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Deblurring refers to restoring digital photographs or 
videos that have been degraded by optical blurring such 
as motion blur. Motion blur typically occurs due to the 
long exposure time relative to the amount of motion of the 
object or the camera. A simple reduction in the exposure 
time does not produce desirable images since it results in 
high noise (i.e., low signal-to-noise ratio). Short exposure 
images on the other hand have the advantage of much less 
blur while the long exposure images have the advantage 
of much less image noise. In this paper, we describe an 
approach to deblur the long exposure image with 
additional information from the short exposure image. 
Our method i) captures two images of the same scene with 
different exposures, ii) estimates the blur kernel of the 
long exposure image from the images and iii) uses the 
estimated kernel to deblur the long exposure image while 
regularizing on the short exposure image. The goal is to 
combine the merits of the long and short exposure images 
and produce a high quality image with low noise and little 
motion blur. We show experimental results that illustrate 
the accuracy of the blur kernel estimation and the 
effectiveness of our deblurring method. 
 

1. Introduction 
Many image/video capture devices do not have enough 

sensitivity to take high quality pictures especially in low 
light situations such as indoors or at night. For example, 
the user may want to take photos in a museum or some 
performance where they need to take pictures without the 
flash on. The most commonly used adjustment to control 
the amount of light received by the capture device is the 
exposure time. By exposing the pixels for a longer period 
of time, the pixels can collect more light leading to higher 
signal integrity (and lower noise) [1]. However, the 
drawback is that any movement in the camera or object 
significantly blurs the image. In many low light situations, 
the camera typically automatically sets the exposure time 
very long (e.g. several seconds) and often captures blurry 
photos. This occurs because the user cannot hold the 
camera steady enough during the capture time (i.e. 
exposure time). Thus, there is a practical limit on the 
length of the exposure time unless the camera is mounted 
on a tripod. This problem is further exacerbated when 
capturing an image with a telephoto lens. It is very 

difficult for a user to capture an image at a high zoom 
because small hand movements result in large movements 
in the image plane. 

Deblurring refers to restoring digital photographs or 
videos that have been degraded by optical blurring that 
includes motion blur or out-of-focus blur. The quality of 
the image is degraded where the high frequency details of 
the scene are lost. In some cases, motion blur occurs when 
the object in the scene moves during the capture. In this 
scenario, the object appears blurry while other parts of the 
scene appear sharp. There are other cases when the scene 
(including the object-of-interest) is stationary but the 
camera moves due to the hand-shake of the user holding 
the camera. In these circumstances, all parts of the 
captured photograph are blurry due to the motion blur. 

Deblurring an image corrupted by blur has been 
researched by many researchers [2~13]. However, most 
deblurring methods require the knowledge of the blur 
kernel, which is often unknown in the applications of 
digital photography. Blind deconvolution aims at solving 
the deblurring problem without any prior knowledge of 
the blur kernel [7~13]. It implicitly or explicitly estimates 
the blur kernel from the blurry image and uses the 
estimated blur kernel to deblur the blurry image. Although 
blind deconvolution has shown success in applications 
such as astronomy, solving the blind deconvolution 
problem reliably for consumer digital photography has 
been extremely difficult. 

Due to the limitations of deblurring an image without a 
complete knowledge of the blur kernel, we have decided 
to focus our attention on a system where we capture two 
or more images. We use the fact that short exposure 
images have a low signal-to-noise ratio (i.e., noisy) but are 
sharp and that long exposure images have high signal-to-
noise-ratio (i.e., clean) but are blurry. This can be seen in 
Figure 1. The left image is contrast-enhanced short 
exposure image and the right image is long exposure 
image. Since deblurring solutions based on a single frame 
do not produce reliable results, we attempt to solve the 
deblurring problem by capturing an additional short 
exposure image which maintains the sharpness.  

The problem of deblurring an image given a second 
image with a different exposure is summarized as follows. 
Given a blurry, low-noise, long exposure image and an 
additional sharp but noisy short exposure image, how can 
we obtain a sharp and clean image?  We approach the 
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problem by de-blurring the blurry/low-noise image while 
regularizing against the sharp/noisy image. We attempt to 
combine the merits of the long and short exposure images 
and produce a high quality image with low noise and little 
motion blur.  

A previously described approach [14] also combined a 
short exposure image and a long exposure image to 
remove motion blur. The key idea in this paper is to detect 
if there was any motion for each pixel and use short 
exposure values for pixels if motion is detected and long 
exposure values for pixels with no motion.  Note that this 
approach is a passive approach, which just decides 
whether to use a long exposure or short exposure based on 
motion detection. Thus, if there were movement for all the 
pixels, then this method merely chooses the short 
exposure image. Our approach, on the other hand, is an 
active one and can intelligently combine the two images.  

Since our work was filed as a patent in 2004, there have 
been recent publications on a similar idea [15~16]. Unlike 
[14], these methods “actively” attempt to remove blur. In 
[15], the problem is formulated as a MAP estimation 
problem with edge-preserving image prior. In [16], the 
blur kernel is estimated and is used to perform gain-
controlled residual deconvolution and ringing artifact 
reduction. However, both methods are very compute 
intensive and require many iterations.   

The paper is organized as follows. In the next section, 
we describe our method of i) capturing two images with 
different exposures, ii) estimating blur kernel from the two 
images and iii) deblurring the blurry image using the 
images and the estimate blur kernel. We then show 
experimental results in Section 3 both with simulated and 
real scenes.  

2. Our Method 
The block diagram of the operation of the method is 

shown in Figure 2. The two exposure images are first 
captured using a CCD or CMOS image sensor. Then, the 
blur kernel is derived from the two differently exposed 
images and the long exposure image can be deblurred to 
obtain a sharp image with low noise. The details of each 
part are given in the following subsections. 

2.1. Capturing two images 
A digital camera can be used to capture a long exposure 

image and a short exposure image closely spaced apart in 
time. Most cameras have a burst mode where the time 
offsets between the frames are short. Note that the order of 
the two images does not seem to matter based on our 
experiments. It is also possible to capture the two images 
overlapping in time by using an image sensor with a non-
destructive readout capability (such as CMOS image 
sensors) or multiple sensors. Note that it is beneficial to 
have a very short time offset between the two captures, 
but is not essential. Optionally, the motion between the 
short and long exposure images can be estimated and 
compensated by registering the images prior to performing 
the blur estimation and deblurring. 

After performing the motion registration, the two 
images need to be normalized by the exposure ratio 
between them such that the two images have similar range 
of pixel intensity values. Let iS be the normalized short-
exposure image,  

iS = I + nS 
where I is the ideal (sharp/low-noise) image that we 

would like to obtain and nS is the noise in the short 
exposure image. We are assuming that the exposure time 
for the short exposure image is short enough such that the 
blur kernel for the short exposure image is negligible (i.e. 
close to a delta function) and that the image is corrupted 
only by noise. Also, let iL be the long exposure image,  

iL = I*h + nL 
where h is the blur kernel, * denotes 2D convolution 

and nL is the noise in the long exposure image. Note that 
iS and iL are observed, but nS, nL, h and I are unknown. 
In an ideal world where we have no blur (h=δ, when the 
blur kernel is just a delta function) and no noise 
(nL=nS=0), the difference between the long and short 
exposure images is zero (i.e., iL=iS). 

 After rearranging some terms, the relationship between 
iS and iL can be represented as 

iL = iS*h + (nL-nS*h)                 (1) 
,where (nL -nS*h) is the aggregate of the noise terms. It 

is worthwhile to point out that even though we do not 
know specific values of the noise (nS and nL) at each 
pixel, it is possible to obtain the statistical properties (e.g. 
standard-deviation profiles) of them via image analysis or 
by examining the sensor specifications and capture 
parameters. 

   Figure 1: An example of long exposure (left) and short 
exposure image   
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Figure 2: Block diagram of our method.

2.2. Estimating the blur kernel 
Since we know iS and iL in Equation (1), it may be 

possible to estimate the blur kernel (h) if we can account 
for noise appropriately. The key is to find a method that is 
robust to the high noise in the image. 

One way to derive the motion blur kernel is to first 
calculate the Fourier transform of the two images and then 
to take the ratio of them. In the following equation, F{} is 
the Fourier transform operation and F-1{} is the inverse 
Fourier transform. The blur kernel h can be calculated as 

⎭
⎬
⎫

⎩
⎨
⎧

= −

}{
}{1

iSF
iLFFh .                 (2) 

This method is very sensitive to the noise present in iS and 
iL. It can be improved by using the Wiener method but 
from our experience, the results are not desirable. 

Another method is to model Equation (1) as a linear 
system and solve it with a least squares method or 
regularized least squares method [16]. This method yields 
more accurate results than the Fourier Transform method 
above but is compute intensive and sensitive to noise. 

To overcome the high sensitivity to noise and 
computational complexity, we developed a method to 
derive the blur kernel from the auto-correlation and cross 
correlation between the two images instead of trying to 
derive the blur kernel from the images directly. Note that 
robustness to noise is critical since the short-exposure 
image generally have low SNR due to lack of photons 
captured. Correlations are much less sensitive to noise 
because they are computed by multiplying the signal with 
a shifted version of the signal and averaging it. The auto-
correlation of image x(i,j) is defined as (assuming wide-
sense stationarity)  

∑∑ −−=
i j

XX biaixjixbaC ),(),(),( . 

The cross-correlation between signal x(i,j) and y(i,j) is 
defined as 

∑∑ −−=
i j

YX biaixjiybaC ),(),(),( . 

If y is obtained by convolving x with z (i.e., y=z*x), then 
the relation between the cross-correlation of y and x and 
the auto-correlation of x are the same as the relation 
between y and x. In other words, CYX  =  z* CXX . When we 
apply this to the problem of blur estimation, we conclude 
that the correlations are blurred the same way as the signal 
itself. From Equation (1) and the properties of auto and 
cross-correlations, the relationship between the auto-
correlation (CSS) of the short-exposure image (iS) and the 
cross-correlation (CSL) between long exposure (iL) and 
short exposure images can be summarized as 

hCC SSSL ∗= .              (3) 
Here, we assumed that the noise terms nS and nL have 
zero mean and are uncorrelated to the image signals iS and 
iL. An example of the auto-correlation and cross-
correlation is shown in Figure 3. As expected, the auto-
correlation of the short exposure image is significantly 
sharper than the cross-correlation between the long and 
short exposure images. It is worthwhile to point out that 
the correlations are much more robust to noise than actual 
images as can be expected from Figure 3.  

Our method makes use of Equation (3) and estimates 
the blur kernel by first computing the auto correlation CSS 
of iS and the cross correlation CSL between iS and iL. Once 
the correlations (CSL and CSS) have been computed, they 
can be rasterized and reformatted into a vector and matrix 
form such that Equation (3) can be represented as a linear 
matrix multiplication. 

cSL = CSS h               (4) 
,where cSL and h are the rasterized vector forms of the 
cross-correlation (CSL ) and the blur kernel (h) and CSS is 
the matrix whose rows are shifted versions of the auto-
correlation (CSS) such that the matrix multiplication 
Equation (4) correctly represents the convolution 
operation in Equation (3). We estimate the blur kernel by 
solving Equation (4) with a least-squares method. 

h* = ( CSS
 T CSS)-1 CSS

 T cSL 
Note that the spatial support for the auto and cross-
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correlations and hence the size of CSS and cSL is much 
smaller than that of the captured images. As can be seen 
from Figure 3, the correlations decay very quickly and can 
be represented with a much smaller vectors and matrices 
than the images themselves. Thus, estimating the blur 
kernel using the correlations is not only robust to noise but 
also computationally efficient.  

2.3. Deblurring with an additional image 
Since we have estimated the blur kernel using the two 

images, we may use conventional methods that assume a 
known blur kernel and a blurred image. Many of these 
methods perform some variant of inverse filtering with 
some regularization or additional prior assumptions. Note 
that the key difference in our problem setting is the 
availability of the short exposure image which is noisy but 
sharp. 

Our objective is to develop a simple method that is not 
compute intensive and does not require many iterations. 
We propose to deblur the long exposure image while fully 
exploiting the estimated blur kernel and the additional 
information from the short exposure image. One way to 
achieve this is to regularize the deblurring process with 
the short exposure image. The deblurring problem is 
posed as a 2nd order minimization problem which tries to 
find the deblurred image that does not deviate too much 
from the short exposure image. Thus, the deblurred image 
is obtained by solving 

{ }22minarg jiSjhiLI
j

−+∗−=
∧

λ . 

A closed form solution exists for this minimization 
problem and can be represented as 

{ } { } { }
⎭
⎬
⎫

⎩
⎨
⎧

+
+

= −
∧

λ
λ

}{}{ *

*
1

hFhF
iSFiLFhFFI  

where * represent complex conjugate and F{} 
represents the Fourier transform. For higher performance 

(albeit with higher computational complexity), a more 
sophisticated method (e.g., a non-linear or iterative 
methods) than the regularized least-squares solution may 
be extended to exploit the short exposure image and 
achieve high quality. It is worthwhile to point out that the 
short exposure image may be denoised or pre-smoothed, 
in order to minimize the effect of the high noise in the 
short exposure image. This optional step prior to the 
deblurring process significantly improves the image 
quality of the resulting image at the expense of some 
additional computational complexity. Note that it is also 
possible to regularize the deblurring process such that the 
gradient of the deblurred image does not deviate from the 
gradient of the short exposure image.  

   Figure 3: An example of the auto-correlation of the short 
exposure image (left) and cross-correlation between the long 
and short exposure images (right) for real images  

3. Experimental Results 
In this section, we show experimental results for 

estimation of the blur kernel and deblurring. In the first 
subsection, we show experimental results by starting with 
an ideal image and simulating blur and noise. In the 
second subsection, we show results by actually capturing 
two images with short and long exposure time and 
applying our method. 

3.1. Simulated scenes 
In order to investigate the effectiveness of our blur 

kernel estimation and deblurring method, we simulated the 
capture of short and long exposure images. By simulating 

   Figure 4: An example of simulated long exposure image (top) 
and short exposure image (bottom)  
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   Figure 6: (Top left) Our deblur method, (Top right) Wiener 
method, (Bottom left) Long exposure image, and (Bottom right) 
blind deconvolution (deconvblind) in MATLAB 

   Figure 5: Examples of simulated blur kernels (left) and 
estimated blur kernels using our method (right)   

   Figure 7: From top to bottom: Long exposure image and short 
exposure image,    

the blurring process, the ground truth of the blur kernel is 
known such that we can measure the accuracy of our 
method and assess the quality of the output image. We 
obtained the short exposure image by adding Gaussian 
noise (e.g., with standard deviation of 20) to an ideal 
image with intensity range of 0 to 255. The long exposure 
image is obtained by blurring the ideal image with a 
known blur kernel and adding Gaussian noise with a 
smaller standard deviation of 1. An example of short and 
long exposure image is shown in Figure 4. As described 
earlier, short exposure image is sharp but noisy and long 
exposure image is blurry but has low noise. We simulated 
various types of blur kernels and some examples of them 
can be found in Figure 5. From top to bottom are box 
kernel, Gaussian kernel and some arbitrary curved line 
kernel.  

From the simulated short and long exposure images, we 
estimated the blur kernel and applied our deblurring 
method. Figure 5 shows the comparison between the 
simulated blur kernel and the estimated blur kernel. It can 
be seen that the estimate of the blur kernel is very 
accurate. This is important as most deblurring methods are 
very sensitive to the blur kernel estimates.  

We compared the results of our method with that of 
blind deconvolution (implemented as “deconvblind” 
function in MATLAB) method and Wiener deblurring 
method (implemented as “deconvwnr” function in 
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MATLAB). For the Wiener deblurring method, we used 
the estimated blur kernel from our method. The input 
images were the images shown in Figure 4. For all the 
deblurring methods, we performed edge tapering in order 
to reduce the effect of ringing at the border of the image. 
Figure 6 shows the deblurred images using various 
methods. Note in Figure 6 that the result of our method is 
visually the best and that it is much less noisy than the 
short exposure image and much less blurry than the long 
exposure image. Also, note that the result of Wiener 
deblurring method has more ringing than that of our 
method. The result with our method was obtained by 
regularizing on the short exposure image pre-smoothed 
with a 3x3 Gaussian kernel (sigma=1). Lambda was 
chosen to be 0.01, which is typically a good choice for 
most images and noise levels. 

Figure 8: From top to bottom: i) Estimated blur kernel ii) Blind 
deconvolution method, iii) Wiener deblurring method and iv) 
deblurred output image with our method.   

Since we know the ground truth ideal image, we can 
compute the sum-of-squared-error between the ideal 
image and the input or deblurred images. Note that the 
error for our method is by far the smallest even though our 
method is not compute intensive and simple. 

 
Blur Type Gaussian Box Linear 
Long Exp 14.54 19.5 25.37 
Short Exp 9.76 9.77 9.76 

Our Method 5.28 3.72 3.05 
Wiener 
method 

7.03 5.67 4.66 

Blind- 
deconv 

35.28 19.56 23.81 

Table 1: Sum-of-squared-error (x 106) for various blur 
and image types. 

3.2. Real-world scenes 
Our method was also tested on real data captured with a 

digital camera. The image was captured in the burst mode 
of the digital camera with the raw capture setting. The 
long and short exposure image is shown in Figure 7. Note 
again that the long exposure image is blurry while the 
short exposure image is noisy. 

 The resulting image after it went through the blur 
kernel estimation and deblurring is shown in Figure 8. 
Note that the long exposure image has a “double” image 
where the weaker image and the stronger image are offset 
diagonally. This can be explained nicely with the 
estimated blur kernel shown in the figure. The estimated 
blur kernel in Figure 8 shows two distinct peaks whose 
relative positions are similar to the offset between the 
strong and weak images in the long exposure image. Note 
that the resulting image using our method has the best 
visual image quality and is less noisy than the short 
exposure image and sharper than the long exposure image. 
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4. Summary and discussion 

We described an approach to deblur the long exposure 
image with additional information from the short exposure 
image. The goal is to combine the merits of the long and 
short exposure images and produce a high quality image 
with low noise and little motion blur. Our method 
estimates the blur kernel by computing the auto and cross 
correlations of the images and uses the estimated kernel to 
deblur the long exposure image while regularizing on the 
short exposure image. The simulated and real experiments 
illustrate the high accuracy of the blur kernel estimation 
method and the effectiveness of our deblurring method.  
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