extend the functionality of our current DSpace implementation:

• to enable scripted invocation of certificate creation and verification;

• to merge it with any independently contributed versioning system;

• to certify parts of a complex document, using the certificate of the main document;

• to allow stand-alone verification of documents exported from DSpace;

• to renew integrity certificates for documents.

5



References

[1] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the efficiency and re-
liability of digital time-stamping. In R.M. Capocelli, A. De Santis, and U. Vaccaro,
editors, Sequences II: Methods in Communication, Security, and Computer Science,
pages 329–334. Springer-Verlag, 1993. (Proceedings of the Sequences Workshop, Posi-
tano, Italy, 1991).

[2] Josh Benaloh and Michael de Mare. Efficient broadcast time-stamping. Technical
Report TR-MCS-91-1, Clarkson University Department of Mathematics and Computer
Science, 1991.

[3] HP Digital Media Platform: A technology platform to enable the transition to digital
processes and workflows (White paper). Available at www.hp.com/go/dmp.

[4] www.dspace.org.

[5] Stuart Haber and Pandurang Kamat. A content integrity service for long-term digital
archives. In Proceedings of Archiving 2006, pages 159–164. Society for Imaging Sci-
ence & Technology, 2006. Available as HP Labs Technical Report HPL-2006-54, at
www.hpl.hp.com/techreports/2006/HPL-2006-54.html.

[6] Stuart Haber and Henri Massias. Time-stamping. In H. C.A. van Tilborg, editor,
Encyclopedia of Cryptography and Security. Springer, 2005.

[7] Stuart Haber and W. Scott Stornetta. How to time-stamp a digital document. Journal
of Cryptology, 3(2):99–111, 1991.

[8] Content repository API for Java technology specification: Java specification request
170, version 1.0, 11 May 2005. http://jcp.org/en/jsr/detail?id=170.

[9] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied Cryp-
tography. CRC Press, 1996.

[10] NIST. Announcing request for candidate algorithm nominations for a
new cryptographic hash algorithm (SHA-3) family. U.S. Federal Reg-
ister Notice, Vol. 72, No. 212, November 2, 2007. Available at
http://www.csrc.nist.gov/groups/ST/hash/sha-3/.

[11] MacKenzie Smith, Mary Barton, Margret Branschofsky, Greg McClellan, Julie Har-
ford Walker, Mick Bass, Dave Stuve, and Robert Tansley. DSpace: An
open source dynamic digital repository. D-Lib Magazine, 9(1), January 2003.
doi:10.1045/january2003-smith.

[12] SourceForge.net: DSpace. http://sourceforge.net/projects/dspace/.

[13] www.surety.com.

[14] X. Wang, Y.L. Yin, and H. Yu. Finding collisions in the full SHA-1. In Victor Shoup,
editor, Advances in Cryptology — CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science. Springer-Verlag, 200.

[15] X. Wang and H. Yu. How to break MD5 and other hash functions. In R. Cramer,
editor, Advances in Cryptology — EUROCRYPT 2005, volume 3494 of Lecture Notes
in Computer Science. Springer-Verlag, 200.

6


