[LaBs™)

Security of Relational Databasesin Business Outsourcing

Ersin Uzun, Bryan Stephenson

HP Laboratories
HPL-2008-168

Keyword(s):
database watermarking, fingerprinting encryption

Abstract:

For most corporations the volume of sensitive data used by outsourcing providers continues to increase. As
the number of different entities having access to a database increases, it gets harder to prevent and
trace-back data leakage. We address the problems of proving ownership and unauthorized data distribution
(leakage) for relational databases. We propose three techniques that altogether may be used to detect, deter
and trace-back data leaks from relational databases. We use business process outsourcing scenarios as the
descriptive use case, but our techniques are equally applicable in other use cases when arelational database
is shared among many parties and its confidentiality and authenticity needs to be protected. Previous work
has shown how to watermark and fingerprint numerical relational datato prove ownership and track
unauthorized redistributions respectively. Thiswork represents the first attempt to find more general
solutions that can practically accommodate relational data with non-numerical or error sensitive attributes
that are common in corporate databases.

External Posting Date: October 21, 2008 [Fulltext] Approved for External Publication (éﬂ
Internal Posting Date: October 21, 2008 [Fulltext]

© Copyright 2008 Hewlett-Packard Development Company, L.P.

Security of Relational Databases in Business
Outsourcing

Ersin Uzun'? and Bryan Stephenson?
! University of California, Irvine CA 92697, USA,
2 HP LABS, Palo Alto CA 94306, USA

euzun@ics.uci.edu, bryan.stephenson@hp.com

Abstract. For most corporations the volume of sensitive data used by
outsourcing providers continues to increase. As the number of differ-
ent entities having access to a database increases, it gets harder to pre-
vent and trace-back data leakage. We address the problems of proving
ownership and unauthorized data distribution (leakage) for relational
databases. We propose three techniques that altogether may be used to
detect, deter and trace-back data leaks from relational databases. We
use business process outsourcing scenarios as the descriptive use case,
but our techniques are equally applicable in other use cases when a rela-
tional database is shared among many parties and its confidentiality and
authenticity needs to be protected. Previous work has shown how to wa-
termark and fingerprint numerical relational data to prove ownership and
track unauthorized redistributions respectively. This work represents the
first attempt to find more general solutions that can practically accom-
modate relational data with non-numerical or error sensitive attributes
that are common in corporate databases.

1 Introduction

Demanding market conditions encourage many companies to outsource certain
business processes (e.g. marketing, human resources) and associated activities
to a third party. This model is referred as Business Process Outsourcing (BPO)
and it allows companies to focus on their core competency by subcontracting
other activities to specialists, resulting in reduced operational costs and increased
productivity. Security and business assurance are essential for BPO. In most
cases, the service providers need access to a company’s intellectual property and
other confidential information to carry out their services. For example a human
resources BPO vendor may need access to employee databases with sensitive
information (e.g. social security numbers), a patenting law firm to some research
results, a marketing service vendor to the contact information for customers or
a payment service provider may need access to the credit card numbers or bank
account numbers of customers.

The main security problem in BPO is that the service provider may not be
fully trusted or may not be securely administered. Business agreements for BPO

II

try to regulate how the data will be handled by service providers, but it is almost
impossible to truly enforce or verify such policies across different administrative
domains. Due to their digital nature, relational databases are easy to duplicate
and in many cases a service provider may have financial incentives to redistribute
commercially valuable data or may simply fail to handle it properly. Hence, we
need powerful techniques that can detect and deter such dishonest or careless
behavior.

Watermarking and fingerprinting in the context of detecting and deterring
unauthorized distribution of copyrighted multimedia data has been studied ex-
tensively, e.g., [7,8,13,14]. However, not much work has been done on water-
marking and fingerprinting relational databases. Although some recent results
[3,2,1,23,16,12,11, 15] have shown how to watermark or fingerprint relational
databases with numeric attributes, their assumptions are too strong to be useful
in many real-life scenarios. They assume that there exists at least one numeri-
cal attribute in a database satisfying the following two properties: (1) the value
of the database would be significantly lower without it (2) the values for that
attribute are tolerant to introduced errors. In other words, none of the existing
methods is applicable when

— there are no numerical attributes in the database, or,

— a part of the database still carries meaningful and valuable information when
numerical attributes are separated from the rest of the database, or,

— modifying the numerical values to embed a watermark is not acceptable.
This actually is a stronger limitation than one would first think of, since
such changes may be detectable or may disrupt the business process in many
cases 3.

In this paper, we introduce two new watermarking techniques that relax the
assumptions set by the previous work and yield to a wider application domain.
For both techniques, we also show how they can be extended to a collusion-secure
fingerprinting scheme for small distribution groups.

Our first technique employs permutation of certain attribute values among
deterministically chosen tuples. Unlike previous methods, this technique can
accommodate databases without any numerical attributes as well as those with
attributes in which the error introduced by the mark can be detected. The

3 Previous methods modify a portion of tuples and introduce errors on the least signifi-
cant bits of the numerical values to embed a mark. This implies 3 assumptions about
the numerical data: (1) it is OK to modify the numerical values on a portion of tuples
(Some numerical corporate data like account numbers are not tolerant to even the
smallest errors), (2) extensive modifications on the least significant bits throughout
the database (e.g., rounding all the numbers) would make the data worthless, (3)
tuples holding a mark, i.e., having random looking errors introduced by the mark-
ing algorithm, cannot be detected by an outsider (Often numerical corporate data
doesn’t satisfy this assumption (credit card numbers have a check digit for easy error
detection, and changing a model number for a Boeing plane from 747 to 746 is far
from being undetectable).

111

shortcoming of this method is that it is only applicable to databases that are
tolerant to errors introduced on a small fraction of its tuples.

In the second technique, we weaken our assumption of error tolerance from
errors on the real data originally residing in the database to errors introduced by
inserted virtual tuples. Note that adding a small number of extra tuples doesn’t
cause any error or loss on the original tuples. This is an important distinction
since many business processes cannot tolerate errors on the real useful data but
they can tolerate some extra data that is not real. For example if a database of
customer addresses is used to mail marketing literature, it could include some
artificial addresses for marking purposes and still all real customers would receive
the literature in the mail. In this case, some of the additional records can also
be used to verify that the literature was indeed sent by the service provider. We
also discuss how these extra tuples may be used as honey pots to detect leaks
in a timely manner and how the negative impact of having extra tuples can be
eliminated in certain BPO scenarios.

Watermarking and fingerprinting techniques may encourage service providers
to handle data more carefully as they can be linked to data leaks, but they are
not preventative measures and data may still end up in the wrong hands under
many scenarios where the service provider has no bad intentions. For instance,
a new vulnerability in an operating system may allow a hacker to gain access
to the data, or an angry employee may post it online. To improve security, we
advocate incorporating proactive and reactive measures if possible, and in this
respect we developed a third complementary method that can be used to prevent
data leaks from happening.

Under certain, though very limited, scenarios, we observed that the service
provider may not actually need to see specific attributes of a database for it to be
usable. For example an online payment service vendor needs credit card numbers
just to take them to credit card companies to clear a charge of a certain amount.
Here the service provider has no reason to see the actual card number if the credit
card company can still charge the correct account and the service provider gets
its money. Hence, the third technique we developed is an encryption based pro-
tocol. It can be used when certain sensitive database attributes (e.g, SSN, credit
card numbers), which are governed by very few entities (e.g., government, credit
bureaus, credit card companies), are handed to a service provider. In such cases,
the data may be kept hidden from the service provider by encrypting it from
the data owner to the governing entity using public key cryptography and asym-
metric encryption. Whenever applicable, this method can be incorporated with
watermarking and fingerprinting techniques to increase the security of highly
sensitive information. It is also important to note that the encryption could be
the only choice on protecting highly error sensitive databases that cannot be
watermarked or fingerprinted.

In the rest of the paper, we review the related work in section 2. In section
3 we describe our three methods to watermark, fingerprint, or encrypt data. We
discuss practicality of the methods in section 4 and conclude in section 5

v

2 Related Work

There has been quite extensive research on fingerprinting and watermarking mul-
timedia data, e.g., [7, 8, 13, 14]. Unfortunately these techniques do not practically
extend to relational data. The main obstacle in applying multimedia watermark-
ing techniques to relational databases is the significant difference between the
data properties. Multimedia data has high redundancy and its segments are cor-
related, while databases are redundancy free sets where each of its tuples can be
manipulated independently. Multimedia data is meaningful when its segments
are in correct order but each database tuple constitutes a meaningful piece by
itself. Unlike multimedia data, databases are also subject to continuous change
due to tuple addition, deletion, and other modifications throughout their life
cycle.

Researchers have proposed solutions for watermarking and fingerprinting of
computer programs [6,22,5,19,9] and text [4,20]. However, those techniques
are based on either hiding a mark in the visual representation or transforming
data into a semantically equivalent alternate representation, hence they are not
applicable to databases.

Watermarking and fingerprinting of relational databases has been pretty ac-
tive in the last couple of years yielding to many proposals [3,2,1,23,16,12,11,
15,17, 18]. Although these techniques are shown to be effective on databases with
fairly error tolerant numerical attributes, they don’t extend to many databases
that are common in the business world. For example, human resources or cus-
tomer databases may often have numerical values (e.g., SSN, credit card or phone
numbers) but those numbers are not usually error tolerant. Moreover, if non-
numerical or non-error-tolerant attributes are independently valuable, then any
markings introduced on the other attributes would not be effective as the at-
tacker can easily strip the markable parts off the database and sell the remaining
—still valuable— part.

The amount of non-numerical data stored in relational databases is consid-
erable and there has been very little work on watermarking these databases.
Although some of the above techniques proposed for numerical data, e.g., [10],
may be trivially extended to perturb letters instead of digits, it would not be se-
cure as such modifications are usually reversible by automated tools like spelling
checkers.

Contrary to the previous work, which has strict assumptions about the data
properties, this paper introduces more general solutions with weaker data as-
sumptions. The techniques described here are applicable over wide range of data
types commonly found in corporate databases and can provide security assurance
in various business process outsourcing scenarios, especially when the previous
solutions are not applicable.

3 Methods to Secure Relational Databases in BPO
environments

In this section, we introduce two new watermarking schemes for relational data,
probabilistically analyze their security and performance, and describe how each
scheme can be extended to embed unique collusion-secure fingerprinting codes
into different copies for each recipient. Complementary to the first two tech-
niques, we also describe a third scheme in section 3.3 that is applicable in certain
BPO scenarios to provide preventative security measures against data leakage.

3.1 Permutation Based Watermarking

Although many watermarking schemes embed a secret mark by introducing cer-
tain errors and changes on the attribute values of a database, this approach is
only effective as long as those changes are not detectable by third parties. If
the changes can be detected by third parties, the embedded mark can be easily
removed.

Thanks to public services over the internet and software tools available today,
a lot of information can be automatically checked for errors once it is acquired.
If automated error checking can be done for many or all valuable attributes in
the database, any technique introducing errors inside attribute values would fail
to be secure. Common examples of such easily verifiable attributes are mailing
addresses (U.S. addresses can be checked for errors and be standardized using
automated tools [21]), names (most names can be automatically checked using
name dictionaries or the number of page hits in Google), natural language com-
ponents (natural language can be automatically checked for spelling errors) and
many other string based values that can be verified through searches on internet
search engines. Due to this issue, the application domain of the previous work
is limited to numerical values that cannot be automatically checked for errors,
like experimental measurement data.

In some other scenarios, even if it will be undetectable, modifying numerical
data at the level of individual attributes may not be desirable if the statistics
(e.g., min, max, sum, mean, standard deviation, distribution model) for a corre-
sponding column are important to be kept precise for future analysis. Previous
solutions are not capable of keeping all the statistics over a column of a database
intact.

To address the problem of watermarking databases when changes within
attributes are undesirable, we developed a simple yet effective watermarking
method based on attribute permutation. The idea behind our method is to per-
mute few attributes on the same column of the database among different tuples
while keeping the data at each single attribute unchanged. If the data is numeri-
cal, such a change doesn’t introduce any change in column statistics. And, if each
attribute value can be automatically checked for errors, this approach does not
introduce any weakness as the individual attribute values are kept untouched
but just few of them are mislocated among tuples.

VI

Although the idea looks simple, choosing the attributes to be permuted and
how to permute them has challenges. The four points that need particular at-
tention are

— Adjustable security: The percentage of the attributes that will be permuted
should be adjustable for different security needs while permutations should
result in an acceptable ratio of erroneous tuples.

— Blind detection: The scheme should allow detection of a mark on a database
without keeping the original database or a log of committed changes. Blind
detection increases efficiency and makes the system more secure against
database updates and attacks like subsetting][3].

— Minimize errors: During permutation, the error introduced on individual
tuples should be minimized. In other words, if an attribute in a tuple should
be replaced, it should be replaced with the one that is closer to its original
value according to a predefined distance function (e.g., euclidian distance).
For example; if a set of temperature values {....,70,...,15,..69,..} are to be
permuted, replacing 70 with 69 should be preferred to replacing it with 15.

— Correlated attributes: Some attributes are correlated, and so a collection of
correlated attributes may need to be permuted to keep the watermarking
scheme irreversible. For example, if an email address field will be permuted,
but a name field is also included in the database, it is advisable to also
permute the name field since many email addresses are of the form first-
name.lastname@domain.com, and obvious discrepancies between these two
fields can make the marks detectable.

Watermarking Algorithm Given a data set D of size .9, let t.k be the primary
key and t.a be an attribute other than the primary key for a tuple ¢ in D.
For a given n bit marking key K € {0,1}", cryptographic hash function H (),
marking intensity parameter P (0 < P < 1), and distance function F(x,y), our
watermarking algorithm is given in algorithm 1.

As you see in algorithm 1, marking is done by first finding attributes that
output 0 in modulo p, p = |1/P], when hashed with the marking key. These
attributes are swapped with the same attribute in a different row in which the
primary key also outputs 0 in modulo p when hashed with the same marking key.
As we have a set of such attributes available, we choose the one that is closest to
the old attribute it is replacing as determined by a given distance function. Note
that algorithm 1 takes a trivial greedy approach that would not result in the
optimal minimum for the sum of errors introduced due to the distance between
the old and the new values of attributes after permutation. This is done to keep
the algorithm compact and simple in the paper, but we highly recommend to
employ a linear program (LP) solver that minimizes the sum of introduced errors
in the real implementation.

After the marking algorithm is executed, approximately M = S x P of the
tuples in the resulting marked database have both their primary key and the
marked column attribute output 0 in modulo p (p = |1/P]) when hashed to-
gether with the marking key. Now, detection is fairly easy and can be done

VII

Input: Data Set D, Marking Intensity P, Marking Key K, Distance Function F’

Output: Watermarked Data Set Dy
MarkSet, X, Y «— {}
Dw «— D
P L5
foreach tuple t in Dw do

if H(t.a, K) = 0(mod p) then

| insert t into MarkSet

end

end

if MarkSet = {} then
| return MarkFailed

end
foreach tuple X in Dw do

if MarkSet = {} then
| return Dw

end
| +— o0

if F(X.a,j.a) <l then
l— F(X.a,j.q)
Y —j
end
end
swap(X.a,Y.a)
end

end
return Dw

Algorithm 1: Watermarking algorithm

if H(X.k, K) = 0(mod p) and H(X.a, K) # 0(mod p) then

foreach tuple j in MarkSet do

VIII

blindly. The detection algorithm (see Algorithm 2) simply goes through the tu-
ples in the database and checks if the ratio of tuples that satisfy the marking
condition is substantially more than the expected ratio of such tuples on a non-
marked database. The expected ratio of such tuples on a non-marked database
is P? since the two selected attributes in the same row must hash to 0 in modulo
p, and the probability of this happening on a random attribute is P.

Input: Data Set D, Marking Intensity P, Marking Key K
Output: {0,1}
NoOfMarks <— 0
p—+
foreach tuple t in D do
if H(t.k, K) = 0(mod p) and H(t.a, K) = 0(mod p) then
| NoOfMarks «— NoOfMarks+ 1
end

end

if NoOfMarks/S > P? 4 ¢ then
| return 1

end

else
| return O

end
Algorithm 2: Detection algorithm

Analysis In this watermarking scheme, the value of P affects both the invasive-
ness and the provided security of the marking algorithm. As P decreases, the
number of modified tuples and the provided security decreases, so the procedure
becomes less invasive due to a smaller number of committed permutations. On
the other hand, increasing P improves security but will result in more mod-
ifications (introduced errors) in the database. Therefore, choosing a P value
according to the security needs and acceptable error margin is essential.

In the detection algorithm, a well chosen value for € is crucial to keep the
error rates at a balance. An € value that is too small would increase false positives
and a value that is too large would cause too many false negatives.

In the following bullets, we show how to choose ¢ and P values according to
the desired error rates and analyze their effect on security and invasiveness.

— During watermark detection on a given database D of size S, to limit the
probability of a false positive to f,, the € should be large enough to provide
enough statistical significance that the observed ratio of marked tuples is
not coincidental. In mathematical terms:

Prob{Observed ratio of marked tuples in a non—marked database > P*+¢} < f,

If the null and the alternative hypothesis are:
Hy: Observed marking ratio can be coincidental (D is not marked)

IX

P
0.010 _-| \ — £ 2001, £ =00

I | [] fo = 0001, £, = 0,001
0.008 'I \

A f = 00001, £ = 0.0001

LY

L
o005 | ||

Llh

(I
|

Y
oosr |

o

Yo

0.002 |- M, \'-___

L g o

., - ___ -

:I:b:b:l- 1 1 1 1 1 L L L L T_u__u_l L |_| |_I 1 1 1 1 |_| |_| r] _'\.'

0 5000 10000 15000 20000 25000 30 00

Fig. 1. Change of marking intensity parameter (P) for different minimum detection
subset size (V) from 100,000 total records. Three lines corresponds to three different
values for maximum allowed false negative (f,) and false positive (f,) rates. From top
to bottom, the maximum values for f, and f, are set to 0.0001, 0.001, 0.01

H,: Observed marking ratio is too high to be coincidental (D is marked)

then by setting ¢ large enough, we assure that Hy will be rejected only when
there is significant statistical evidence against it. If the detected number of
marked tuples in a database of size S is IV, the standard error rate for the
proportion of marked tuples can be calculated as \/N/S(1 — N/S)/S. So, e
can be calculated as a function of IV and S for a chosen f,. For example, if
the size of the database given into the detection algorithm is .S = 10000, and
N = 10 marked tuples are detected, the € value for f, < 0.001 would be:

N/S — P2
VN/S(1-N/S)/S

fp <0.001 =

>ty =2.97

€
= ——————= > 2.97 = ¢ > 0.00094
999 x 10—10 — B

— Similarly, choosing a large enough P value while marking a database D is
important to limit the probability of having false negatives (fail to detect
an existing mark). However, the number of introduced errors also increases
as P increases. Hence, P should be as small as it can be afforded while still
providing an acceptable false negative probability. If a random subset of size
N tuples from database D is input to the detection algorithm, then limiting
the probability of a false negative to f, means:

Prob{Observed marked tuple ratio in a marked database < P? +¢} < f,

The Distribution of the proportion of the marked tuples can be estimated
by a normal distribution with mean y = P and standard deviation o =

/P(1—P)/S. Here P can be calculated for a desired f,, as shown in the
following example. Assume a large database D is to be marked and a false
negative probability of at most f, is wanted when the detection algorithm is
run on the subsets of size N or larger of D. For f,, <0.001 and N = 10000,
P can be calculated as:

P — (P?+297\/P2(1 - P2)/N) >2.97(y/P(1 — P)/N)

= P > 0.00094

Which means; if the original size of D was 100,000, marking only 94 tuples
would be enough to provide the above given probabilistic guarantees. Since
each marked record causes a second record to also be modified, having 94 tu-
ples marked roughly means to modify 188 tuples (see below for more precise
calculation). Figure 1 shows how P value changes with different N values
when upper bounds for acceptable false negative (f,,) and false positive (f,)
error rates are set to be 0.01, 0.001, 0.0001.

While marking a database, some attributes are permuted between different
tuples to create tuples that satisfy the marking condition. However, a small
number of tuples in the original database may satisfy the condition without
any changes necessary. Hence, the expected ratio of modified tuples for a
database is slightly lower than 2P and can be calculated as:

2% (P —P?) =2P(1-P)

Figure 2 shows how the expected ratio of modified tuples change with P.

Fatio of modifisd tuples

020 .

015 /

-
-
-
0.0 e
-
L L
- d
- o
a5k ~
- P H./’
-
-
-
e
0.00 il L | L | 1 L 1 L |
0.00 0.02 0.04 0.0 0.08 0.10

Fig. 2. The expected ratio of modified tuples for different P values

XI

Extension to fingerprinting Although watermarking is useful to prove own-
ership, it is not enough to trace back the source of a data leak if more than 1
party has been given access to a particular data set. In this case, we need unique
fingerprints to be embedded into each service provider’s copy. If we assume K
different service providers, then the length L of the binary codewords that can
serve as a fingerprint should be at least L > lgo K.

Considering that most service providers are legitimate businesses, collusion
secure fingerprint codes are overkill for many business outsourcing scenarios.
Hence, we predict a counting based binary fingerprinting code (e.g., for 4 providers
the codes will be {00,01,10,11} and for @ providers, the length L of simple bi-
nary codewords is L = [lg2Q]) that is not collusion secure would be secure
enough for many practical BPO scenarios. However, it is worth noting that the
fingerprinting algorithm introduced here works with any binary fingerprinting
code (collusion resistant or not) as long as the bit-length of the codewords to be
embedded is considerably smaller than S P. Nevertheless, the length of collusion
resistant fingerprinting codes would increase dramatically as the number of ser-
vice providers would increase, and we only see the possibility of using collusion-
resistant fingerprinting codes when the number of different service providers
needing access to a database is less than the number of fingers on both hands.

Algorithm 3 shows how the watermarking algorithm introduced above can be
extended to a fingerprinting algorithm. Although the idea is similar, the finger-
printing algorithm uses a pseudorandom sequence generater G instead of a hash
function. We denote the ith number in a sequence generated by G seeded by
t.k|K as G;(t.k, K), where K is the fingerprinting key and ¢.k is the primary key
of tuple ¢. The fingerprinting algorithm determines which tuples will carry which
bit from the fingerprinting code using K and t.k. If G1(t.k, K) = 0 (mod p) then
that tuple is chosen to carry the jth bit from the fingerprinting codeword where
Jj = Ga(t.k,K) (mod L). To embed a fingerprint codeword of size L, the algo-
rithm first creates 2L sets from tuples. Each such set, denoted by .S;, is formed by
grouping tuples that satisfy G,+2(t.a, K) = 0 (mod p), where t.a is the attribute
that will be subject to permutations. After deciding which bit of the codeword
C' is to be embedded, say C; (ith bit of C') is to be embedded, the attributes
from the tuple set S;1 ¢, are used for swapping with the original attributes. We
skip the analysis of this scheme due to space constraints. However, it is not hard
to see that it wouldn’t be much different from the watermarking scheme. The
added constraint here should be that the expected number of marked tuples in a
target detection set size should be big enough to include enough marked tuples
to recover all the bits of the codeword with high probability.

Extension to fingerprinting —an alternative approach Although the fin-
gerprinting algorithm described above provides better performance, sometimes a
performance loss may be traded for implementation simplicity. For that purpose,
we here describe another approach that treats the watermarking algorithm given
in algorithm 1 as a black box and embeds fingerprinting codes into the database

Input: Data Set D, G,P,K,C, F
Output: Fingerprinted Data Set Dp
L — LengthOf(C)
MarkSeti,s,... 21, OriginalSet, X «— {}
DF — D
P 5]
foreach tuple t in Dr do
if G1(t.k, K) = 0(mod p) then
1 — Ga(t.k, K)(mod L)
if G(otitc,r)(t-a, K) # 0(mod pL) then
| add t into OriginalSet
end
end
end
oreach tuple t in Dr do
for i=1 to 2L do
if Giy2(t.a, K) =0 (mod pL) then
| add t into Markset;
end

—

end

end

oreach tuple t in OriginalSet do

i« Ga(t.k, K)(mod L)

choose a tuple X from Markset;c,r that minimizes F(t.a, X.a)
swap(t.a,X.a)

end

return Dg
Algorithm 3: Permutation based Fingerprinting algorithm

=

XIII

by only executing function calls to algorithm 1. The simple algorithm works as
follows:

Run the watermarking algorithm L times for a codeword C of length L.
At the ith (1 <i < L) run of the watermarking algorithm, use K* as the
watermarking key where K* = K|i|C;.

It is easy to see the number of modifications needed is approximately L times
more than watermarking. The worst case running times are; marking takes L
times longer and detection takes 2% times longer compared to watermarking
detection alone.

3.2 Insertion Based Watermarking

For certain databases, not just the errors on individual attribute values but
also the errors anywhere on a tuple may be detectable. For example, if a tuple
consisting of {name, credit card number, expiration date} is modified to embed a
watermark, it can be verified for correctness by requesting a charge authorization.
Here all the attributes are correlated and any error on the tuple would result in
a denied charge authorization revealing which tuples are marked.

Modifying the original records may also not be desirable if it may disrupt
the business process. For example, a list of customer addresses which must be
notified in case of a product recall cannot tolerate changing any addresses. In
such error sensitive databases, the marking cannot be based on any perturbation
of the original tuples but may still come from adding extra information to the
database. The important requirement here is that the extra tuples should be
indistinguishable from the original records.

We developed a technique based on artificial database records* that can still
be used in the above described situation when previous solutions and permuta-
tion based watermarking are not applicable. An artificial record in a data set is
a data record that has correct semantics and is qualified for data processing like
any other record. For example, a letter to an artificial mailing address will in-
deed be delivered by the post office and a transaction to an artificial credit card
number will go through card processing and appear normal, although behind the
scenes they may be processed specially. An artificial credit card number can be
used in a purchase transaction, but the data owner and the credit card company
are alerted when this credit card number shows up in any transaction. Because
the card number is artificial, no legitimate charges should happen, so any at-
tempted use of this artificial number may indicate that the data has been leaked
to someone unscrupulous. This is a reliable leak detection mechanism because
an efficient market now exists for stolen information, and so leaked information
containing credit card data will quickly be sold and used by a well-organized
network of criminals, causing transactions using the artificial card numbers. The

4 The idea of using artificial records was briefly mentioned by Agrawal et. al. in [3]
before.

XIV

leak source can also be reliably traced if the particular artificial record, or group
of records, was provided only to them.

In order to facilitate discovery of leaked data, a trusted third party can be
involved, such as the credit card provider aforementioned, both to create the
artificial records and monitor the data processing activities associated with the
artificial records for leak detection. Since the creation of such records is out of this
paper’s scope, we assume a set of artificial records that is uniformly distributed
over the primary key space is available at hand.

For a given n bit key K € {0,1}", cryptographic hash function H(x), marking
density P and Artificial data set A, algorithm 4 describes how the insertion
based watermarking is done.

Input: Data Set D of size S, Artificial Data Set A, P
Output: Watermarked Data Set Dy,
MarkSet — {}
while SizeOf(MarkSet) < 245 do

| insert a randomly chosen tuple from A to MarkSet
end
Dw — D\JMarkSet

return Dy
Algorithm 4: Watermarking algorithm

As you see in algorithm 4, the watermarking procedure is fairly straightfor-
ward. For a given marking density P, the algorithm keeps inserting artificial
records into the database until the ratio of such records to all records is equal
to P.

On the other hand, the detection procedure described in algorithm 5 looks
for any artificial tuples in a given database by going through all its tuples. We
assume that the records in each company’s artificial data set would be unique,
so the detection algorithm stops and outputs true as soon as it finds a tuple
that belongs to the artificial data set. It outputs false if no such tuple is found
after going through all the tuples.

Input: Data Set D, Artificial Data Set A
Output: {0,1}
foreach tuple t in D do

if t € A then
| return 1

end
end

return 0 . . .
Algorithm 5: Watermark Detection algorithm

Analysis In this scheme, the value of P determines the ratio of artificial records
to all the records in the database. As P increases, the security of the system
increases too. In the following formulas, we analyze how the value of P affects
certain properties of the database.

XV

F
il — f.=001
0.008 —||' frn = 0.001
||'|' £ < 0.0001
0.006 |- |II |
L
I I|
L1
vooafb LY
Fobhy
|I l.'\u_
Y
LY SEEANAN
M ‘--,____.-. -
\H\"“:—-_-_"-—'—'__' ——
0.000 L e
[5000 10000 15000 20000 25000 30 00D

Fig. 3. The expected ratio of inserted virtual tuples by algorithm 4 for different P
values

The expected false negative rate when trying to detect one of 10 artificial
records in a database of 1000 total records within a leaked subset of size 20 can
be precisely calculated with:

990 989 988 971
—_— X —— X —— X s+ X —
1000 999 998 981

The general precise formula is thus:

1<i<N

where r is the total database size, m is the number of records that are artificial
marking records, and N is the number of records in the leaked subset. Care should
be taken when calculating this product to minimize numerical error. Databases
of small size like 1000 or fewer records can benefit from this precise formula,
but for typical corporate database sizes of 10,000 or more records, a very close
and always slightly conservative value can be found using the following useful
closed-form approximation. To have not more than f, false negative probability

when the detection algorithm is run on a IV or larger sized subset of a database,
the value of P should satisfy

(lfp)N<fn

For example, if a false negative rate of less than 0.001 is wanted when a random
subset of 10000 or more tuples is given into the detection algorithm, then the P
value should satisfy:

(1 — P)t09% < 0.001

XVI

— P > 0.0007

Figure 3 shows the relation between N and P for different f,, values. In order to
set the ratio of virtual tuples to all tuples as P, the number of artificial records
needed to mark a database of size S can be calculated as: SP/(1 — P)

Extension to fingerprinting As in the previous fingerprinting extensions, the
fingerprinting codewords are assumed to be binary and the introduced finger-
printing algorithm can be used with any fingerprinting code scheme (collusion-
secure or not) that produces binary codewords as long as the length of codewords
is a few orders of magnitude smaller than the database size. When fingerprinting
a database using codewords of length L, the algorithm first divides the artificial
data (tuple) set A into 2L subsets. Each subset S; is formed by grouping tuples
that satisfy H(t.k, K) = j (mod 2L) for 0 < j < 2L — 1, where t.k is the pri-
mary key of tuple ¢ € A. Tuples in each subset are sorted in a non-decreasing
order using a sorting function F' that takes the primary key of tuples as input
and is defined as F(t.k) = H(t.k)|t.k, H here is a cryptographic hash function
and ”|” denotes string concatenation. The watermarking algorithm (Algorithm
4) is run L times to fingerprint a codeword C of length L. At the ith run, the
watermarking algorithm only uses the virtual tuples from subset S;1 ¢, 1., where
C; is the value of the ith least significant bit of C, and the artificial tuples are
used in the order they reside in the sorted sets.

We skip the analysis due to space constraints but it is not hard to see the
number of virtual tuples needed would be L times of the number of tuples
needed just for watermarking (for similar error rates at detecting each bit of
the fingerprint). However, the error rate using the fingerprinting algorithm to
successfully recover the whole codeword would be larger than the error rate
of the watermarking algorithm to successfully detect the mark. This is due to
the fact that not being able detect even one bit out of L is still considered as
unsuccessful and the probabilities of not being able to detect each bit add up.

3.3 Encryption Based Approach

In business process outsourcing, sometimes the service provider doesn’t need to
see all the attributes in a database to be able to use it>. A service provider may
just play a transitive role in the process and the real values of those attributes are
eventually processed by another service provider. Common examples for this kind
of data are social security numbers (SSNs) or credit card numbers (CCNs). To
better explain the data flow here, assume a company A outsources its employee
background check process to company B. This process usually includes obtaining

5 To stay within the scope, we describe possible usages of this scheme in the domain
of business outsourcing, but we want to note that the described scheme is equally
applicable to prevent leaks from in-house storage as long as the aim of storing sensi-
tive data is to later take it to another entity for processing (e.g., storing credit card
numbers to later take them to a credit card transaction clearinghouse).

XVII

the credit history for each employee so the SSN of each employee should be in
the database that is handed to company B to execute the process. However, the
only thing company B will do with those SSNs is to take them to a credit bureau
C and obtain the corresponding credit history reports. Company B doesn’t need
to see the actual numbers if it can still acquire the corresponding reports and it
obviously doesn’t need the SSNs to evaluate the reports after obtaining them.
In this scenario, the numbers may be encrypted and kept hidden from company
B as long as they can be decrypted and processed by entity C and can be linked
back to the original numbers by company A.

The idea described above can easily be implemented using public key cryp-
tography and it would keep the SSNs confidential if they are encrypted using
company C’s public key. However, it doesn’t prevent them from being used by
unauthorized parties in case of a leak. This problem can easily be addressed by
company A specifying who it authorizes to use the data inside the encrypted
blob and company C verifying the identity of Company B before responding to
any queries.

It is important to note that whenever this scheme is applicable, it provides
much better security than watermarking or fingerprinting as it is a preventative
security measure unlike the other two. Luckily, the highly sensitive data in the
business world (e.g., SSN, CCN, employee or bank account numbers, etc...) tends
be governed by only a few well defined authorities to keep the risk manageable,
and this makes it easier to take advantage of the already available public key
infrastructure when using this scheme. However, encryption wouldn’t work if
Company B needs the sensitive information in plain text to be able to prop-
erly execute the outsourced process and so the application domain is somewhat
limited.

Method definitions and protocol details We use A, B and C in the same
way they are used in the previously given example, that is, A to denote the
database owner, B to denote the service provider and C' to denote the company
that will eventually process the data. We use E(K, M) to denote symmetric
encryption of message M using the encryption key K while Ex (M) to denote
the asymmetric encryption of M under the public key of entity X. We assume
entities B and C have X.509 public key certificates obtained from a trusted
certification authority.

Encryption: If column m of database D contains the sensitive information, A
encrypts all the corresponding column of the database using a n bit symmetric
key K and creates D’. After this operation, any attribute a residing in that
column is in the form of F(K,a) in D’. A then creates a token to be given to B
together with D’. The token is created as follows:

token = Eq¢ (K|A|Blexpiration_date|beginning_date|noti fication_request)

Process execution: When B needs the encrypted attributes to be processed by
C as part of the business process it is handling, it always sends the token it
received from A together with the encrypted data.

XVIII

Decryption and authentication: Whenever C' receives a request to process en-
crypted data, before honoring the request it first decrypts the accompanying
token and does the the following checks

— Acquire the public key certificate for B and verify its authenticity.
— Using a challenge-response protocol, verify that the party sending the request
is the real owner of the acquired certificate (has the corresponding private
key).
— Check that the current date is between the beginning_date and the expiration_date

If all the above checks are successful, C' then honors the request of B and notifies
A if the notification_request flag in the token was set.

4 Discussion

The value placed upon the confidentiality and integrity of corporate databases
varies immensely. Preserving the confidentiality of a small customer list con-
taining only addresses may be worth several thousands of dollars. Preserving
the confidentiality and integrity of a large customer list with historical sales
information, complaint history, and other data could easily be valued by the
corporation in the millions of dollars. Thus, techniques like those we and others
are developing are needed in order to confidently allow more sensitive data to
be securely shared with outsourcing providers, which enables the business to
optimize its processes and reduce its costs.

The presented watermarking techniques are practical for many types of cor-
porate databases, including those for CRM (Customer Relationship Manage-
ment), Product or Portfolio Management, and many custom databases. If the
business process being delivered by the outsourcing provider is tolerant to a
small percentage of errors, then the permutation-based technique can be used to
automatically create different watermarked databases which can then be given to
different providers. If, on the other hand, the business process being outsourced
is not tolerant of errors in the source data, but is tolerant of the addition of a
small percentage of artificial data records, then the insertion-based technique can
be used. In addition to watermarking, the insertion-based technique has a nice
feature that inserted artificial tuples can be used to monitor the provider’s ser-
vice quality and also to detect any leaks as soon as data is used by unauthorized
entities.

In the insertion-based watermarking technique, we assume a set of artificial
records is available. The generation process for artificial records depends heavily
on the data schema. In some cases, parts of different existing records can be au-
tomatically combined to create the artificial records. For example, a first name
from a random record can be paired with a last name from a different random
record to create an artificial full name record. In other cases, a person should be
involved in creating the set of artificial records to ensure that they are not easily
detectable, and possibly also to enable verification of the outsourced business

XIX

process. For example some home mailing addresses of employees in the depart-
ment could be used, possibly with different names as well. There are many cases
when preserving the confidentiality of the outsourced data is worth the time to
create these artificial records. However, a detailed treatment of the generation
process for artificial records is beyond the scope of this paper.

In terms of the accuracy and effectiveness of our marking algorithms, any
data leaks detected can be traced to a particular provider, with an arbitrarily
low chance of a false positive leak detection using the permutation technique,
or with no chance of false positive leak detection using the insertion technique.
Knowing that they would probably be caught provides the outsourcing provider
and its personnel with a strong deterrent against leaking the data. Typically a
corporation may just end the relationship with a provider which leaks its data.
But there is opportunity to create a business which watermarks and fingerprints
data and maintains a strong chain of evidence so that providers which leak
data could be held accountable in court. Such a business would need to ensure
that it doesn’t have net incentive to leak the marked data and then frame an
outsourcing provider®, since it would have the ability to do so.

Observing different BPO scenarios encouraged us to specify a protocol that
can be used to prevent data leakage in certain scenarios. As discussed in sec-
tion 3.3, the encryption-based technique has quite a limited use case scenario.
However, those limited scenarios are usually the ones that deal with the most
sensitive data like credit card, social security or bank account numbers, where
preventative security measures are highly preferable to reactive ones. We present
this technique complementary to the other two as in certain cases, it may still
be used when any available watermarking would fail to provide the required
security or be inapplicable.

5 Conclusion

In this paper, we introduced two new techniques that can be used to watermark
relational databases. Unlike previous solutions, which are limited to be applicable
only on numerical relational data, our methods can accommodate databases
with no numerical attributes. For databases with numerical data, the methods
introduced in this paper are complementary to the previous work as our methods
do not change individual attribute values and can remain secure in many cases
where the others would fail. We also showed how our watermarking techniques
can be extended to fingerprinting algorithms that can accommodate collusion
secure binary codewords.

Our insertion-based technique can provide more than watermarking if the
artificial records to be used are chosen wisely. In many cases those artificial
tuples can be used as honeypots to quickly detect any unauthorized use as well
as to monitor and evaluate the quality of the received service.

5 This problem is well known in the literature and solutions not allowing the content
owner to frame a copy holder are known as asymmetric fingerprinting schemes.

XX

Complementary to the watermarking techniques, we also described how the
existing public key infrastructure can be utilized for better data protection. The
introduced encryption-based technique provides strong and preventative security
measures against data leakage in BPO when relational data containing sensitive
information needs to be stored in transitive entities.

References

1. R. Agrawal, P. Haas, and J. Kiernan. A system for watermarking relational
databases. Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 674-674, 2003.

2. R. Agrawal, P. Haas, and J. Kiernan. Watermarking relational data: framework,
algorithms and analysis. The VLDB Journal The International Journal on Very
Large Data Bases, 12(2):157-169, 2003.

3. R. Agrawal and J. Kiernan. Watermarking relational databases. Proceedings of the
28th international conference on Very Large Data Bases- Volume 28, pages 155-166,
2002.

4. M. Atallah, V. Raskin, C. Hempelmann, M. Karahan, R. Sion, U. Topkara, and
K. Triezenberg. Natural Language Watermarking and Tamperproofing. Informa-
tion Hiding: 5th International Workshop, IH 2002, Noordwijkerhout, the Nether-
lands, October 7-9, 2002: Revised Papers, 2003.

5. C. Collberg, E. Carter, S. Debray, A. Huntwork, J. Kececioglu, C. Linn, and
M. Stepp. Dynamic path-based software watermarking. Proceedings of the ACM
SIGPLAN 2004 conference on Programming language design and implementation,
pages 107-118, 2004.

6. C. Collberg and C. Thomborson. Software watermarking: models and dynamic
embeddings. Proceedings of the 26th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 311-324, 1999.

7. L. Cox, J. Killian, T. Leighton, and T. Shamoon. Secure spread spectrum commu-
nication for multimedia. IEEFE Trans. Image Processing, 6(1):2, 1997.

8. 1. Cox, M. Miller, J. Bloom, and C. Honsinger. Digital Watermarking. Journal of
Electronic Imaging, 11:414, 2002.

9. K. Fukushima and K. Sakurai. A software fingerprinting scheme for java using
classfiles obfuscation. LNCS, 2908:303-316, 2003.

10. D. Gross-Amblard. Query-preserving watermarking of relational databases and
XML documents. Proceedings of the twenty-second ACM SIGMOD-SIGACT-
SIGART symposium on Principles of database systems, pages 191-201, 2003.

11. F. Guo, J. Wang, Z. Zhang, X. Ye, and D. Li. An Improved Algorithm to Water-
mark Numeric Relational Data. Proceedings of WISA, pages 138—149, 2005.

12. M. Huang, J. Cao, Z. Peng, and Y. Fang. A new watermark mechanism for re-
lational data. Computer and Information Technology, 2004. CIT’04. The Fourth
International Conference on, pages 946-950, 2004.

13. N. Johnson, Z. Duric, S. Jajodia, and N. Memon. Information Hiding: Steganogra-
phy and WatermarkingAttacks and Countermeasures. Journal of Electronic Imag-
ing, 10:825, 2001.

14. S. Katzenbeisser and F. Petitolas. Information Hiding Techniques for Steganogra-
phy and Digital Watermaking. EDPACS, 28(6):1-2, 2000.

15. Y. Li, V. Swarup, and S. Jajodia. Fingerprinting Relational Databases: Schemes
and Specialties. IEEE Transactions On Dependable and Secure Computing, pages
34-45, 2005.

16

17.

18.

19.

20.

21.

22.

23.

XXI

S. Liu, S. Wang, R. Deng, and W. Shao. A Block Oriented Fingerprinting Scheme
in Relational Database. Proc. Seventh Ann. Int’l Conf. Information Security and
Cryptology (ICISC), 2004.

R. Sion. Proving ownership over categorical data. Data Engineering, 2004. Pro-
ceedings. 20th International Conference on, pages 584-595, March-2 April 2004.
R. Sion, M. Atallah, and S. Prabhakar. Rights Protection for Relational Data.
IEEE Transactions on Knowledge and Data Engineering, pages 1509-1525, 2004.
H. Steinberg and S. Gordon. Software fingerprinting and branding. US Patent
6,574,732, 2003.

M. Topkara, G. Riccardi, D. Hakkani-Tuer, and M. Atallah. Natural language
watermarking: challenges in building a practical system. Proceedings of SPIE,
6072:106-117, 2006.

United States Postal service. Address verification tools. http://www.usps.com/
business/addressverification/welcome.htm.

R. Venkatesan, V. Vazirani, and S. Sinha. A graph theoretic approach to software
watermarking. 4th International Information Hiding Workshop, 2001.

Y. ZHANG, X. Niu, and D. Zhao. A Method of Protecting Relational Databases
Copyright with Cloud Watermark. International Journal of Information Technol-
ogy, 1(4):206-210, 2004.

