

Keyword(s):

Abstract:

©

A Model-based Approach to Service-Oriented Computing

Jim Pruyne, Sharad Singhal

HP Laboratories
HPL-2008-174

Web Services, Middleware, Service Oriented Computing, Model-Driven Architecture

Web Services are the current best practice for developing distributed software and integrating disparate
components across the Internet or within an enterprise. In this approach, services are characterized by their
interface-what they can do, and their location-how they are accessed. We augment these characterizations
with a service model-a definition of the state that a service exposes to the environment. The use of service
models provides an attractive framework for describing services and leads to more structured service
definitions, which in turn facilitates easier integration. Service models also provide a unique method for
performing inter-service communication which is robust and resilient to failure because of its ability to
guarantee consistency between run-time interchanges and the service model definition. We have prototyped
the model-based system and validated the approach with both new and imported service definitions
demonstrating the expressiveness and flexibility of the approach.

External Posting Date: October 29, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: October 29, 2008 [Fulltext]

Copyright 2008 Hewlett-Packard Development Company, L.P.

1

Abstract— Web Services are the current best practice for
developing distributed software and integrating disparate
components across the Internet or within an enterprise. In this
approach, services are characterized by their interface—what
they can do, and their location—how they are accessed. We
augment these characterizations with a service model—a
definition of the state that a service exposes to the environment.
The use of service models provides an attractive framework for
describing services and leads to more structured service
definitions, which in turn facilitates easier integration. Service
models also provide a unique method for performing inter-service
communication which is robust and resilient to failure because of
its ability to guarantee consistency between run-time interchanges
and the service model definition. We have prototyped the model-
based system and validated the approach with both new and
imported service definitions demonstrating the expressiveness and
flexibility of the approach.

Index Terms— Web Services, Middleware, Service Oriented
Computing, Model-Driven Architecture.

I. INTRODUCTION

ERVICE oriented computing is based on the premise that
all software or hardware resources can be accessed and

utilized via a network. Each resource is considered a service,
and clients only need to know the interface and location of the
service to make use of it. The interface defines what the
service can do, and usually takes the form of a set of

operations and the mechanism for accessing the operations,
such as standards based interface definitions (e.g., WSDL), or
wire level input and output message formats. The location
defines how the service is accessed, and typically takes the

form of a network address and an identifier on the
corresponding host that names the service. Commonly, the
location takes the form of a URL.

The benefits of the service oriented computing are many.

Services may be spread across multiple management domains,
and can be augmented or improved without requiring changes
from the clients as long as their interface is unchanged.
Complex applications and composite services can be formed

by orchestrating invocations to multiple services. Often, legacy
applications can be fitted with service interfaces to bring them
in to a service oriented environment. These advantages make
service oriented approaches the best practice for building

Manuscript received August 15, 2008.
Authors are with Hewlett Packard Laboratories, Palo Alto, CA 94304,

USA. (Phone: 650-857-8310; email:pruyne@hp.com).

today’s software, whether the clients span the entire Internet or
a single enterprise’s data center. However, the flexibility
provided by web services can also lead to tremendous
complexity. As new services are developed, they are often

inconsistent with other existing services in their interface
conventions. This, in turn, requires developers or service
integrators to learn each service’s conventions, and makes
service composition more difficult and error prone.

We observe that systems management environments have
faced similar integration problems. New devices, components,
and concepts are routinely introduced in the environment,
often after the management system has been developed and

deployed. Model-based approaches provide a common
solution to this problem of diversity. Examples include
SNMP’s MIBs and the Common Information Model (CIM)
developed by the DMTF. In this approach, a management

system defines a modeling methodology, and a model schema
with a few core concepts. New elements can be introduced into
the environment dynamically by creating additional models
that follow the core concepts, typically without making

significant changes to the management system itself.
We make two primary contributions in this paper. First, we

describe how service descriptions can be augmented to include
a service model that is exposed by the service. All services

within a domain share a common base model and completely
describe their external representation in the service model. The
models extend the service interface by including the public
state of the service. This state provides a common method of

introspecting and interacting with all services, which aids in
understanding and integrating new services as they are
developed. Second, we extend the notion of a service end-
point to a Service Access Point, a full service in its own right.

We demonstrate that by delegating model management and
inter-service communications to the Service Access Point, a
more structured and powerful mechanism for service
integration can be created in a service oriented environment.

The common shared service model as well example service
models are provided in Section II. A model-based, inter-
service communication pattern is described in Section III. In
Section IV we describe the software architecture used in our

implementation and Section V describes our experience using
case studies. Related work is discussed in Section VI. We
conclude with a summary and directions for future work in

Section VII.

A Model-based Approach to Service-Oriented
Computing

Jim Pruyne and Sharad Singhal, Member, IEEE

S

2

II. MODEL BASED CONCEPTS FOR SERVICE ORIENTATION

The purpose of modeling services is two-fold. First, models

provide a clean and human readable notation for understanding
the capabilities and purpose of a service. Second, once a
concept is modeled, it is readily available for use by other
services either as presented or via further customization or

extension.
We build our service models using two existent and

common methodologies: UML [1] and the modeling
foundation developed for the Common Information Model

(CIM) meta-model [2] by the DMTF. UML provides a visual,
diagrammatic view of our models which makes them easy to
quickly absorb and understand. The CIM meta-model provides
a standards-based, robust modeling foundation including basic

modeling concepts such as classes, properties, qualifiers, etc.,
as well as the Managed Object Format (MOF)—an easily
readable and writeable syntax, and CIM-XML—an XML
representation of the model useful for communicating and

persisting the model.

A. The Core Model

We start by defining a few basic concepts used as the basis for
all service models. These are shown in Figure 1. The root of
the model is the class Entity. All other modeled elements
inherit from Entity. Entity contains a unique Identifier (Id)
such that every instance of Entity in the environment will be
uniquely identified. Entity also contains the name and version
of the class to which it conforms. Class definitions are
captured in the Type class1. Type contains meta-information
about the class including its name, author and version as well
as the full class definition. We carry the class definition in its
native format in the field TypeDefinition to support run-time
introspection of the class definition by services that do not
have prior information about the model exposed by a given
service. For any class name and version pair, the definition is
considered immutable.

-[Key] Id : string
-CreationClassName : string
-CreationClassVersion : string

Entity

+Name : string
+Author : string
+Version : string
+DefinitionLanguage : string
+TypeDefinition : string

Type

+Scheme : string
+EndPointRef : string
+LocalRef : string

EntityReference

Figure 1 -- The Core Model
As discussed later in Section III, the run-time environment
enforces that a class definition cannot be changed while
existing instances of that class exist. This allows the system to
evolve in predictable ways. Finally, EntityReference provides
location information. It contains an access scheme or protocol

1 The string “Class” is a reserved word in the MOF syntax, so our model
uses “Type” to describe a class definition.

(for example http), a network location (EndPointRef) and a
local name (LocalRef) which is meaningful only at that
particular location in the system. When services communicate
about entities, they typically do so by reference by passing an
EntityReference structure.

B. The Service Model

The core model applies to all entities in the service-oriented
environment, but services themselves are further modeled as

shown in Figure 2. A Service extends Entity (not shown), and
defines a set of names by which it may commonly be referred.
Thus, a single service can identify itself by as many names as
may be needed to be understood or discovered by different

clients. Services interact with the system by receiving
messages via the ReceiveIndication operation. Each service is
associated with zero or more instances of Credential and
IndicationFilter. When the service is instantiated, credentials

are associated with the service instance, for example, based on
the credentials of the user or organization that owns the
service. As the service interacts with other services, these
credentials are passed in messages so that other services can

perform authentication and authorization to ensure that
operations initiated by this service are permitted. Every service
also has associated with it a set of IndicationFilters which
specify what Indications or messages should be directed to that

service. The IndicationFilter specifies the type of message, the
operation, and the message target identity that this service
wishes to receive. In this way, a single service can receive
messages destined for many different modeled entities, and can

act as an operational proxy for those entities. The complete
handling of messages is discussed in more detail in the next
section.

+ReceiveIndication(in indication) : Entity

+Name : string[]
+ServiceId : string

Service* 1
+IndicationType : string
+OperationFilter : string
+TargetEntityFilter : string

IndicationFilter

1 *

+createInstance(in instance : Entity) : EntityReference
+getInstance(in entityRef : EntityReference) : Entity
+deleteInstance(in entityRef : EntityReference) : Entity
+enumInstances(in selectionCriteria : string) : EntityReference[]
+modifyInstance(in instance) : EntityReference

BasicModelOpService

Credential

Figure 2 -- The Service Model
The BasicModelOpService class encodes a common set of

operations for manipulating modeled entities including

creation, retrieval, deletion, discovery and modification. Note
that because types are themselves defined as entities in the
core model, they can be manipulated using the same
operations. This enables new type definitions to be introduced

dynamically at run-time. Because services expose their state
using entities, it is a common pattern for them to support these
or a sub-set of these operations on the entities which represents
their state.

C. Mixing Multiple Service Interfaces

While we lean heavily on the CIM foundation, transitioning
its use from systems management to service orientation has

3

demonstrated a few shortcomings within it. Most notable has
been its limited ability to support inheritance of service
interfaces. Numerous service definition and programming

languages have adopted the notion of interfaces as a first-class
concept to enable a single service to mix-in pre-defined sets of
operations. We accomplish this in CIM by introducing two
new qualifiers: Interface and Implements. Qualifiers in a CIM

model provide additional descriptive or meta-information
about various parts of the model and new qualifiers may be
defined as part of any model. Consider the following example
in the MOF syntax:
[Interface, Abstract, Version(“1.0”)]
class Intf1 {
boolean OperationA();

};
[Interface, Abstract, Version (“2.1”)]
class Intf2 {
boolean OperationB();

};
[Implements(“Intf1:1.0, Intf2:2.1”),
Version(“1.1”)]

class Impl1 : Service
{
};
Two classes, Intf1 and Intf2, are defined with the Interface

qualifier. To prevent direct instantiation of the classes, the

qualifier Abstract is required for classes labeled with the
Interface qualifier. Class Impl1 defines a Service and has the
Implements qualifier. It lists the names of the interface classes,
and their corresponding version, separated by a colon. As

noted above, the version is considered to be part of the class
identifier, so it needs to be included in the Implements
statement.

These qualifiers are used both at registration and during

service interactions to assure proper operation of the service.
At registration time, the existence of the interface classes is
checked, and checks for operation name collision are
performed. If two interface classes define operations with the

same name, the class definition is rejected, because CIM
forbids overloading of operations, even when parameters
differ. As will be shown later, during message processing, we
validate correspondence between messages and service

definitions, and the implemented interfaces are included in a
service’s available operations.

D. Extending the Service Model

An important goal of our approach to service orientation is

to make concepts re-useable. One approach to this is to extend
the models we provide with new concepts that can be applied
to a variety of services. As an example, we consider a service
that supports Service Level Agreements (SLAs) as shown in

Figure 3.
SLABasedService extends Service (not shown), and

implements two additional interfaces that are related to SLA

management and negotiation. The SLABasedServiceMgmtIF
provides operations for querying the service about SLAs
currently in operation and the templates for SLAs that the
service expects it may be able to support for new clients.

SLABasedService

+publishSLATemplate(in template : SLATemplate) : slaTemplateID:SLATemplate
+deleteSLATemplate(in slaTemplateID : string) : Boolean
+listSLAtemplates(in selector : String) : SLATemplate[]
+listSLAs(in selector : string) : slaID[] :SLA[]
+getSLA(in slaID : string) : SLA
+getSLAs(in slaID : string[]) : SLA[]
+cancelSLA(in slaID : string) : Boolean
+deleteSLA(in slaID : string) : Boolean

«interface»
SLABasedServiceMgmtIF

+getSLATemplates(in selector : string) : SLA[]
+proposeSLA(in proposedSLA) : SLA
+rejectSLA(in slaID : string) : Boolean
+cancelSLA(in slaID : string) : Boolean

«interface»
SLABasedServiceClientIF

implements

implements

Figure 3 -- The SLA Service Model
The SLABasedServiceClientIF is used by a client for

negotiating and managing an instance of a SLA. Each of these
operates on a modeled Entity called simply an SLA. The SLA is
a complex structure which is identified by a single identifier,

but which also contains a set of terms indicating what
conditions the SLA imposes on all of the parties and what the
payment policies and conditions are when the SLA is satisfied
or violated. Further discussion of the particular SLA model is

provided in [3]. We show the use of the SLA model in a case
study in Section V. This example shows that common
principles can be modeled once, and then used or extended to
match the needs of new services.

E. A Complete Service Example

To provide an example of a complete service model, we
describe one of our “foundation” services. In any distributed or
service-oriented environment, there is a need for some basic,

supporting services that are used by all services. The
foundation services we have defined include a naming service
for distributed service discovery, a certificate authority for
issuing and validating credentials, and a dictionary service for

distributed registration and lookup of model types. While the
first two, naming and certificate authorities, are common to
many web-services environments, the dictionary service is
unique to our model based environment, so we focus on it

here.
The service model for the dictionary service is shown in

Figure 4. The model consists of two entities: a TypeFilter and
the DictionaryService definition itself. The DictionaryService

defines operations for registering, deleting and looking up
instances of the class Type. The delete and lookup operations
identify the Type classes of interest based on the name and
version tuple. As discussed previously, we allow multiple

versions of a single type to be present, so both values must be
provided when identifying an instance of Type in the
dictionary. Also, there is no update operation because once
inserted into the dictionary, the Type definition is considered

immutable. The filteredLookup operation provides finer grain
access during lookups based on the TypeFilter class defined

4

previously. This allows lookups to match any of the fields
given in the provided TypeFilter instance, such as the Author.
The service specification also allows for the values in the

TypeFilter to include wildcards or regular expressions for
more flexible matching. This gives an example of how a
service can create supporting types which are accessible to
clients and can be used for more complex interactions. The last

operation, evalCompatibility, exposes the dictionary’s ability
to automatically determine compatibility between two types.
Compatibility assessment is valuable as a system evolves
because it determines when a service or type definition may

safely be interchanged for another version. A complete
description of the use of compatibility and how it is
determined in the dictionary service is given in [4].

+Name : string
+Author : string
+Version : string
+DefinitionLanguage : string

TypeFilter

+register(in type : Type[]) : Boolean
+delete(in typeName : string, in typeVersion : string) : Boolean
+lookup(in typeName : string, in typeVersion : string) : Type
+filteredLookup(in criteria : TypeFilter) : Type
+evalCompatibility(in Type1 : Type, in Type2 : Type) : string

DictionaryService

Figure 4 -- The Dictionary Service Model

III. SERVICE INTERACTIONS

To discuss how services interact with one another using
service models, it is useful to start with a description of some

of the components in the environment, and their roles. The
components and their relationships are shown in Figure 5.

The focus of all activity in the environment is the Service as
represented by the circles in the diagram. All communicating

entities are services. Services may represent human
interactions as shown in the top right corner, or may represent
computational or data resources as shown in the diagram with
the corresponding icons. As indicated in Section II.B, services

may expose other entities (e.g., computers, virtual machines,
service level agreements, or software) as part of their service
models, and enable operations on those entities by clients.

Because these operations (and the corresponding models)

can become very complex, we introduce a key service in the
environment to manage these interactions on behalf of other
services: the Service Access Point (abbreviated SAP in the
diagram). The SAP service extends the notion of a web

services end-point, and performs two essential roles. First, it
acts as an intermediary for all model-related communication
between services using a specific interaction pattern discussed
below. In this role, it insulates all service implementations

from the details of model representations, communication
protocols, or message encodings necessary for transmitting
models between services. Second, it provides a repository for
all models exposed by services associated with it.

S1:T1 S2:T2

S4:T4

S5:T5

S6:T5 S7:T6

S3:T3

DB1

sap1

:SAP

sap2

:SAP

sap3

:SAP

sap4

:SAP

Figure 5 -- Actors in the Services Environment
As shown in the figure, a single Service Access Point may

host many services, and a single service may communicate via
multiple Service Access Points. Thus, services and their

Service Access Points have a many-to-many relationship. This
permits services to gain a degree of redundancy by registering
in multiple locations, and allows the system to scale by hosting
multiple services at a single Service Access Point sharing a

single network endpoint and model repository.

Figure 6 -- The model exchange pattern.
The Service Access Point mediates communication among

services, and in so doing utilizes the service models to insure

well-formed communication and resiliancy to failures. The
communication pattern provided by the Service Access Point
is encapsulated in what we call the model exchange pattern,
which is shown in Figure 6.

We consider all service-to-service communications to be
requests for changes in the service model of the target service.
This is clear when we consider operations such as
modifyInstance described in the last section, but the same

pattern applies for an operation defined by any modeled entity
because all operations ultimately may reflect a change in the
exposed state of a service or its associated entities. In the
Figure, we refer to the service client which initiates the request

for the operation as the Change Requestor, and the Model
Owner as the target service for carrying out the request.

5

As shown in the Figure, the request is mediated by the
Service Access Point, which holds the service model of the
target service. When the Service Access Point receives the

operation request (1), it validates the request by comparing it
against the type and state of the modeled entity (2). If the
request is malformed, or refers to an operation or attribute in
the model that is not defined, the request is rejected

immediately. Next, the Service Access Point snapshots (or
caches) the current state of the target model to allow roll-back
in case of errors (3).

Filters are used to match the target of the operation with its

corresponding owner (4). If the model owner wishes to
perform explicit approval of an operation prior to the
operation being performed, as denoted by an appropriate
IndicationFilter, step (5) is performed, else the operation can

be performed at step (7). The approval request comes to the
Model Owner service via its receiveIndication operation
defined earlier, but the payload indicates that this indication is
for approval rather than execution.

The Service Access Point then forwards the request to the
service (7a). As part of this interaction, the service performs
the operation and updates the model at the Service Access
Point. Message processing is completed by returning the result

to the requestor (8) or rolling back and returning failure in the
case of an error (6c) followed by completion events being sent
(9) to any services requesting notification of model changes
via an appropriate IndicationFilter.

This interaction pattern provides the following advantages
over other protocols:

Message Validation: The pattern provides run-time type-
checking, which is done prior to the target service being

invoked, thus simplifying the handling of errors during service
operations. In addition, the credentials of the change requestor
are checked during validation to authenticate the identity of the
requestor.

Failure Semantics: The pattern provides a well defined
failure semantics in case of errors, and provides robustness by
providing a mechanism to roll-back the service model to its
original state in case of error. This avoids a common problem

with model based systems, namely that the stored model state
becomes inconsistent with the environment, particularly when
operations fail.

Approvals: The pattern clearly separates out the procssing

necessary to decide if a request has been approved from the
actual handling of the operation itself. By separating approvals
from performing the operation, the Service Access Point
allows approvals and processing to be performed by separate

services in a services oriented environment. Since the Model
Owner is allowed to inspect the pending request as part of the
approval, it can decide if approval should be granted based on
the current state of the Service Model, the identity and/or the

role of the requestor, and any other internal policies it has
governing updates to its model.

Event Notifications: Using filters at steps (4) and (9), a
publish-subscribe mechanism can be created that allows other

services to be notified of changes occuring in service models
within the services oriented environment.

Because the model owner (typically the service exposing the

model) stays in control of the exposed model at all times, it
can decide which model changes require approval and/or
notification. It can also analyze pending changes to ensure
model coherence. Finally, such a handshake provides

assurance to the clients that any changes they make in the
models are valid changes, and receive explicit notification
when the changes fail.

IV. SYSTEM REALIZATION

The modeling infrastructure and particularly the model
exchange pattern provide a highly functional environment with

many desirable properties, but make a challenging target to
realize due to the many steps involved in processing messages,
and the requirement to manage communication and a model
repository. In addition, our implementation delegates all

network communication to the Service Access Point. Services
view EntityReferences as opaque references, and rely upon the
Service Access Point to determine how and where it should
communicate to perform operations. Because the Service

Access Point is an active entity in the system, it is dynamic in
its interactions with other services. That is, as services start or
stop, the Service Access Point is aware of these life-cycle
based changes and accommodates them without itself having

to shut-down or re-start. These challenges and requirements
have led us to specific architecture and technology choices.
The resulting system block diagram is shown in Figure 7.

Figure 7 – System Block Diagram

A. Technology Choices

Our first choice in implementation was to use the Open
Services Gateway Initiative (OSGi) [5] framework. OSGi

provides a “bundle” abstraction for services: a self-contained
collection of Java-code whose life-cycle can be managed
independently of other bundles via a programmatic interface.
In the Figure, we show a single Java Virtual Machine, labeled

“OSGi Container” hosting both the Service Access Point
bundle and multiple service bundles. OSGi allows bundles to
selectively expose portions of their implementation to other
bundles while providing isolation and security for other parts

Service Model

Service
implementatio

SSP
Client library

Communication
Manager

OSGi Plugi

SAP BundleService

Model

Repository
Repository

HTTP + CIM-
XML

OSGi Container

CIM -XML over

Http

CIM -XML over

Http

Logger

Authentication

Validation

Service Dispatch

Message Handlers

Service Model

Service
implementatio

SSP
Client library

Service Model

Service
implementatio

SSP
Client library

Service Model

Service
implementatio

SAP
Client library

Communication
Manager

OSGi Plugi

SAP BundleService

Model

Repository
Repository

HTTP + CIM-
XML

OSGi Container

CIM -XML over

Http

CIM -XML over

Http

Logger

Authentication

Validation

Service Dispatch

Message Handlers

Service Model

Service
implementatio

SSP
Client library

Service Model

Service
implementatio

SAP
Client library

6

of the code. The Service Access Point uses these capabilities
to export a client library which other services use for
interacting with it. Command-line and web interfaces are

available for managing bundles within an OSGi container, and
we use these interfaces for installing, upgrading and removing
services from operation without affecting the operation of
other services. The creation of OSGi bundles is simplified by

the use of developer tools found in the Eclipse plug-in
development environment [6] which is also based on OSGi.
Thus, service developers benefit from all wizards and other
tools available to Eclipse plug-in developers. Use of this

mature tooling greatly simplifies the process of packaging and
deploying new services.

B. Communication and Message Handling

The number of steps involved in the model exchange

pattern, and the desire to support multiple communication
protocols led to a very modular approach to building the
Service Access Point. The hub is the Communication Manager
component. The Communication Manager has the

responsibility of loading the various modules and orchestrating
messages. Messages enter the Service Access Point through
one of the communication plug-ins, which handle all in-bound
and out-bound communication for the Service Access Point.

When a plug-in receives a message, it passes it on to the
Communication Manager for local processing, which inspects
the destination EntityReference to determine whether the
message should be handled locally or sent to a remote, peer

Service Access Point, and if so, through which communication
plug-in. The plug-ins to be installed are specified by a
configuration file for the Service Access Point.

We have developed two plug-ins. The first handles

communication within the OSGi container and provides the
counterpart to the SAP client library used by services sharing
the same OSGi container. The second plug-in uses the CIM-
XML [7] format defined by the DMTF WBEM standard for all

remote communication. This plug-in serializes and de-
serializes messages in the CIM-XML format and sends and
receives them using HTTP. The architecture permits other

wire protocols (e.g., SOAP) to be handled similarly.
When a message is to be handled locally, the

Communication Manager passes it through a series of Message
Handlers. The set of message handlers is loaded dynamically

as are the communication plug-ins. Each handler processes the
message in sequence. In a typical installation, we have
handlers which validate messages, perform authentication,
generate model-related events and dispatch messages to

service implementations using the steps defined in the model
exchange pattern.

C. Model Repository

The final component of the Service Access Point is the

model repository. The repository implements the operations
defined in the BasicModelOpService described previously.
Because each Entity to be stored or retrieved contains a unique
identifier, we use a transactional key-value store system rather

than a full relational database. For store and retrieve
operations, this provides excellent performance with less
implementation complexity because it does not require object-

relational mappings. The transactional features of the store are
used to perform the required caching, commit and rollback
operations as defined in the model exchange pattern, as well as
ensuring that concurrent accesses to the Service Access Point

do not result in inconsistent results.

V. EXPERIENCE

Two large services have been built on this environment,
both in the area of provisioning. The first installs and
configures a Microsoft Exchange e-mail server environment
using bare-metal blades in an on-demand service environment.

The provisioning service has been modeled to allow service
users to request different sized installations of the Exchange
server in terms of number of user mailboxes and mailbox
sizes. The service supports Service Level Agreement (SLA)

negotiation between the user and the service provider prior to
deployment. The negotiation includes attributes such as
mailbox size, number of users, server location, and price. Once
the SLA agreement is reached, the service deploys the

appropriate Exchange configuration and provides access to the
requestor.

«interface»
SLABasedServiceClientIF

+login(in userName : string, in password : string) : Boolean
+deployExchange(in SLAid : string) : ExchangeServer
+listActiveDeployments() : ExchangeServer[]
+listDeployedEnvironments() : ExchangeServer[]

«interface»
DeploymentServiceIF

-serverName : string
-mgmtServer : string
-securityServer : string
-loginId : string
-SLAid : string
-deploymentStartTime : Date
-estTimeRemaining : Date
-accountStorage : int
-numAccounts : int
-totalStorae : double
-adminMailAddr : string

ExchangeServer

DeploymentService

implements

implements

Figure 8 -- Exchange Deployment Service
The service model used in the service is shown in Figure 8.

Note that the DeploymentService implements both the

SLABasedServiceClientIF described previously and a new
interface specific to this service. The service also models the
state of a particular deployment in the type ExchangeServer
and makes it available to the user. This type provides all of the

deployment parameters as well as information about the
progress of the deployment using the deploymentStartTime
and estTimeRemaining properties. In this way, a client can

7

query the state of their deployment by directly inspecting the
model exposed by the Exchange service and without further
interacting with the DeploymentService. Events are triggered

when the deployment state reaches a desired value so that the
user can be notified of completion. The service is available as
a proof-of-concept [8] to HP’s customers.

The second service provisions compute intensive jobs in to

a batch scheduling system, and is part of an on-going initiative
between the A*STAR Institute of High Performance
Computing of Singapore and HP. The service models
encapsulate all of the parameters necessary for submitting

batch jobs to a high-performance computing cluster, and for
monitoring the jobs throughout their lifecycle. After
submitting a job, a user can monitor the state of the job by
monitoring the Entity corresponding to the job, and ultimately

receiving events directly from the Service Access Point as the
job changes state. The use of events here has blended well
with the service oriented approach, because the client does not
need to poll the system to determine when a job completes.

The events let them know as jobs are completed.
We also use the batch execution service as our

benchmarking test. The service creates an SLA template that is
composed of a complex structure, so it performs a large

number of model interactions with the repository at the Service
Access Point during service initialization. To understand the
impact of the various steps in the model exchange pattern, we
have enabled and disabled various steps using appropriate

message handlers described previously. Results are shown in
Table 1.

Table 1 -- Time to initialize batch processing service
Number of

Operations

No

Message
signing

Messages

signed and
Validated

Access

Control

1454 11 sec. 27 sec. 80 sec.

The table shows that during initialization, 1454 distinct
service interactions take place, mostly to the Service Access

Point within a single OSGi container. Typically, these require
the repository to persist modeled entities that compose an
SLA. The time increases as we introduce various authorization
steps. In the first column, no authentication or authorization is

possible because credential information and message signing is
not performed. This provides the baseline for comparison.
Column two shows the time required when messages are
signed and authenticated by the Service Access Point. Column

three adds authorization checks performed by a service outside
the Service Access Point. We see that, overall with complete
processing in place, we require about 55 milliseconds per
service interaction within a local OSGi container. Much of

this, about 36 milliseconds, occurs during access control
checking, and this area may have opportunities for further
optimization.

A. Web Service Interoperability

As part of developing these services, it became obvious that
a major concern in such an environment is to make use of
services that have already been created using other services

infrastructures such as web-services. In both cases we
experimented with, model-based communication was used to
augment and expand the capabilities of other back-end

services. In addition, adding model-based mechanisms to a
services oriented environment requires us to inter-operate with
the very large number of existing web-services. Our approach
to addressing this has been two-fold. First, we must understand

if our modeling capability is sufficient to capture all of the
capability of other service definition approaches. To this end,
we developed a translator that converts WSDL [9]
representations of service interfaces in to service models

specified in MOF. We found that the conversion is possible,
but there are some significant differences between the
expressiveness of WSDL and MOF. In particular, WSDL uses
an XML document exchange pattern which encourages

structures to be nested within one another, but does not easily
support object oriented concepts such as inheritance and
associations. Conversely, CIM-based modeling approach does
not easily support nesting of data types. Instead, CIM

encourages types to be defined separately and related via
associations. However, we have successfully transformed the
nesting style to one with many classes and corresponding
associations. This has permitted us to proceed to the second

phase of the experiment: building a bridge or proxy service
which allows WSDL-based services to be automatically
invoked from within our environment. This experiment is on-
going at the time of writing, but because the translation has

been completed, bridging appears feasible. Thus we are
encouraged that the model based approach is at least as
capable as the WSDL-based document approach which is
commonly used today.

VI. RELATED WORK

Service-oriented computing continues to evolve rapidly.

New standards, specifications and middleware are being
released frequently. In the standards community, the approach
that most closely relates to ours is the WS-Resource
Framework (WSRF) [10]. In WSRF, a service exposes state,

referred to as a WS-Resource, in the form of an XML
document. Operations can be directed to the resource to add,
delete and change the set of properties on the resource. In
contrast to our approach, WSRF does not specify message

handling protocols to assure consistency of resource values,
and does not provide an infrastructure with sufficient run-time
information to perform the sort of message validation we do.
Implementations of WSRF, such as Globus [11] often do

provide built-in support for managing the resources to alleviate
the burden on a developer, but they typically do not provide
persistence or transactional behavior.

Another service framework is e-speak. E-Speak describes

services using vocabularies and contracts which are similar to
our models. Vocabularies represent a set of names and typed
properties for any entity in the system, and are used to describe

a service interface in a contract. Like the Service Access Point
in our architecture, E-Speak also creates an intermediary for

8

communication among services, and provides support for
events based on service state change. However, E-Speak does
not have any form of model-exchange pattern to ensure

robustness of interactions and the descriptiveness of the
vocabularies is limited compared to the full object-oriented
modeling we inherit from CIM.

The CIM standards provide a protocol for remotely

accessing models via the WBEM interface. These can be
accessed in a REST model [13] or using SOAP messages as
found in other web services specifications [14]. We borrow
heavily from the WBEM specifications, particularly in terms

of the XML serialized representation of CIM objects.
However, the WBEM specifications stop short of defining a
general, service-oriented approach, and provide only a means
of accessing and updating models stored at an object manager.

There is no specific notion of services as directly
communicating entities.

Another class of systems which has some similarities to our
work is the Enterprise Service Bus (ESB). There are a large

number of ESB systems including open source systems like
ServiceMix [15], Mule [16] or JBossESB [17] to long-
standing commercial offerings such as Tibco [18]. These
systems typically focus on the communication aspect of a

service oriented environment. That is, isolating service
implementations from the variety of protocols and transport
layers. In this sense, they may provide a useful foundation for
further development of our system, though none currently

provide direct support for the CIM-XML transport we prefer.
At higher layers, these systems often provide support for
workflow, choreography and business process modeling. We
do not explicitly support work in these areas as we’re striving

to demonstrate the implicit choreography achievable by
generating events on service models as they change.

VII. CONCLUSIONS AND FUTURE WORK

Service oriented computing is still an emerging paradigm
though it is backed by years of work on distributed system
middleware. Most of today’s approaches to service orientation

have built upon existent web technologies, protocols and
software stacks to accommodate service-to-service
interactions. We extend the foundation technologies to include
those used in building model-based management and

automation systems by adding the notion of modeled elements
to the representation of each service. This in turn permits us to
have highly descriptive representations of the service, and
develop more robust communication protocols without

significantly burdening the service developer. Our experience
has shown that this approach can be applied to many types of
services, including those currently using other service interface
specifications.

One of the most significant barriers to success for service
orientation is for services to be easily discoverable, and to
present abstractions in their interfaces desired by service

consumers. Service models provide a very clear definition of
services, but the issue of suitability for services remains. To

alleviate this issue, we are working to leverage today’s popular
collaboration environments to include service definition
aspects so that service definition can be a group effort leading

to a more usable service. We are also working to further the
transparent distribution of models. The model based approach
appears to provide a means of breaking the link to physical
locations resulting in a more dynamic, robust and scalable

system.

ACKNOWLEDGEMENTS

The work described here is the result of contributions of a
great many people in development of the platform and the
services that run on it. Contributors to this work included
Karin Becker, Andre Lopes, Subu Iyer, John Wilkes, Arthur
Fong, Rully Santosa, Hao Ming Zhong, Datta Hassan, Ravi
Gullapalli, Nandan Reddy of HP and Yong Siang Foo of
Singapore A*STAR.

REFERENCES

[1] J. Rumbaugh, I. Jacobson and G. Booch, “The Unified Modeling
Language Reference Manual”, Addison-Wesley Professional (January 2,
1999).

[2] Distributed Management Task Force, “Common Information Model
(CIM) Infrastructure Specification”, DSP0004, version 2.3 Final,
October 4, 2005.

[3] S. Iyer et. al., “SLA Based Service Module and SLA Module,” Hewlett-
Packard Laboratories Technical Report.

[4] K. Becker et. al., “Automatically Determining Compatibility of
Evolving Services,” to appear in International Conference on Web
Services (ICWS), September 2008.

[5] OSGi Alliance, “About the OSGi Service Platform,”
http://osgi.org/documents/collateral/OSGiTechnicalWhitePaper.pdf.

[6] W. Melhem and D. Glozic, “PDE Does Plug-Ins,”
http://www.eclipse.org/articles/Article-PDE-does-plugins/PDE-
intro.html.

[7] Distributed Management Task Force, “Representation of CIM in XML”,
DSP0201, version 2.2 Final, February 8, 2007.

[8] Hewlett-Packard Company, “See AI in action,”
http://h20324.www2.hp.com/hpsdp/ib/IB_Entry.jsp?company_id=5040
462.

[9] E. Christensen, F. Curbera, G. Meredith and S. Weerawarana, “Web
Services Description Language (WSDL) 1.1,” W3C Note 15 March
2001.

[10] K. Czajkowski, et. al., “The WS-Resource Framework”, March 5, 2004.
Available from http://www.globus.org/wsrf/specs/ws-wsrf.pdf.

[11] I. Foster, “Globus Toolkit Version 4: Software for Service-Oriented
Systems,” in IFIP International Conference on Network and Parallel
Computing, Springer-Verlag LNCS 3779, pp 2-13, 2006.

[12] Hewlett-Packard Company, “E-speak Archectural Specification,”
Release A.0, January 2001.

[13] Distributed Management Task Force, “CIM Operations over HTTP”,
DSP0200, version 1.2 Final, February 8, 2007.

[14] Distributed Management Task Force, “Web Services for Management”,
DSP0226, version 1.0.0 Final, February 12, 2008.

[15] Apache Software Foundation, “Apache ServiceMix 3.x Users' Guide,”
http://servicemix.apache.org/users-guide.html.

[16] Mule Development Team, “Mule 2.x User
Guide,”http://www.mulesource.org/display/MULE2USER/Home.

[17] JBoss ESB, http://www.jboss.org/jbossesb.
[18] Tibco Company, “TIBCO ActiveMatrix ServiceBus,”

http://www.tibco.com/software/soa/activematrix_service_bus/default.jsp
.

