

DXM – Demos2k eXperiments Manager

Brian Monahan
HP Laboratories
HPL-2008-173

Keyword(s):
Demos2k, simulation, analytics, security

Abstract:
Applied models in Demos2k, a semantically well-founded process simulation language, are
fundamentally stochastic in their nature. This means that a single run is at best a mere example of the
possible range of behaviour - making it necessary to run these models many times over, Monte-Carlo
style. This allows us to build a more statistically reliable picture of the overall systems behaviour and how
varied it is. In this paper, we introduce DXM - the Demos2k eXperiments Manager - a software
application that is designed to help applied analyst/modellers construct and manage repeated experimental
simulation runs over a range of parameters. By using our DXM application, analyst/modellers can design
their simulation experiments, run them and gather up the results for further analysis. Once analysts have
obtained their experimental runs, they can use the DXV tool - Demos2k eXperiments Viewer - to help
visually inspect and display these results. A number of Appendices present overall documentation for the
current DXM and DXV packages.

External Posting Date: October 21, 2008 [Fulltext] - Approved for External Publication

Internal Posting Date: October 21, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

DXM – Demos2k eXperiments Manager

14thOctober 2008

Brian Monahan
Systems Security Lab

HP Laboratories, Bristol
BS34 8QZ, UK

Abstract

Applied models in Demos2k, a semantically well-founded process simulation language, are fun-
damentally stochastic in their nature. This means that a single run is at best a mere example of the
possible range of behaviour – making it necessary to run these models many times over, Monte-Carlo
style. This allows us to build a more statistically reliable picture of the overall systems behaviour and
how varied it is. In this paper, we introduce DXM – the Demos2k eXperiments Manager – a software
application that is designed to help applied analyst/modellers construct and manage repeated experi-
mental simulation runs over a range of parameters. By using our DXM application, analyst/modellers
can design their simulation experiments, run them and gather up the results for further analysis. Once
analysts have obtained their experimental runs, they can use the DXV tool – Demos2k eXperiments
Viewer – to help visually inspect and display these results. A number of Appendices present overall
documentation for the current DXM and DXV packages.

1 Introduction

Demos2k is a semantically well-founded process simulation language (see Appendix E.2), together with
a software application for executing models. Such models will typically rely upon several random vari-
ables sampled from a range of distributions, parameterised on the values of certain numerical parameters.
The upshot of this is that a single run of the simulation is at best a mere example of the possible range of
behaviour. Accordingly, analyst/modellers will need to run these models many times over, Monte-Carlo
style, to get a statistically reliable picture of the overall aggregate behaviour and to see how broad it’s
variation is.

As a result, systems described by a Demos2k model often involve concurrent and secondly, tend to
heavily depend upon fundamentally stochastic elements, such as random variates drawn from specific
distributions. To get a reasonably accurate picture of the overall behaviour, we therefore need to run
these repeatedly in general, given a set of parameters. Although DXM does provide some very basic
statistical analysis capability, modellers will typically need to use external statistical packages to obtain
deeper analysis of their simulation data.

We introduce DXM in terms of a small example, a three Tier service chain (with Customers), and show
how Demos2x and DXM work together to define the experiments and to explore their outcomes.

1.1 Demos2k - A Very Brief Introduction

Systems descriptions written in Demos2k tend to be high-level, pleasingly short and to the point. The
modelling approach supported is very much akin to ’extreme modelling’, where the systems analyst/modeller
can rapidly construct high-level models representing the customer’s focus of interest. A key part of this
comes form the way that probability distributions are used to abstract away from extraneous detail.

Much of Demos2k is concerned with the allocation of resources and the use of queues (or bins). The
short example in Figure 1 illustrates this.

1

cons activity = normal(4, 1.2);

class doWork = { getR(staff, 3); hold(activity); putR(staff, 3); }

do 4 { entity(doWork, doWork, 2); }

Figure 1: A small fragment of Demos2k code

The first line defines activity as a normally distributed random variate, with mean 4 and variance
1.2 (Note: not standard deviation). This is used to specify time durations. The process class doWork
describes a process that simply claims a number of staff (3 in this case) from a resource pool called
staff, performs some work whose duration is specified by activity and then returns the claimed
staff for further duty. Note that ’doing work’ here is simply modelled by the passing of (simulation)
time. If, for any reason, there were not enough staff to get, the getB construct will block (i.e. wait) until
there is enough available. The final line simply launches four instances of doWork after a delay of 2
time units.

Some further discussion can be found in Appendix E. In addition, the full source of the extended example
we use in the next section can be found in Appendix F. The screenshot in Figure 2 shows the Demos2k
tool and GUI in action.

Figure 2: The Demos2k tool and GUI – see Appendix E

2

2 Three-tier service chain - with customer demand

We illustrate DXM and associated tools such as DXV by considering a hypothetical, but reasonably
substantial, systems dynamics example: the three tier service chain, with customer demand.

2.1 Our example

Imagine that we have the following macro-scale (but simplified) set-up for a particular product line. At
the head of the service chain are the original source suppliers of the product, followed by intermediary
value-add resellers and lastly, the retailers. We further add customer demand into the mix as a further
constraint/stimulus on the dynamics of the system. A simplified picture of our system is in Figure 3.

Figure 3: A picture of a three-tier service chain, with customer demand

What makes this example interesting is that there are several stages in delivery from end-to-end, whose
behavioural dynamics may be affected by the numbers of elements available for each stage. A more
detailed picture of the situation is given by Figure 4.

Figure 4: A more detailed picture of a three-tier service chain, with customer demand

However, we recognise that this account of service chains could have been made significantly more
elaborate; for our purposes, the current example is sufficiently interesting to illustrate how DXM itself
is used.

3

3 Modelling our example using Demos2k

We now briefly walk through the representation or model of our example in Demos2k. We shall quickly
go through the four classes used to represent the individual instances that populate each stage and also
talk about the model parameters – these take on greater importance vis-a-vis DXM.

3.1 The customer process class

Each customer is modelled by a process that simply (metaphorically) fires off customer requests for the
product (admittedly, a somewhat idealistic model of a customer!) by placing them into the customer request

bin.

class customer = {
repeat {

hold(requestInterval);

putB(customer_request, 1);
customerRequest_QLength := customerRequest_QLength + 1;
trace("customerRequest_QLength=%v", customerRequest_QLength);

totalCustomerRequests := totalCustomerRequests + 1;
trace("totalCustomerRequests=%v", totalCustomerRequests);

}
}

Figure 5: The customer class

3.2 The source process class

Sources are modelled here by a process that repeatedly places completed product into the source to reseller

bin and keeps track of how many items have been shipped out. Making or supplying each item is mod-
elled by holding for a certain amount of (simulation) time.

class source = {
repeat {

hold(sourceResetTime);
hold(supplyTime);

sourceOutputs := sourceOutputs + 1;
trace("sourceOutputs=%v", sourceOutputs);

putB(source_to_reseller, 1);
sourceResell_QLength := sourceResell_QLength+1;
trace("sourceResell_QLength=%v", sourceResell_QLength);

}
}

Figure 6: The source class

4

3.3 The reseller process class

The Resellers are modelled by processes that repeatedly wait for items in the source to reseller

bin, processes them for a certain amount of time (i.e. processTime) and then pushes the product onto
the reseller to retail bin.

class reseller = {
repeat {

hold(Qpause);
getB(source_to_reseller, 1);
sourceResell_QLength := sourceResell_QLength-1;
trace("sourceResell_QLength=%v", sourceResell_QLength);

resellerInputs := resellerInputs + 1;
trace("resellerInputs=%v", resellerInputs);

hold(processTime);

totalResellerActivity := totalResellerActivity + 1;
trace("totalResellerActivity=%v", totalResellerActivity);

putB(reseller_to_retail, 1);
resellRetail_QLength := resellRetail_QLength+1;
trace("resellRetail_QLength=%v", resellRetail_QLength);

resellerOutputs := resellerOutputs+1;
trace("resellerOutputs=%v", resellerOutputs);

}
}

Figure 7: The reseller class

3.4 The retail process class

The retail processes are different from the other kinds of process seen so far, as they repeatedly wait until
both a customer request and a product from a reseller are present together. When they are, that event
then counts as a sale.

class retail = {
repeat {

try [getB(customer_request, 1), getB(reseller_to_retail, 1)] then {
customerRequest_QLength := customerRequest_QLength-1;
resellRetail_QLength := resellRetail_QLength-1;

trace("customerRequest_QLength=%v", customerRequest_QLength);
trace("resellRetail_QLength=%v", resellRetail_QLength);

totalSales := totalSales + 1;
trace("totalSales=%v", totalSales);

}
}

}

Figure 8: The retail class

5

3.5 Model parameters

Throughout the code shown above are a number of entities and constants which determine things like
how frequently a process runs or the number of instances of each kind of process. These quantities
essentially determine the character of the dynamic behaviour of the model. Thus a model parameter
can technically be any declared cons element in a Demos2k model. The DXM tool then provides a way
to specify how these parameters are varied to produce a set of experiment variations that may then be
executed. Figure 9 presents the (default) model parameters used for our example.

cons runTime = 1000;

cons numOfCustomers = 1;
cons numOfSourceProc = 1;
cons numOfResellerProc = 1;
cons numOfRetailProc = 1;

cons customerAvgRequestInterval = 4;
cons sourceResetAvg = 4;
cons sourceAvgSupplyTime = 4;
cons resellerAvgProcessTime = 4;

cons requestInterval = negexp (customerAvgRequestInterval);
cons sourceResetTime = normal (sourceResetAvg, sourceResetAvg/5);
cons supplyTime = normal (sourceAvgSupplyTime, sourceAvgSupplyTime/10);
cons processTime = normal (resellerAvgProcessTime, resellerAvgProcessTime/12);

Figure 9: Model parameters (defaults)

Notice that some of these parameters are essentially random variates generated by distribution. We
regard even these to be a part of the parameter set as this also allows us to change the distributions
themselves and experiment with different alternatives.

3.6 Model outputs

What is the output result of running a Demos2k model? Each run produces a trace reporting the real-
valued simulation time at which certain events occurred. The trace statement is used in models to report
the current value of particular numerical variables within both the Demos2k graphical interface and the
output trace.

Demos2k models can declare and use (global) variables to record the behaviour observed within the
model during simulation runs. Figure 10 lists the particular variables whose values we choose to gather
during runs of our example.

3.6.1 Using demos sample tick

Unfortunately, there is something of a catch with just using trace statements in the way suggested above.
The trace statements produce trace entries that are unweildy and bulky and thus require significant pro-
cessing to extract the appropriate information. This becomes especially expensive in terms of both the
time taken and storage space consumed during longer-running experiments. To counter this, we have
adapted Demos2k so that entries for all global variables can be systematically written out to a specified
CSV (Comma Separated Value) file on an appropriate signal.

But then we needed to decide how to trigger this output and to do so conveniently from within a Demos2k
model. The solution adopted was to use the change/modification of a particular, fixed global variable
called ‘demos sample tick’. In this way, we obtain a simple-to-use and pragmatic means of yielding
outputs that is also under the control of the modeller and not imposed by Demos2k itself.

6

// Activity of reseller
var totalCustomerRequests = 0;
var totalResellerActivity = 0;

// Queue lengths
var customerRequest_QLength = 0;
var sourceResell_QLength = 0;
var resellRetail_QLength = 0;

// Numbers of outputs
var sourceOutputs = 0;
var resellerInputs = 0;
var resellerOutputs = 0;

// Sales
var totalSales = 0;

// DXM bureaucracy
var demos_sample_tick = 0;

Figure 10: Model Outputs)

DXM relies on this technique being used within models to obtain the CSV output files containing the
results. To avoid potentially significant wasted effort, DXM pragmatically performs a syntactical check
to ensure that demos sample tick is defined within the models it manages. Additionally, the CSV
output files are named according to a convention that DXM relies upon for gathering results; accordingly,
it is not necessary for the modeller to specify how these files are named explicitly.

3.6.2 Trace output vs. demos sample tick

The outputs obtained by the demos sample tick approach produce a single vector of values - these are
usually generated on a regular basis by some measurement process. On the other hand, trace statements
output a single value, at any point in the process. In principle, using trace statements can exhibit greater
variation than the demos sample tick method - because the latter generally produces output on a
regular schedule, irrespective of what processes are doing.

4 So, what’s the question?

Finally, having set up our example, we are now ready to go ... but wait, what was the question that our
model should help provide answers to? Naturally, we should have had this in mind when formulating
the model in the first place. Anyway, it is rather unwise to proceed further with using DXM until this
issue is settled and understood.

The reason for this caution is clear – it is because the next stage is to set-up and define an experiments
plan that DXM can execute and perform repeated runs of. The experimental question to be answered will
need to be formulated in terms of making explicit variations of the parameters identified in the Demos2k
model.

Once identified, we can then use DXM to explore the space. The successful use of DXM intrinsically
depends upon the particular Demos2k model, it’s parameters and the simulation data to be observed.
Whether all this effort is sufficient to help gain useful insights can, in the final analysis, only be answered
by the modeller and systems analyst. Caveat emptor.

So, for the sake of argument, it seems natural to suppose that we are interested in identifying situations
(i.e. sets of parameter values) which systematically yield good sales figures. The next major section

7

shows how DXM and friends can help us to explore that question using our executable Demos2k models.

5 Doing experiments with DXM

As hinted at earlier, we now need to create aDXM experiments plan that specifies how the parameters of
interest are to be varied.

Broadly speaking, each combination of the parameters will produce a specific experiment variation;
one that gets its own uniquely named directory into which experiment results are placed. This in turn
involves automatically generating a copy of the Demos2k model instantiated to the specific values of the
parameters, corresponding to the particular experiment variation. The resulting model is then repeatedly
executed to produce a series of output CSV files, one for each run.

Once the runs are complete, the stats.csv file is compiled that lists the final values of the output
variables gathered for each run. This typically makes sense for cumulative count variables that form
the majority of the variables output. Averages and other statistical information (e.g. max/min, std dev.
and std error) are then computed for each variable across all the runs and tabulated at the end of the
stats.csv file.

The overall averages and other variation data summarised in the stats.csv are then added to the
summaryStats.csv file. Thus, thesummaryStats.csv file contains the averages from each experi-
ment variation. Briefly, we have that:

• stats.csv: Contains final values of output variables for each run and their computed averages
and other statistical information for a particular experiment variation.

• summaryStats.csv: Contains aggregated statistics across each of the experiments variations.

5.1 How does Demos2k perform randomisation for repeated runs?

The very short answer to that question is that it doesn’t - instead, it does something more better and more
useful.

The Demos2k system provides a standard, well-behaved, deterministic pseudo-random number gener-
ator that always starts from the same place for the first run. On the second and subsequent runs, the
system uses the final state reached in the preceding run to initialise the RNG for the next, forthcoming
run.

This subtlety ensures that a single sequence of high-quality pseudo-random numbers is available for the
simulation. Each run of a model appears to be different, essentially because it starts from a different
place in this single sequence.

The clear advantage of this approach is that the Demos2k simulations are deterministically ‘replayable’,
whilst also appearing to provide an apparently unpredictable source of random input for use within the
simulation.

Most importantly, the way that Demos2k produces runs makes it possible to share Demos2k models
amongst your colleagues – it makes Demos2k models portable. This is because a sequence of runs will
always produce the same outputs, guaranteeing that everyone sees the same set of results no matter who
runs them or how often they are rerun. A further essential advantage is that Demos2k models can then
be tested out in a deterministic way, thus making debugging feasible.

5.2 Identifying the parameter space

As we said earlier, identifying the parameter space to be varied is largely a matter of the question one
is hoping to answer or at least obtain insight into. We offer here some general heuristics to help make

8

appropriate choices:

• Initially start broadly - conduct a broad and wide search to get some idea of the overall behavioural
variation. The downside is that this is often very expensive in terms of time taken and the stor-
age space consumed – however, it is frequently necessary to help argue that important, relevant
conditions and variation have been adequately captured by the search.

• Try to ensure that the parameters to be varied encode relevant properties. This means that different
choices of value for each parameter typically make some kind of difference to the outcomes under
investigation - otherwise they should have already been eliminated. If the model’s outcome is in-
sensitive to the value of a parameter then the particular value it has doesn’t have significant impact
- and so can be set conveniently and ‘traded-off‘ when setting other more sensitive parameters.

It is also the case that it is hard to know for sure which parameters are insensitive – for example, it
is fairly easy to get conditionally insensitive parameters – variables whose degree of insensitivity
depends upon the values of other parameters.

The upshot is to try and ensure that only effective and meaningful parameters are to be varied
systematically. Unfortunately it is possible that the only way to know this is to have already
explored the parametric variation you were seeking to avoid! Sometimes, there is no other way
except to just try it out and see what happens.

• When all else fails, try out small-scale parametric variations around specific combinations, hold-
ing most parameters constant. This will help get some ideas about the overall shape and if any
particular ranges seem to be interesting.

5.3 Experiment plans

The objective of a DXM experiment plan is to describes how certain model parameters are varied. Fig-
ure 11 contains a plan for our example. The syntax of DXM experiment plans is defined in Appendix A.4.

ttc1.dxm - DXM file for the threeTier+Customers example
#

file = threeTier+Customers.d2000
rootdir = ttcExample

runs = 100

param numOfCustomers : 1; 10; 50;
param numOfSourceProc : 2; 4; 10;
param numOfResellerProc : 5; 10; 20;
param numOfRetailProc : 2; 10; 20;

param customerAvgRequestInterval : 1; 10; 20; 100;
param sourceResetAvg : 0.1
param sourceAvgSupplyTime : 1;
param resellerAvgProcessTime : 1;

param runTime : 1000

naming = ttc+num=%n-%n-%n-%n+time=%a-%a-%a-%a+%Z

Figure 11: An experiments plan for our example

The first line of the plan specifies the Demos2k model to use in our investigation
(i.e. threeTier+Customers.d2000 in our case). This is followed by a specification of the root di-
rectory for all the experiments to be performed (i.e. ttcExample). The directories for each experiment

9

variation are to be created within this root directory. The runs statement specifies how many times the
model is run, for each experiment variation (i.e. in our case, 100 times).

The param statements specify a particular parameter to be varied, together with the set of discrete values
it will be assigned to. Each parameter and its values thus contribute to forming the set of experiment
variations. Note that one of the parameters is the runTime itself - this allows the modeller to easily
change, via DXM, the amount of time spent simulating within each run performed.

Finally, the naming statement specifies a pattern to allow structured naming of the directories made
for each experiment variation. In some sense, the pattern exploits the ordinal position of the parame-
ters themselves (i.e. relative ordering of each params statement) to create a unique naming for each
directory. This issue is covered in greater detail in Appendix A.5.

5.4 The amount of work to be done

We can immediately see from the plan how many experiments will be run and calculate the total number
of runs across all the experiments.

There are 4 parameters having three alternative values and one parameter with four alternatives. All
other parameters have only one value. This makes 324 = (3× 3× 3× 3)× 4 = (81× 4) experiments
to be done in total. Each experiment involves 100 runs, making 32, 400 runs overall. Finally, each run
has a runtime of 1000 time units.

5.5 Executing the plan

Having now got our plan, we need to run or execute it using DXM. There are two major stages involved
in doing this:

1. Creating the directory structures corresponding to each experiment variation and populating them
with appropriate content.

2. Performing the runs for each of the experiment variations and constructing appropriate summary
information.

5.5.1 Creating the experiments

To create the experiments using DXM, we simply type the following at the command line:
$ dxm -create ttc1.dxm

A screenshot of the directory structure this produces is given in Figure 12.

The name of the top-level root directory (i.e. ttcExample here) for the experiments created by DXM is
specified by the plan. Importantly, the plan file will reside in the parent of the top-level root directory
i.e. wherever DXM was run from.

The content of the root directory includes a (master) copy of the original Demos2k model. This is used
to create the experiment variants of the model to be run later.

The root directory also contains the experiments.csv file. This file usefully presents the mapping
from directory names to the specific values of parameters that each experiment variation tests against.
This is very useful information when analysing the results later on.

The initial content of each experiment variation is illustrated in Figure 13. The file params.csv contains
the specific parameter values for the variation, and the file script.d2000 contains the specific version
of the Demos2k model in the root directory.

10

Figure 12: Screenshot showing the directory structure for our DXM plan

5.5.2 Running the experiments

Having now created the experiments variations, we execute the experiments themselves. We do this by
simply typing the following at the command line:

$ dxm -run ttc1.dxm

This launches a (detached) process that executes the plans, allowing the user to do other work in the
same shell. It is possible to monitor how far the simulation has got by typing the following:

$ dxm -list ttc1.dxm

Figure 13: Screenshot showing initial content for an experiment

11

5.6 Looking at the results

Once the runs have been completed, it is then time to inspect what we have got. The (slightly edited)
screenshot in Figure 14 shows the resulting content in the top-level directory.

In addition to the files threeTier+Customers.d2000 and experiments.csv that we had initially,
we now have:

summaryStats.csv:
Summary stats file describing outcomes from all the experiments - this file was also briefly de-
scribed in § 5.

expt.log:
A log file describing overall progress such as the starting/stopping times for each experiment.

breakdownStats.csv:
This CSV file contains more detailed information than summaryStats.csv and is organised
by variable rather than by experiment and thus provides capability for drill-down. It contains all
the stats summary information contained in the individual stats.csv files.

We also have an additional directory, called stats. This contains the copies of the stats.csv files
from each experiment whose runs all succeeded. If an experiment had any failed runs (i.e. where the sim-
ulation itself failed), the stats file is copied instead into a failedStats directory. This failedStats
directory is only created once some experiment has a failed run.

Significantly, this approach ensures that the information leading to a failed experiment is captured for
later failure analysis and diagnosis of what went wrong. A failed experiment is often very informative as
these can often result from genuine extreme dynamic behaviour arising naturally from within the model
(e.g. singularities), rather than routine programming-type errors.

5.6.1 Results from each experiment

Each experiment directory now contains a typically large number of CSV results files - these are the
outputs from each simulation run1. The screenshot in Figure 15 illustrates the results content of a typical
completed experiment.

Apart from the params.csv and script.d2000 files we had initially, we now have:

exp 1.csv ... exp 100.csv:
The CSV files output as a result of the ithsimulation run.

sim.log:
The log of the simulations run - this records some information about starting and stopping and, in
the case of a failed simulation, a brief failure message.

seedData.csv:
A CSV file that contains the starting RNG seeds and stopping RNG seeds for each simulation
run. This information can be used with the dxms to rerun particular runs of a specific model - see
Appendix D.

stats.csv:
This CSV file firstly contains the final line of run information from each of the CSV run files
exp *.csv. Secondly it contains calculated statistical information for each variable (i.e. column)
such as its average value, the standard deviation, the standard error, and max/min values. The
content of this file has been discussed earlier in § 5.

1Standard Demos2k trace files are typically not generated - we only use the more compact CSV files for data analysis.

12

Figure 14: Screenshot showing top level experiment variation

5.7 Parallelism, Multiple cores and using the ‘multiple’ option to DXM

Each experiment constructed and managed via DXM is entirely independent of any other experiment in
the set – each experiment is standalone. This means that they all could be calculated freely in any order,
since each experiment cannot depend upon the presence, absence or failure of any other experiments.

The pleasing consequence of this is that, in principle, the performance of experiments could immediately
exploit whatever independent computing resources there are available - e.g. multiple processor cores in
data centers.

But there is a structural management and configuration issue here - to do this in an effective way, we
need to split up the experiments work into independent (i.e. disjoint) pieces. This means that instead of a
single top-level root directory, there will now be several - one for each independent processor. Moreover,
we need to do this in a clean way so that it is possible to assemble the separate experiments sets again
so as to form a single, unified experiment set.

In other words, the work first needs to be split up, performed separately and then put back together again
as though the entire set of experiments had been done by a single processor.

DXM helps to manage this by providing the ’multiple’ option to split the experiments up into a specified
number of disjoint experiment sets at creation time. Once created, each of the experiments sets can then
be performed by DXM in the standard way. Once all the experiments sets have been completed, the total
set of experiments can be assembled from these pieces.

So for example, suppose we have 4 processor cores available. We can generate the experiment set as 4
disjoint subsets by typing the following at the command line:

$ dxm -create ttc1.dxm -multiple 4

13

Figure 15: Screenshot showing the results content for a completed experiment

This creates a ’master’ root directory that in turn contains all four subsets. Each of these subsets have
their own root directories from which a run of DXM can be launched independently of the other directo-
ries. In principle, each subset can be copied elsewhere for the purposes of getting back results and then
copied back for assembly into the single set of results.

Once all of the results have been completed, we can assemble them together into a single experiments
set by typing at the command line:

$ dxm -assemble ttc1.dxm

For this to work successfully, it is very important that the above command is invoked from the same place
originally used to invoke the DXM multiple create command. Additionally, the -assemble option is
only intended to work with experiment sets that were initially split apart when they were created (i.e.
using the -multiple option); it is clearly not a general assembly operation for arbitrary experiment
sets.

6 Viewing experiment results graphically using DXV

This brief section cannot do full justice to the Demos2k eXperiments Viewer (DXV) tool here. We shall
therefore be content to simply illustrate it’s use by showing some of the charts that the tool may generate
on behalf of the analyst/modeller. Brief outline documentation for DXV in included in Appendix B.

6.1 Using DXV to explore results

The original question was to find conditions that maximised the value of totalSales. This variable is
clearly cumulative and so only its final value at the end of each run is relevant. Our strategy, then, is to
locate combinations of parameter values for which the average value of the totalSales parameter is
(close to) maximised. As each experiment is associated with a specific such parameter combination, all
we need to do is locate those experiments at which totalSales is maximised.

14

6.1.1 Charting totalSales from the summary stats - first pass

We first of all chart the value of totalSales across all of the experiments2 - it turns out that this is
fairly easy to do by using the DXV view plan given in Figure 16. The chart produced by DXV is given
in Figure 17.

By inspection of this chart, we can see that the maxima in totalSales is attained within a cluster of
experiments. Unfortunately, due to the scale of the chart, we cannot see more precisely what the values
are and where they lie. For that we need a more refined chart.

ttc1.dxv -- a DXV file for the threeTier+Customers example
#

plan = ttc1.dxm

size (900, 600)

font.title = (plain, bold-italic, 12)

line basic = color : dark red, point = plus, pointsize=0.8

chart summary

title = "totalSales"

title.x-axis : ’Experiments’
title.y-axis: ’Units’

plot style : points

data = summary

y = totalSales with line = basic

Figure 16: View plan charting totalSales across all experiments

2Technically, we can linearly order the experiments lexicographically by name.

15

Fi
gu

re
17

:C
ha

rt
of

t
o
t
a
l
S
a
l
e
s

ac
ro

ss
al

le
xp

er
im

en
ts

16

6.1.2 Charting totalSales from the summary stats - refined

Fortunately, it is possible to refine our chart to get a sharper view of which experiments maximise the
value totalSales. Again, this turns out to be fairly straight forward to do with DXV. We can focus
in on a sub-range by adding a single ‘sample’ statement which restricts which experiments are to be
plotted. The refined view plan is given in Figure 18 and the corresponding refined chart is presented in
Figure 19

From the refined charts, we can see that the maxima in totalSales seems to lie just above 9000 units in
six different, but clustered, experiments To get an exact picture, we eventually need to look directly at the
spreadsheet data – but even so, we have used the charts to effectively glean some heuristic information
to know what to look for and also where to look for it.

ttc1a.dxv -- a DXV file for the threeTier+Customers example
#
Refined range using the sample statement
#

plan = ttc1.dxm

size (900, 600)

font.title = (plain, bold-italic, 12)

line basic = color : dark red, point = plus, pointsize=0.8

sample = (expt ttc+num=1-1-1-2+time=b-a-a-a+166 <= expt ttc+num=2-0-1-2+time=b-a-a-a+238)

chart summary

title = "totalSales"

title.x-axis : ’Experiments’
title.y-axis: ’Units’

plot style : points

data = summary

y = totalSales with line = basic

Figure 18: View plan that charts totalSales across a range of experiments

17

Fi
gu

re
19

:R
efi

ne
d

ch
ar

to
ft

o
t
a
l
S
a
l
e
s

fo
ra

ra
ng

e
of

ex
pe

ri
m

en
ts

18

7 Answering our question ...

Having now gone to all the effort of running the experiments and preparing charts, we should briefly
discuss what the actual result or outcome was!

From the preceding section, we determined that the totalSales have maxima exceeding 9000, in six
separate experiments. Turning now to the summaryData.csv, we extract the data on the cluster of
experiments containing the maxima, and the data obtained is summarised in Table 1. The column names
appearing in the spreadsheets are essentially the names of the associated Demos2k model parameters.
We include in the table only those model parameters that changed within the cluster of experiments3.

The remaining model parameters were all constant over the above range of experiments: numOfCustomers
= 10, sourceAvgSupplyTime = 1, numOfSourceProc = 10, resellerAvgProcessTime = 1, sourceResetAvg
= 0.1, runTime = 1000.

From the table, we can see a number of interesting features of the data:

• The totalSales output data is very regular - this may be due to both the nature of the model
itself and the fact that the numbers given here are averages over a 100 runs, with each run having
duration 1000 in simulation time.

• We can see an immediate inverse correlation between customerAvgRequestInterval and
totalSales. This is easily accounted for by the fact that customerAvgRequestInterval
is the (average) time interval between customer requests being made. As this value goes down,
the average number of customer requests will go up, leading to increased demand and increased
total sales (assuming the service chain can deliver).

• There are two closely matched maxima in totalSales - one of 9069.55 and the other of 9067.12.
By inspection, these differences are inversely correlated with the number of resellers:
viz. numOfResellerProc. However, it isn’t immediately clear why increasing the number of
reseller processes from 10 to 20 should lead to totalSales decreasing slightly overall. This is a
good example of some unanticipated data result deriving from the dynamics in a model that may
lead to further questions for the investigation to consider and insights to be obtained.

3All the other model parameters were constant: (numOfCustomers = 10; sourceAvgSupplyTime = 1;
numOfSourceProc = 10; resellerAvgProcessTime = 1;
sourceResetAvg = 0.1; runTime = 1000.

19

E
xp

t.
fo

ld
er

M
od

el
pa

ra
m

et
er

s:
R

es
ul

t:
nu

m
O

fR
es

el
le

rP
ro

c
nu

m
O

fR
et

ai
lP

ro
c

cu
st

om
er

A
vg

R
eq

ue
st

In
te

rv
al

to
ta

lS
al

es
ttc

+n
um

=1
-2

-1
-0

+t
im

e=
a-

a-
a-

a+
19

3
10

2
1

90
69

.5
5

ttc
+n

um
=1

-2
-1

-0
+t

im
e=

b-
a-

a-
a+

19
4

10
2

10
99

9.
5

ttc
+n

um
=1

-2
-1

-0
+t

im
e=

c-
a-

a-
a+

19
5

10
2

20
50

1.
94

ttc
+n

um
=1

-2
-1

-0
+t

im
e=

d-
a-

a-
a+

19
6

10
2

10
0

10
1.

26
ttc

+n
um

=1
-2

-1
-1

+t
im

e=
a-

a-
a-

a+
19

7
10

10
1

90
69

.5
5

ttc
+n

um
=1

-2
-1

-1
+t

im
e=

b-
a-

a-
a+

19
8

10
10

10
99

9.
5

ttc
+n

um
=1

-2
-1

-1
+t

im
e=

c-
a-

a-
a+

19
9

10
10

20
50

1.
94

ttc
+n

um
=1

-2
-1

-1
+t

im
e=

d-
a-

a-
a+

20
0

10
10

10
0

10
1.

26
ttc

+n
um

=1
-2

-1
-2

+t
im

e=
a-

a-
a-

a+
20

1
10

20
1

90
69

.5
5

ttc
+n

um
=1

-2
-1

-2
+t

im
e=

b-
a-

a-
a+

20
2

10
20

10
99

9.
5

ttc
+n

um
=1

-2
-1

-2
+t

im
e=

c-
a-

a-
a+

20
3

10
20

20
50

1.
94

ttc
+n

um
=1

-2
-1

-2
+t

im
e=

d-
a-

a-
a+

20
4

10
20

10
0

10
1.

26
ttc

+n
um

=1
-2

-2
-0

+t
im

e=
a-

a-
a-

a+
20

5
20

2
1

90
67

.1
2

ttc
+n

um
=1

-2
-2

-0
+t

im
e=

b-
a-

a-
a+

20
6

20
2

10
10

00
.7

2
ttc

+n
um

=1
-2

-2
-0

+t
im

e=
c-

a-
a-

a+
20

7
20

2
20

50
2.

21
ttc

+n
um

=1
-2

-2
-0

+t
im

e=
d-

a-
a-

a+
20

8
20

2
10

0
99

.9
1

ttc
+n

um
=1

-2
-2

-1
+t

im
e=

a-
a-

a-
a+

20
9

20
10

1
90

67
.1

2
ttc

+n
um

=1
-2

-2
-1

+t
im

e=
b-

a-
a-

a+
21

0
20

10
10

10
00

.7
2

ttc
+n

um
=1

-2
-2

-1
+t

im
e=

c-
a-

a-
a+

21
1

20
10

20
50

2.
21

ttc
+n

um
=1

-2
-2

-1
+t

im
e=

d-
a-

a-
a+

21
2

20
10

10
0

99
.9

1
ttc

+n
um

=1
-2

-2
-2

+t
im

e=
a-

a-
a-

a+
21

3
20

20
1

90
67

.1
2

ttc
+n

um
=1

-2
-2

-2
+t

im
e=

b-
a-

a-
a+

21
4

20
20

10
10

00
.7

2
ttc

+n
um

=1
-2

-2
-2

+t
im

e=
c-

a-
a-

a+
21

5
20

20
20

50
2.

21
ttc

+n
um

=1
-2

-2
-2

+t
im

e=
d-

a-
a-

a+
21

6
20

20
10

0
99

.9
1

Ta
bl

e
1:

R
es

ul
ts

ta
bl

e

20

7.1 The Dark Side of Simulation : Failures and partial behaviour

Up till now, you may have been prepared to believe that the example we chose to simulate was entirely
well-behaved dynamically and that the experiment runs always terminated. If so, then you are sadly
mistaken. Some of the experiments failed during their runs.

Such failures during runs are typically not about programming errors - these are typically uncovered
prior to running DXM anyway. Some of the failures may arise because the simulated dynamics in the
model forces the Demos2k tool to exceed its internal limits - typically the process spawning limit and
the livelock limit - and we discuss these limits in greater detail in Appendix A.6. It turns out that we can
increase these limits within DXM simulations by use of structured pragma comments embedded within
the Demos2k model - see Appendix A.6.

However, the remaining failures could represent unavoidable extreme dynamics (i.e. singularities) -
these are in fact of extreme interest and capturing any data about them is highly desirable. Another, per-
haps less exotic explanation is that the model entered an inappropriate region of operation without check
- which implies that the model had been misapplied or was somehow unrealistic and misleading. In such
a case, the failures would represent the breakdown of applicability of the model itself i.e. “crossing the
line” or “going over the edge”.

Clearly all of these cases may arise in practice - to know which of these is relevant to any given sit-
uation requires considerable skill, a certain amount of modelling/analytical experience - and a lot of
evidence/data!

In our case, there were 27 failed experiments - and all of them were caused by the customer request

bin growing too large. It is certainly possible to rerun all these particular experiments again with an
increased set of limits - but it may also be prudent to look more closely at what the simulation is doing
and perhaps trace more of the behaviour to help the analyst formulate hypotheses about what is causing
these failures. In any event, the DXM tools can help analyst/modellers to investigate even these partial-
behaviour phenomena.

7.2 Running the experiments for our example

As noted earlier in § 5.4, there are 324 experiments in total, each with 100 runs, making a total of 32400
runs. We exploited the -multiple option to fully utilise the dual-core workstation we had available
(HP xw8400 Workstation Intel Xeon CPU 5160 (dual core), clocked at 1.97 GHz, with 3.5GB RAM).
The experiments were split into two equal halves and then worked on independently.

The first half was a lighter computational load than the second half. The first half took 13hrs 11mins
to complete its set of 162 experiments, whereas the second half took much longer with 23hrs 24mins
– around twice the effort. The reason for the difference seems to be that the second half involved
experiments setup to use significantly more concurrent processes than the first half.

The total storage used by the experiments was 2.18GB (2,350,980,034 bytes).

8 Further developments and extensions

The DXM software has arisen out of a practical need to design, manage and implement large scale
experiments using the Demos2k process modelling tool. It has so far been highly successful in enabling
analyst/modellers within HP to conduct investigations that would otherwise have been out of the question
on grounds of infeasibility..

Software is never completely finished - especially an application of this complexity. However, there are
some natural further developments that extend the range of what can be achieved with DXM:

• GUI front-end to make the business of taking a Demos2k model, building an experiments plan
and then executing it smoother and less involved. Such a GUI should also help with the clerical

21

management of results sets and their drilldown.

• Better integration with DXV to give improved visualisation of results and linkage back to the
Demos2k model.

• Connection to external ‘best of breed’ data analysis tools, including commercial products such as:
MathWorks and Mathematica.

• Provide a fully-fledged interface between DXM and SQL databases – this already exists in a
simple, rudimentary form but would need to be extended for it to be of much benefit to DXM
users.

8.1 Status of the DXM application code

The DXM and DXV applications are currently robust (but experimental) prototypes that are currently
able to be installed on Windows platforms, internally within HP and our research partners. The tools are
entirely implemented using a number of non-proprietary open-source software technologies that users
would have to independently acquire/download and then install for themselves (e.g. Python 2.5.1, Perl,
Demos2k and Gnuplot).

An external offering of this software would involve getting the tools into a more usable and lower main-
tenance state. Further developments such as providing GUI support for DXM and DXV, and ensuring
that the tool can widely interoperate with external data analysis toolkits (e.g. MathWorks, Mathematica,
etc.) would need to be stongly considered before that state is reached.

However, we are considering applying to release the software in some format, and so it could potentially
be made available as open-source in the future.

9 Acknowledgements

Mike Yearworth pointed me towards the need for an application like DXM when conducting any kind
of extensive ’Monte-Carlo style’ investigation using Demos2k. Jonathan Griffin was especially helpful
and encouraged further development of the application to make it more useful for larger scale applied
modelling. Marco Casassa Mont and Siva Raj Rajagopalan both made helpful remarks and took the
trouble to use the system and to report bugs. The overall systems approach illustrated here owes much
to the HP Open Analytics project espoused by Richard Taylor, Chris Tofts and Mike Yearworth. Thanks
are also due to Chris Tofts & Graham Birtwistle who developed the Demos2k language and its toolkit in
the first place.

22

A Demos2k eXperiments Manager – the DXM tool

A.1 Objectives for DXM

• Takes input from an experiments plan document and from that computes a collection of directories
containing instantiated Demos2k scripts etc., one for each experiment variation.

• Performs a sequence of Demos2k runs for each of these experiment variations and calculates
elementary statistics for that set.

• Support interoperability by providing SQL import of experiment results.

• Provide support for multiple experiment runs operating independently and concurrently (e.g. data
center operations).

An outline diagram illustrating what DXM needs as input and produces as outputs is presented in Fig-
ure 20.

Figure 20: Block diagram describing input and outputs for DXM

23

A.2 Installation (Windows-only)

The following need to have been installed:

• Systems:
Perl Use Perl 5 to run the installer.
Python See http://www.python.org/download/ for latest installation.
Standard ML As per standard ‘SeymourSys‘ installation.

• Other Demos2k-related tools:
demosCmd Stand-alone Demos2k engine (v1.06 or greater)

Install instructions:

• To install DXM:

1. . Unpack the ZIP file

2. . CD into the unzipped directory.

3. . Type: perl install.pl

– This installs DXM by creating a ’dxm’ directory in your Seymour installation directory
and copying content to it.

4. Finally, you will need to copy the dxm.bat into your shell directory on your PATH.
(As a convenience, dxm.bat will be copied into your Seymour bin directory, which might
be on your PATH.)

• To uninstall DXM:

1. CD into the unzipped directory.

2. Type: perl uninstall.pl

A.3 Experimental Plan

The purpose of the experiments plan is to define a finite set of experiment variations based upon ranges
of specific Demos2k parameters. The plan also needs to specify other details such as whereabouts the
data is stored, the naming convention for the subdirectories and the basic Demos2k script that is used as
the basis for each experiment variation.

The experiments plan is thus a text document (typical extension .dxm) that specifies:

1. The root Demos2k script providing the basis for each experiment variation.

2. The root directory/folder containing all of the experiment variations.

3. Specific list of Demos2k parameters and the ranges of values they take within each experiment
variation. These variations are formed by taking a specific choice of each of the specified Demos2k
parameters.

4. The naming convention for each experiment variation. Each experiment variation will contain
an instantiated Demos2k script used to generate trace data when executed. It also contains the
generated traces and the derived spreadsheets. Thus, each of these directories must have a unique
name - and the naming convention determines precisely what this naming is. The idea is that the
naming should be structured so as help to find specific variations etc., rather than simply be a pure
number.

Here is an example of an experiments plan:

24

file = patching-v16-310807.d2000
rootdir = expt-2ndSept2007

runs = 45

param patchAssessmentStaff : from 2 to 5 step 1
param vulnRate : 1/100; 5/100; 15/100; 35/100
param volitility : uniform(0.00, 0.01); uniform(0.01, 0.02); uniform(0.02, 0.03)

naming = x-%A-%N-%A

This plan specifies that:

• The Demos2k model file is named ’patching-v16-310807.d2000’

• The root directory is named ’expt-2ndSept2007’

• There will be 45 runs performed/attempted - for each experiment variation.

• There are three Demos2k parameters whose values are varied - note that we can include (literal)
Demos2k expressions here:

– The parameter ’patchAssessmentStaff’ takes the 4 values: 2, 3, 4, 5

– The parameter ’vulnRate’ takes the 4 values: 1/100, 5/100, 15/100, 35/100

– The parameter ’volitility’ takes the 3 expressions:
’uniform(0.00, 0.01)’, ’uniform(0.01, 0.02)’, ’uniform(0.02, 0.03)’

• The directories are named according to the scheme: x-%A-%N-%A

– An example directory name would then be ’x-B-1-A’ which would correspond to having:
param patchAssessmentStaff = 3;
param vulnRate = 1/100;
param volitility = uniform(0.00, 0.01);

Note that we cannot really use the actual values of these parameters to name the directory
since they could be specified by lexically complex expressions like ’1/500’ or ’negexp(25)’.
This directory naming notation is explained further below.

The above example specifies a set of experiment variations, one for each choice of value for the param-
eters patchAssessmentStaff, vulnRate, and volitility.

Therefore, there are 48 = (4× 4× 3) particular variations.

A.3.1 Constrained parameters

It is sometimes useful and indeed necessary to constrain the parameters of an experiment so that they
avoid unnecessary, redundent or otherwise unwanted experiment variations.

We may do this by specifying some constraints on the parameters and then using these when generating
the experiments framework to give the acceptable combinations.

Each constraint is essentially an arithmetical inequality involving the parameters e.g.

(a + b) > (c + d) ∗ e

There may be several such constraints given - and all must be satisfied for an acceptable set of parameter
values to result.

If no constraints were specified then this is interpreted as no constraint at all.

Example: Suppose the DXM plan contained:

25

...
param p1 : from 0 to 1.0 step 0.2
param p2 : from 0 to 1.0 step 0.2
param p3 : from 0 to 1.0 step 0.2

constraint: p1 + p2 + p3 = 1

The above constraint example results in solutions for (p1, p2, p3) such as:

...
(1, 0, 0)
(0.4, 0.2, 0.4)
(0.2, 0.2, 0.6)
(0.8, 0, 0.2)
...

and so on.

Note: To include solutions like:

(0.33, 0.33, 0.33)

or

(0.5, 0, 0.5)

we could increase the granularity of the scan over the parameter space:

param p1 : from 0 to 1 step 0.01
param p2 : from 0 to 1 step 0.01
param p3 : from 0 to 1 step 0.01

and perhaps relax the constraints slightly to allow for approximation:

constraint: p1 + p2 + p3 =< 1
constraint: p1 + p2 + p3 >= (1 - 0.01)

As can be seen, a constraint condition is essentially an arithmetic inequality. Multiple constraint condi-
tions are permitted and are implicitly conjoined together (i.e. intersection).

26

A.4 Syntax for experiments plans

More formally, here is a BNF grammar for the syntax of an experiment plan document.

As usual, * means 0 or more repetition, + means 1 or more repetition, means optional and standard
brackets are used for grouping. Literals are enclosed in single quotes.

plan ::= defn+

defn ::= fileSpec | rootdirSpec | runsSpec | paramSpec |
seedSpec | namingSpec | constraintSpec

fileSpec ::= ’file’ ’=’ str

rootdirSpec ::= ’rootdir’ ’=’ str

runsSpec ::= ’runs’ ’=’ num

paramSpec ::= ’param’ id ’:’ enumSpec

enumSpec ::= valSpec (’;’ valSpec)* ’;’

valSpec ::= demosExpr | rangeSpec

rangeSpec ::= ’from’ num ’to’ num stepSpec

stepSpec ::= ’step’ num | ’by’ num

seedSpec ::= seedFileSpec | seedGenSpec

seedFileSpec ::= ’seedfile’ ’=’ str

seedGenSpec ::= ’seedgen’ seedGenOpts

seedGenOpts ::= ’:’ seedOptSpec (’;’ seedOptSpec)* ’;’

seedOptSpec ::= ’init’ num | ’step’ num | ’size’ num

namingSpec ::= ’naming’ ’=’ (char+ formatSpec)+ char*

formatSpec ::= ’%%’ | ’%a’ | ’%A’ | ’%n’ | ’%N’ | ’%z’ | ’%Z’

constraintSpec ::= ’constraint’ ’:’ constraintExpr

Lexicals:
char == visible character that can be used for a directory names
str == strings
id == Demos2k identifiers
num == numeric values
demosExpr == simple Demos2k expressions (typically, with no variables)
constraintExpr == simple (one-line) arithmetical inequality involving parameter id’s.

A.5 Naming and Format specifiers

This section describes how unique directory names are constructed for each experiment, based upon
namingSpec’s.

The idea is that the namingSpec’s are used to construct a unique name from the values of the experi-
ments parameters in the experiment. The section following contains an illustration.

Each parameter spec. defines a finite range of values, placed in an ordered sequence. These values
can be ’indexed’ to give a particular ranking. We illustrate this for three parameters P, Q, R as follows.
Suppose the parameters P, Q, and R have the following ranges:

27

P : x1;x2; ...;xD

Q : y1; y2; ...; yE

R : z1; z2; ...; zF

Thus, there are (D×E×F) experiments = N . Accordingly, each experiment variation could be uniquely
numbered from 1 .. N .

The first experiment has values for (P, Q, R) = (x1, y1, z1), whereas the final experiment has values for
(P, Q, R) = (xD, yE , zF).

The experiments are enumerated in standard lexicographic order - i.e. last range fastest.

Suppose the naming specifier was the string ’x-%A-%N-%A’. Then we would have the following asso-
ciation of tuples with directory names:

Tuple (P, Q, R) Directory name
(x1, y1, z1) x-A-1-A
(x1, y1, z2) x-A-1-B
... ...
(x1, y2, z3) x-A-2-C
... ...
(x2, y3, z4) x-B-3-D
... ...

In more detail, the format specifiers (i.e. formatSpec above) mean the following:

%% A literal % character
%a Use lower-case alphabetic enumeration: i.e. a, b, ..., z, aa, ab, ...
%A Use upper-case alphabetic enumeration: i.e. A, B, ..., Z, AA, AB, ...
%n Use numerical enumeration, starting from 0: i.e. 0, 1, 2, 3, ...
%N Use numerical enumeration, starting from 1: i.e. 1, 2, 3, 4, ...
%z Use absolute numbering (i.e. number each experiment variation

uniquely, starting from 0). This is formatted fixed width, padded by ze-
roes.

%Z Use absolute numbering (i.e. number each experiment variation
uniquely, starting from 1). This is formatted fixed width, padded by ze-
roes.

Notes:

1. The requirement is that each namingSpec must provide a means to uniquely name each directory.

2. The namingSpec’s clearly depend upon the ordering that the parameters are specified in the plan.
In general, each formatSpec contributes a nominal signifier into the overall directory name, based
upon the corresponding parameters’s value.

3. The absolute numbering specifiers %z and %Z can be used on their own, since they uniquely
specify each experiment variation.

A.5.1 Illustration

We now illustrate these format specifiers based upon our earlier example. Assume that the experiments
parameters are bound as follows:

param patchAssessmentStaff = 3;
param vulnRate = 1/100;
param volitility = uniform(0.00, 0.01);

28

Here are various examples of naming specs and the corresponding directory name:

Naming spec Directory name
x-%A-%N-%A x-B-1-A
x-%a-%n-%A x-b-0-A
x-%z-%a-%n-%a x-04-b-0-a
x-%a-%n-%a-%Z x-b-0-a-05
x-%Z x-05
x-%a-%Z-%a x-a-05-a

A.6 DXM Pragmas for Demos2k

DXM supports Pragma Comments (i.e. structured comments) for Demos2k as described below. This
provides a handy way to explicitly record important experiment settings information within Demos2k
source files.

Each pragma comment takes the form:

//* <name> = <positive-number>

where <name> is one of INIT-RUN-SEED, LIVELOCK-STEPS or SPAWN-LIMIT. The equals sign can
also be “:” and spaces/tabs are arbitrary. The names specify these settings:

INIT-RUN-SEED RNG seed for the first simulation run only.
LIVELOCK-STEPS Number of steps for livelock detection.
SPAWN-LIMIT Max. number of processes/bins.

IMPORTANT NOTE: pragma comments are only available in DXM – the GUI already has the means
to change most of these limits directly (see menu File → Settings). In particular, the GUI will ignore all
pragma comments.

29

A.7 Supporting multiple subordinate experiment runs using DXM

Large experiments, typically involving several ranges, will need the experiments space to be shared
out for processing amongst a set of machines. These are ’subordinate’ experiment sets which can be
performed independently.

DXM provides support for subordinate experiments in two ways:

1. Splitting a given experiment setup into a set of subordinate folders, each containing a specific
collection of experiments, disjoint from the others.

DXM can then be operated in each of these subordinate folders independently.

2. Assembling results from the subordinate folders into a consistent set of outcomes for the entire set
of experiments performed.

A.7.1 Organisation of the multiple experiment sets

How are the multiple experiment sets organised? The directory structure involved turns out to be a little
intricate and it is probably worth explaining here what the various issues are.

Lets consider the standard situation of a single experiment set - this is diagrammed in Figure 21.

The user directory is the place at which DXM is invoked to do the initial creation of the experiments
root directory and its subsidiary experiment directories.

Now, invoking the DXM -multiple option creates a more complex structure that starts from a‘master’
root directory in which the appropriate experiment subsets are in turn created. This more complex
situation is diagrammed in Figure 22.

As we can see, the master root directory contains a number of subsidiary user directories, one for each
subset. These in turn contain experiment directories as in the single experiment case. The reason that
these subsidiary user directories are needed is that, once split up, DXM still needs somewhere to launch
experiment runs independently for each particular subset.

30

Figure 21: Diagram of the directory structure for a single experiment set

Figure 22: Diagram of the directory structure for multiple experiment subsets

31

A.8 Usage information for the DXM application

dxm - Demos eXperiments Manager Version: v1.2b, Date: 13th October 2008

Usage: dxm <actions> <planfile> -- Read planfile and perform actions
dxm <planfile> -- Read planfile and report spec. to user
dxm -h -- This usage message

where:

<planfile> : Experiment plan file (typical file extension: .dxm)

Once the experiment directory has been created, the current plan
file is saved and can be omitted subsequently.

<actions> : Actions to be performed (can be abbreviated):

-assemble -- Assemble subordinate results into a single set of results for
the entire set of experiments. It is not necessary for all
subordinate experiments to have completed - a partial snapshot
of results will be calculated.

-create -- Create experiment structure (error if it already exists). This
must be performed successfully prior to running any experiments.

-keep-traces -- Keep all trace files - do not delete them after the stats have
been computed.

-list -- List the current experiment log (i.e. expt.log) to view how far
the experiment runs have got so far.

-multiple <num> -- Split all the experiments amongst <num> subordinate folders.

-run -- Spawn a process to run any uncompleted experiments remaining -
partially completed runs will be recalculated from the start.

Note: the number of simulations in each experiment (i.e. the
number of runs) is specified in the plan using the ’runs’ spec.

-process -- Recalculate statistics.

-stop -- Stop/halt current experiment runs. These can be restarted by
running again (any incomplete runs are deleted and begun afresh).

-wipe -- Erase ALL experiments performed so far - essentially a global
reset of the current configuration. CAUTION - THIS IS IRREVERSIBLE.

-help -- This message.

32

B Demos2k eXperiments Viewer – the DXV tool

The Demos2k eXperiments Viewer tool provides an elegant and effective way of generating large num-
bers of particular charts, once we have obtained the experiment results. The charts produced by DXV are
specified by the analyst/modeller using a ‘view plan’ that is similar in form and concept to the ‘experi-
ment plan’ we used with DXM. Altough the syntax of DXV view plans is defined below in Appendix B.1,
explaining what this means in detail is left for another occasion. An outline diagram describing what
information DXV uses and produces is given in Figure 23.

Figure 23: Block diagram describing input dependencies and outputs for DXV

33

B.1 Syntax for DXV view plan files

Here is a BNF grammar for the syntax of view plan documents.

As usual, * means 0 or more repetition, + means 1 or more repetition, means optional and standard
brackets are used for grouping. Literals are enclosed in single quotes.

viewPlan ::= paramsDefn+ chartSpec+

Parameters:

paramsDefn ::= planSpec | fontSpec | funSpec | sizeSpec
| plotSpec | sampleSpec | lineSpec

planSpec ::= ’plan’ eq pathString

funSpec ::= ’fun’ funName ’(’ paramList ’)’ ’=’ arithExpr

paramList ::= id ’,’ id*

sizeSpec ::= ’size’ eq ’(’ width ’,’ height ’)’

pathString ::= string

funName ::= id

width ::= num

height ::= num

Charts:

chartSpec ::= ’chart’ chartName chartDefn+

chartDefn ::= titleSpec | xAxisSpec | yAxisSpec
| plotSpec | fontSpec | funSpec
| groupSpec | dataSpec | sizeSpec
| sampleSpec | lineSpec | histogramSpec

titleSpec ::= ’title’ titleType eq str

titleType ::= ’.x-axis’ | ’.y-axis’ | ’.chart’

xAxisSpec ::= ’x’ ’=’ colSpec

colSpec ::= demosTime | colName

demosTime ::= ’demos_time’ | ’demostime’ | ’demos-time’

groupSpec ::= ’grouped’ ’by’ groupItem

groupItem ::= ’sum’ | ’average’ | ’maximum’ | ’minimum’ | ’envelope’

yAxisSpec ::= yExprSpec | yFunctionSpec

yExprSpec ::= ’y’ ’=’ curveExpr ’with’ curveSpec

yFunctionSpec ::= ’y’ ’(’ ’x’ ’)’ ’=’ curveExpr ’with’ curveSpec

curveSpec ::= curveSpecItem ’,’ curveSpecItem

curveSpecItem ::= curveName | curveLine

curveName ::= ’name’ eq curveLabel

34

curveLine ::= ’line’ eq lineName

curveLabel ::= string

chartName ::= id

colName ::= id

Data sources:

dataSpec ::= ’data’ ’source’ eq dataSource

dataSource ::= ’summary’ | statsChart | runChart

statsChart ::= exptSource ’/’ ’stats’

runChart ::= exptSource ’/’ ’run’ runSpec

exptSource ::= ’all’ | exptDir

exptDir ::= ’expt’ id

runSpec ::= ’all’ | runGroup | runRange | runInt

runGroup ::= ’group’ groupDesc

groupDesc ::= ’all’ | runRange

runRange ::= runInt ’-’ runInt

runInt ::= int

Plot styles:

plotSpec ::= ’plot’ ’style’ eq styleType

styleType ::= ’steps’ | ’lines’ | ’points’ | ’lines+points’ | ’points+lines’

Lines:

lineSpec ::= lineDefn | lineUpdate

lineDefn ::= ’line’ lineName eq lineItemSeq

lineUpdate ::= ’line’ lineName ’is’ lineName ’with’ lineItemSeq

lineItemSeq ::= lineItem ’,’ lineItem*

lineItem ::= widthSpec | colourSpec | pointSpec | pointSizeSpec | plotSpec

widthSpec ::= ’width’ eq num

colourSpec ::= colourToken eq colourDesc

colourToken ::= ’colour’ | ’color’

colourDesc ::= rgb | colourNaming

rgb ::= ’rgb’ hex2 hex2 hex2
| ’rgb’ posNum posNum posNum

colourNaming ::= shading rootColour

shading ::= ’light’ | ’dark’ | ’basic’

rootColour ::= ’red’ | ’blue’ | ’green’ | ’grey’

35

| ’gray’ | ’yellow’ | ’orange’ | ’purple’

pointSizeSpec ::= ’pointsize’ eq num

pointSpec ::= ’point’ eq pointName

pointName ::= filling rootPoint

filling ::= ’solid’ | ’empty’ | ’filled’ | ’unfilled’

rootPoint ::= ’plus’ | ’cross’ | ’star’ | ’box’
| ’triangle’ | ’diamond’ | ’circle’ | ’square’

lineName ::= id

Samples:

sampleSpec ::= ’sample’ ’size’ eq sampleType

sampleType ::= sampleSize | sampleFraction | sampleRange

sampleSize ::= ’final’ int points

points ::= ’pts’ | ’points’ | ’samples’

sampleFraction ::= ’final’ num percent

percent ::= ’%’ | ’percent’

sampleRange ::= ’(’ data ’<=’ data ’)’

data ::= ’_’ | num | exptDir

Fonts:

fontSpec ::= ’font’ fontQualifier eq fontDefn

fontQualifier ::= ’.axes’ | ’.title’ | ’.key’ | ’.all’

fontDefn ::= ’(’ fontFamily fontModifier ’)’

fontFamily ::= ’plain’ | ’fixed’ | ’sans-serif’

fontModifier ::= ’,’ fontStyle ’,’ fontSize

fontStyle ::= ’bold’ | ’italic’ | ’bold-italic’ | ’italic-bold’ | ’normal’

fontSize ::= int

Histogram spec:

histogramSpec ::= ’histogram’ histoParam ’,’ histoParam

histoParam ::= histoBin | histoRange

histoBin ::= ’bins’ eq int

histoRange ::= sampleRange | autoRange

autoRange ::= ’auto’ ’range’

Miscellaneous:

eq ::= ’=’ | ’:’

36

Lexical Classes:

arithExpr == numerical expressions involving formal parameter names and other functions.
curveExpr == numerical expressions involving column names, "x" and other functions.

string == quoted strings (using balanced pair of either ¨ or)́
id == identifiers

num == general numerical literals
int == integer literals
posNum == simple positive/unsigned numeric literals
hex2 == a pair of hex digits [0-9a-f]

Tokens are generally not sensitive to case - although of course user-specified
strings remain case sensitive.

B.2 Output directories and names of charts

• The output graphs etc. are placed inside a separate subdirectory of the DXM root Directory called
graphs. Each experiment directory is replicated inside the graphs directory and contains the
resulting graphs etc.

• This helps provide an explicit and clear scheme for naming graphical output and allowing for
intermediate results needed for plotting.

B.3 Naming scheme for charts and related files

Note that each chart will be computed from a data file specified via the data sources. Individual charts
are named according to the data source they are derived from ...

Only PNG format graphics is supported - hence the .png file extension for all charts produced.

Let cName be the (unique) name of the chart. For each kind of data source, we produce chart output
named as follows:

CSV filename pattern: Graph output filename
summaryStats.csv graphs/summaryStats cName.png
exptDirName/stats.csv graphs/exptDirName/stats cName.png
exptDirName/exp num.csv graphs/exptDirName/exp num cName.png
Grouped charts graphs/exptDirName/group cName.png

These have data source statements like:
expDirName/run group 13-57

(Note: this relies on the fact that a chart cName is either grouped or
not, and that there is at most one grouped chart for that particular
chart name.)

There are two other types of file needed to produce the graph/chart output:

Gnuplot script files
There is one of these for each chart and this is saved with the same name as the corresponding
chart – with file extension .gp (e.g. graphs/summaryStats cName.gp).

Intermediate data files
These contain derived data tables which are needed to, for example, compute various outputs
for display.

37

For simple data hygene reasons, we choose not to rely upon Gnuplots internal functions or its data
analysis features, but instead we make use of Python code for tabulation. These files are saved
with the name given as follows: Suppose the chart is named as:

graphs/exptDirName/exp num cName.png

then any needed intermediate data file(s) are named:
graphs/exptDirName/exp num cName dataN.csv

where N is a number. These files will be referred to by the Gnuplot script to build the graphics
file.

B.4 Usage information for the DXV tool

dxv - Demos eXperiments Viewer Version: v1.2b, Date: 13th October 2008

Usage: dxv <viewplan> -- Read the viewplan plan and generate diagrams/charts
for experiments.

dxv -h -- This message.

where:

<viewplan> : This specifies the experiments plan and the charts/graphs to be drawn,
using data contained in an DXM experiments tree. The viewPlan itself
specifies a corresponding DXM experiments plan.

38

C The DXMF tool

dxmf - DXM statistics filter Version: v1.2b, Date: 13th October 2008

Usage: dxmf <options> <plan-file> -- filter DXM summary stats.
dxmf <options>
dxmf

where <options> have the form (may be abbreviated):

-help -- This help message.

-output <output-file> -- Specifies the CSV file where the filtered output is saved.
(default: filterStats.csv)

-vars <vars-file> -- Specifies the file containing which variables to
include in the output. The file lists the variable names
separated by white-space.
(default: variables.txt)

and <plan-file> is the DXM experiments plan file - this specifies the root
directory for the experiments. If this is omitted, then the current DXM plan
is specified by the __CUR_PLAN__ file, if that exists.

Note: like all DXM scripts, this script must be applied in the *parent* of the
experiments directory i.e. where the DXM file is typically located.

39

D Seed files and experiments – the DXMS tool

In general, the simulations are dependent upon settings of their internal parameters etc. and the state of
a (deterministic) pseudo random number generator. This generator needs an initial seed value for it to
produce values. By default, all Demos2k simulation runs start from a fixed seed value (120). Successive
runs then simply start from where the previous run leaves off (this is also described in section § 5.1).

This is fine - except we may want to use a seed sequence that is generated independently of the current
simulation. For example, we may want to comparing variations of the same basic simulation against
each other, on a run-by-run basis (i.e. horizontally), rather than simply looking at the stats looking at the
end of a series of runs.

To do this, we can specify in DXM the use of an externally generated seed file to be used to start each
run. DXM provides ways of specifying the seed file to be used - or to generate a new seed file based
upon a couple of simple parameters. Additionally, the DXMS seed file generation utility may be used to
generate stand-alone seed files.

dxms - DXM seed file generator Version: v1.2b, Date: 13th October 2008

Usage: DXMS <options>
DXMS

where <options> have the form (can be abbreviated):

-help : This help message

-file <file> : Filename to save seed entries
(default : seed.txt)

-init <num> : Initial seed value for generator and will be the first value output
(default : 1066)

-step <num> : Number of iterates made of randGen() between output entries
(default : 5)

-size <num> : Number of entries in file
(default : 200)

The seed files generated contains positive integers in the range (1,
2147483646), one per line. These are suitable for use as seed files in DXM
(see documentation for the DXM file).

RandGen:

The psuedo-random number generator used is called randGen and is defined in
the file RandGen.py in the DXM installation. The intention is that users can
replace this generator function by another if they wish.

40

E Demos2k

In this section we discuss some basic aspects of Demos2k – the expected ‘shape’ of models, as well as
details of how to get hold of the tools and documentation.

E.1 The Shape of Demos2k models

The general shape of a typical Demos2k model goes as follows:

1. Constant definitions:

• Demos2k constants are special in that they may be defined in terms of probability distribu-
tions — each time such ’constants’ are evaluated during simulation, a fresh sample is taken
from the specified distribution. The probability distributions supported include standard dis-
tributions such as Uniform, Binomial, Geometric, Negative Exponential, Normal, Poisson,
and Weibull, as well as arbitrary point/discrete distributions;

2. Global variable definitions;

3. Resource definitions:

• In Demos2k, resources represent pure synchronisations (in the process-calculus sense) and
can be claimed and released by means of getR and putR expressions;

4. Bin definitions:

• In Demos2k, bins represent synchronisable entities (note that the term ‘resource’ is used in
the rest of the paper to encompass both the DEMOS notion of ‘resource’ and the DEMOS
notion of ‘bin’, as described here) into which some quantity of material may be placed and
retrieved. These may be used to provide the effect of one entity making a synchronous,
concurrent process call on another;

5. Class definitions:

• In Demos2k, each entity is a concurrently executing instance of some class. Classes thus rep-
resent the behaviour of entities in conventional procedural terms, by manipulating resources
in some fashion and by ‘holding’ (letting time pass) for defined periods of time;

6. Initial model population, and entity creation;

7. Run length control, typically a hold of some fixed duration;

8. The all-important close statement ends the simulation run.

In this form, we may regard Demos2k descriptions as defining system behaviour in terms of a Dijkstra-
like guarded command language. All active commands test the current system state. If the condition
they represent can be met then they are executed — otherwise they are blocked until such time as the
condition holds, if at all. Note that Demos2k simulations will typically run for a specified length of
time. If either deadlock or livelock arise during simulation runs then these situations are checked for
pragmatically. The major difference between process modelling languages (like Demos2k) and pure
guarded command languages is that the conditions have side effects, due to the assignment of resource
to the active entity. Hence change of state is mediated not only by assignment to variables, but also by
the competing claims of resource.

The standard Demos2k package does contain a form of experiments management tool - our contribu-
tion with DXM is to provide a more extensive capability in a scriptable, externalised form that can be
conducted offline (i.e. batch) and to produce summaries in spreadsheet format.

41

E.2 Getting Demos2k

Demos2k is currently accessible for download as Open Source in two ways:

• From the website: http://www.demos.org. Although this currently contains much of the ref-
erence material (i.e. operational semantics, guide, etc.), the download is a little out-of-date.

• A more up-to-date download is available from SourceForge under the Seymour4 project: See
http://sourceforge.net/projects/seymoursys/

The download package contains all the relevant documentation for Demos2k.

4Beware: there have been several projects called Seymour in SourceForge - so be sure to get the right one!

42

F Complete example

This appendix contains the complete Demos2k example used earlier in § 2.

(* threeTier+Customers.d2000

Brian Monahan, Systems Security Laboratory

(C) Hewlett-Packard 2008

A classic, three-tier service chain - with customer demand

There are four kinds of producer/consumer process - source, reseller, retail and
customer, connected as follows:

source -> reseller -> retail <- customer

The idea is that:
- the source process represents supply of basic widgets
- the reseller process adds value to the basic widget, making ready for
sale by retail.

- the retail process sells finished widgets to customers.
- the customer process represents customer demand.

The retail process can only make sales when they have both a
customer and a widget from the reseller process.

The parameters of this system are:

- Numbers of process instances of each kind.
- The average time that each kind of process takes to perform its
activities, whatever they may be.

Outputs are:

- Total numbers of outputs from source and reseller processes.
- Total number of inputs to reseller and retail processes.
- Total number of customer retail requests

- Total amount of time spent between source outputs.
- Total amount of time spent by resellers between input from sources
and output to retail.

- Total amount of time spent by retail between inputs.

- Total amount of sales made by retail

- Total number of customers.

*)

//**************************************
//* Demos2k systems settings (DXM):
//*
//* LIVELOCK-STEPS = 100000
//* SPAWN-LIMIT = 10000
//*
//**************************************

cons runTime = 1000;

cons numOfCustomers = 1;
cons numOfSourceProc = 1;
cons numOfResellerProc = 1;
cons numOfRetailProc = 1;

cons customerAvgRequestInterval = 4;
cons sourceResetAvg = 0;

43

cons sourceAvgSupplyTime = 4;
cons resellerAvgProcessTime = 4;

cons requestInterval = negexp (customerAvgRequestInterval);
cons sourceResetTime = normal (sourceResetAvg, sourceResetAvg/5);
cons supplyTime = normal (sourceAvgSupplyTime, sourceAvgSupplyTime/10);
cons processTime = normal (resellerAvgProcessTime, resellerAvgProcessTime/12);

// Queues and bins
bin(customer_request, 0);
bin(source_to_reseller, 0);
bin(reseller_to_retail, 0);

// Activity of reseller
var totalCustomerRequests = 0;
var totalResellerActivity = 0;

// Queue lengths
var customerRequest_QLength = 0;
var sourceResell_QLength = 0;
var resellRetail_QLength = 0;

// Numbers of outputs
var sourceOutputs = 0;
var resellerInputs = 0;
var resellerOutputs = 0;

// Sales
var totalSales = 0;

// DXM bureaucracy
var demos_sample_tick = 0;

// Classes
class source = {

repeat {
hold(sourceResetTime);
hold(supplyTime);

sourceOutputs := sourceOutputs + 1;
trace("sourceOutputs=%v", sourceOutputs);

putB(source_to_reseller, 1);
sourceResell_QLength := sourceResell_QLength+1;
trace("sourceResell_QLength=%v", sourceResell_QLength);

}
}

class reseller = {
repeat {

hold(Qpause);
getB(source_to_reseller, 1);
sourceResell_QLength := sourceResell_QLength-1;
trace("sourceResell_QLength=%v", sourceResell_QLength);

resellerInputs := resellerInputs + 1;
trace("resellerInputs=%v", resellerInputs);

hold(processTime);

totalResellerActivity := totalResellerActivity + 1;
trace("totalResellerActivity=%v", totalResellerActivity);

putB(reseller_to_retail, 1);
resellRetail_QLength := resellRetail_QLength+1;
trace("resellRetail_QLength=%v", resellRetail_QLength);

resellerOutputs := resellerOutputs+1;
trace("resellerOutputs=%v", resellerOutputs);

44

}
}

class retail = {
repeat {

try [getB(customer_request, 1), getB(reseller_to_retail, 1)] then {
customerRequest_QLength := customerRequest_QLength-1;
resellRetail_QLength := resellRetail_QLength-1;

trace("customerRequest_QLength=%v", customerRequest_QLength);
trace("resellRetail_QLength=%v", resellRetail_QLength);

totalSales := totalSales + 1;
trace("totalSales=%v", totalSales);

}
}

}

class customer = {
repeat {

hold(requestInterval);

putB(customer_request, 1);
customerRequest_QLength := customerRequest_QLength + 1;
trace("customerRequest_QLength=%v", customerRequest_QLength);

totalCustomerRequests := totalCustomerRequests + 1;
trace("totalCustomerRequests=%v", totalCustomerRequests);

}
}

// Measurement
class measure = {

entity(M,measure,1);

demos_sample_tick := demos_sample_tick + 1;
}

// Launch process entities
do numOfSourceProc { entity(source, source, 0); }
do numOfResellerProc { entity(reseller, reseller, 0); }
do numOfRetailProc { entity(retail, retail, 0); }
do numOfCustomers { entity(customer, customer, 0); }

// Launch measure class
entity(measure, measure, 0);

hold(runTime);

close;

45

