

Keyword(s):

Abstract:

Automatic visual inspection and defect detection on Variable Data Prints

Marie Vans, Sagi Schein, Carl Staelin, Pavel Kisilev, Steven Simske, Ram Dagan, Shlomo Harush

HP Laboratories
HPL-2008-163R1

Variable data printing, high-speed inspection, print defect detection, scanning, GPU

We propose a system for automatic, on-line visual inspection and print defect detection for Variable -Data
Printing (VDP). This system can be used to automatically stop the printing process and alert the operator to
problems. We present the components required for constructing a vision-based inspection system and show
that our approach is novel for the high-speed detection of defects on variable data. When implemented in a
high-speed digital printing press, the system will allow a single skilled operator to monitor and maintain
several presses, reducing the number of operators required to run a shop floor of presses as well as reduce
wasted consumables when a defect goes undetected.

External Posting Date: June 21, 2010 [Fulltext] Approved for External Publication
Internal Posting Date: June 21, 2010 [Fulltext]

Copyright 2010 Hewlett-Packard Development Company, L.P.

1

Automatic visual inspection and defect detection on Variable
Data Prints

Marie Vansa, Sagi Scheinb, Carl Staelinb, Pavel Kisilevb, Steven Simskea,Ram Daganc,

and Shlomo Harushc

aHewlett-Packard Labs, 3404 East Harmony Rd, MailStop 85, Fort Collins, CO, USA,

80528;

bHewlett-Packard Labs, Technion City, Haifa, Israel, 32000;

cHewlett-Packard Company, Einstein 10, Kiryat Weizmann , Ness Ziona, Rehovot,

Israel,76101

Email: marie.vans@hp.com

We propose a system for automatic, on-line visual inspection and print defect detection

for Variable Data Printing (VDP). This system can be used to automatically stop the

printing process and alert the operator to problems. We present the components required

for constructing a vision-based inspection system and show that our approach is novel for

the high-speed detection of defects on variable data. When added to a high-speed digital

printing press, the system allows a single skilled operator to monitor and maintain several

presses, reducing the number of operators required to run a shop floor of presses as well

as reduce wasted consumables when a defect goes undetected.

Keywords: Variable data printing, high-speed inspection, print defect detection,

scanning, GPU

2

Introduction

Detecting defects on variable data prints currently requires a skilled operator to manually

inspect prints. Example defects that may cause an operator to halt the machine include

scratches, spots, missing dot clusters, streaks, and banding. There are two different

methods the operator may use to check for defects. Prints may be inspected as they come

off the press which implies that the operator is fully occupied with a single machine.

Alternatively, the operator may collect stacks of prints for inspection. If a defect is

present, paper is wasted. We discuss a system that can monitor the output of a digital

printing press to observe the printed pages, automatically detect print defects, and alert

the operator if necessary.

Automatic inspection of variable data products is virtually non-existent. Solutions exist

for inspection of printed products such as labels and packaging; however, these do not

usually change and once a perfect reference is decided upon, the inspection system will

continually search items coming off the press using the same reference copy. Our

solution for variable data requires the ability to change the reference on every print. For

example, a customer job may require personalization of each print with a different name,

address, or other information. A major requirement for this work is that each print be

inspected and this means that defect detection for each page must be completed within a

second, as the press prints at a speed of 2 meters per second. Therefore, the system must

acquire both the reference and printed image, perform various image pre-processing

activities, and determine whether a defect exists, all in real-time.

3

This paper describes a system designed to automatically detect defects on variable data

prints. We describe each of the components needed to operate in real-time. An important

contribution of this work is the development of an image dis-similarity measure for

detecting defects. Image dis-similarity is actually related to image fidelity1. Image fidelity

in this context refers to how close one image is to another perfect or reference image. We

want a measure that can report the probability that the printed image contains defects

visible to the human eye, i.e. can be detected. We show the results of a large-scale, proof-

of-concept experiment using two print defect detection algorithms on 454 defective

prints. Our proof-of-concept approach used a scan of the print and compared it with a

scan of a good reference print. In this paper, we demonstrate that our algorithms meet

two important requirements of the project: detection of most of the visible defects and a

low false alarm rate. Although our motivation is to develop a product for digital presses,

the system is applicable for all problems where finding defects or other differences

between variable data images is necessary.

Prior Work

Newman and Jain2 present a thorough survey of automated industrial inspection systems

through 1993, primarily for defect detection. According to Newman & Jain2, most

inspection systems are either developed by machine vision companies or developed in-

house by manufacturers for specific applications, with the vast majority going unreported

in the literature.

4

A comprehensive literature search shows that while many more inspection systems have

been developed and reported on, an inspection system for variable print data does not

exist. We looked at offset print inspection systems, textile inspection systems (both

patterned and non-patterned), generic web inspection systems, and Printed Circuit Board

inspection (PCB). While none of the systems addressed the same problem with variable

data, many of the system components are applicable to our situation and gave us insight

into how to solve our specific issues.

For defect detection, most visual inspection systems fall into one of three categories

depending on the defect detection approach: image reference (or Template-Matching),

design-rule, or some combination (hybrid approach) of both3,4,5,6. In the simplest image

reference approach, a reference exists that allows a direct comparison to potentially

defective products. Inspection of 100% of the potentially defective unit is typical for this

approach. A more elaborate referential approach involves recognizing features of

potentially defective items in test images and comparing those features with a set of

idealized or perfect features. Inspection coverage on potentially defective items can vary

and does not need to be 100%. In the design-rule approach, a set of rules that describe

properties of products exist which can be statistically verified for a product. In this case,

as little as 10% of a product can be inspected before generating the appropriate statistics

and determining whether a defect exists. In general, the image reference approach is a

much more reliable approach.

5

Table 3, Table 4, and Table 5 show a representative sample of inspection systems for

print, textile, printed circuit board, and texture inspection. Each row represents an

implemented and tested system that has been reported in the literature. The 2nd column

shows the image data type worked on by the defect detection algorithm, i.e. color, grey-

scale, binary, etc. The next column demonstrates whether the algorithms are defect

specific or general purpose, i.e. able to detect all defects without knowledge of specific

types of defects. The Detection Method column specifies whether the approach falls into

one of the three main categories: Template-Matching, Rule-Based, or Hybrid. The %

Inspected column indicates the area inspected by the visual system. If the defect detection

and false alarms rates are reported, they are included in the next two columns and a

description of the main technology used to accelerate computational processing is listed

in the last column.

As an example, automatic visual inspection is very common in the textile industry.

While textile inspection and inspection of printed products share some characteristics, the

main difference is that textiles generally contain repeated patterns which can be

characterized and statistically analyzed. In addition, defects in textiles fall into well-

defined categories7 which make it less difficult to develop defect-specific detection

algorithms. A recent survey of fabric defect detection looked only at uniform textured

materials (non-printed textures) and focused on the difficulty and myriad approaches to

finding differences even when there are not random or patterned textures8.

6

There are some interesting results to be seen from these tables. First of all most of the

Offset Print systems use a template-matching approach while the textile and general

Web-Inspection systems tend to use the Rules-Based approach. The exception is Lace

Inspection. Lace typically contains more complex patterns and defects, so the Rules

based approach is probably more difficult in terms of discovering and generating the

appropriate statistics. PCB inspection systems tend to favor template-matching for

inspection of patterned wafers. These patterns can be repetitive, for example, memory

cells, or more random patterns for logic circuits6. In the latter case, a template-matching

scheme makes more sense because the logic patterns on a printed circuit board are

usually complex.

Many different algorithms are used in the defect detection component of each system.

The most popular appear to be morphology for noise reduction or defect enhancement

and thresholding based on experiments or some other a priori knowledge about the

system. The defect detection rates reported are generally good (somewhere between 80%

and 100%). The false alarm rate is seldom reported, making it difficult to draw

conclusions on the effectiveness of these systems. Those papers that did report a false

alarm rate, reported relatively small numbers, but did not indicate how the rate was

calculated and whether it was within specification or tolerance levels for the system.

Table 6 is included to demonstrate the types of systems that are in development, but not

yet demonstrated on real systems. The table contains a series of papers that describe

algorithms designed specifically for inspection purposes and is similar to the preceding

7

tables on complete systems. From the table we can see similar patterns of detection

methods for inspection item: most of the textile inspection algorithms are rule-based and

depend on statistical properties of repeated patterns.

Our system, as designed, uses a template-matching approach for both general purpose

and defect specific defect detection. In comparing our solution to existing systems, ours

is most similar to offset print or lace inspection systems, although none of them deal with

variable data. Finally, many of the systems we looked at operate off-line and therefore do

not have the strict real-time requirements as our VDP inspection system.

System Advantages

The two most important benefits of adding an automatic inspection system for defects to

a variable data printing press include a decrease in the amount of wasted consumables

and allowing a single operator to monitor more than one press at a time.

In addition to these benefits, there are other benefits to using an automated defect

detection system. Tests have shown that manual (human) inspection is about 80%

effective9, and only when the inspection process is highly structured and repeatable.

Depending on the customer requirements, 100% visual inspection may be necessary. For

example, the pharmaceutical industry has a requirement of 100% inspection rate for all

medicinal labels, as an error in labeling could have fatal consequences.

8

System Solution

Our solution is to use hardware and software that automatically analyzes prints and alerts

the press operator when a defect is detected. Our solution compares the digital image of

the job to each print at line speed. A line scanner, designed to handle 320mm x 464mm

sheets, is placed at the output of the press for fast acquisition of an image of each print.

This scanner has been designed using off-the-shelf technologies. There are six main

components to the detection system:

 an off-the-shelf line scanner for acquiring an image of each printed sheet as it

comes off the press

 acquisition of reference and scanned images

 alignment of the reference image to the image of the scanned printed image

 defect detection

 image processing hardware and software for real-time processing of image data

 decision function and operator alert in the event a defect is found

The process is as follows: A printer raster-generating device receives the digital job at a

resolution of 812.8 DPI (dots per inch or 320 dots/cm) for imaging onto a photo imaging

plate (PIP). At the same time a series of downscaled image files containing CMYK color

separations are sent to the image processing module of the defect detection system for

conversion to RGB image format. Meanwhile, the image is sent to press for printing.

Once the print exits the press, an on-line scanner captures the entire print and sends the

9

image data through a specialized image processing board and then onto the main defect

detection system where it is registered with the reference image.

Figure 1 contains a block diagram of the system software. The digital image used for the

print job is input into the defect detection system concurrent with the actual print job. As

the print comes off the press it is scanned and the scanned image is sent to the registration

module of the print defect detection system. Once registered, the defect detection

algorithms are applied to the images and the results are sent to a decision function that

determines the probability that a defect exists. Finally, the results can be forwarded to

defect diagnostics, which will help in determining what caused the defect.

Figure 1 - Print Defect Detection Solution-Software

Image Acquisition

An important piece of the automated VDP inspection system is image acquisition and

there are several requirements any solution investigated must meet. A major requirement

for the inspection system is that additional costs should be kept to a minimum. In

10

addition, acquisition must be fast enough to capture a print at press-speed at a resolution

that does not obscure defects. Finally, the system must be able to capture 100% of the

print in both the process (paper travel) and cross-process directions.

During the investigation phase, we determined that a line scanner was the most

economical solution. A prototype scanner was built using a scan unit from HP’s All-In-

One product in an effort to keep down costs. This scanner has a scan width of 310mm

which almost covers the entire print format. The line CCD maximal resolution is 600

DPI, however, to handle a 320mm x 464mm each second, scanning resolution is limited

to 52 DPI in paper travel direction.

Digital Representation of the Reference Image

The automated defect detection system acquires a reference image for comparison to the

print going to the press. Each print is potentially different; therefore a reference image

must be generated for each. We compare raster images to avoid layout/format related

problems. The simplest and most efficient approach is to use the same image sent to the

mechanism that actually prints the job. This alleviates the need to deal with different

formats such as PDF.

The raster image processor is responsible for generating the print images from files which

are subsequently used by the writing head on the press. Typically this is an 812 DPI

image; however, the press software also has the ability to generate downscaled versions

of the image. Our algorithms, from registration to defect detection rely on 150 x 52 DPI

11

images for fast processing. The software can be configured to generate the downscaled

images which are stored on disk. Each print consists of four color separations and

therefore a separate file for each of cyan, magenta, yellow, and black is generated. The

inspection software then picks up those files, performs a simple CMYK to RGB

conversion and generates a reference image for use in the rest of the inspection system.

This is an asynchronous process that depends only on the production of the four color

separation files.

Image Registration

Once a reference image is available and the potentially defective image is acquired, the

next step in detecting defects is to register the reference image to the potentially defective

image. Our registration algorithm uses a modified form of the dual-Gaussian fitting

thresholding technique originally proposed by Kittler and Illingworth 10 to create binary

maps while allowing us to quickly generate regions in the image. Regions are connected

components generated from the map of the sub-threshold (black) pixels (after smearing to

eliminate the effects of specular noise). Solid regions are larger (>1 square inch) regions

typical of photos, tables, and graphics; while non-solid regions are the smaller regions

typical of text. The edges of the solid regions, together with the centroids of the non-solid

regions, allow us to de-skew and align images very quickly, a critical requirement of the

entire system.

Rather than finding the skew of both images, we find the differential skew. Skew values

are determined by finding the angles along the edges of solid regions and between the

12

centroids of the non-solid regions for both the reference and defective images. By looking

at all region combinations (i,j) from 0 to the number of non-solid regions, we find the

angle between the centroids of the regions:

current_angle = atan(ydelta / xdelta);

//Note: atan 0/x, x/0, or 0/0 cases handled separately

current_angle *= inverse_of_angle_increment; //increments per degree = 5

// or 0.2 accuracy per degree

current_index = 225 + RoundedValue (current_angle);

225 above is 45 x 5 because we used angle accuracy to the nearest 0.2 degrees. 225 is the

index for 0 degrees (indexes go from 0 to 450, where index 0 represents -45 degrees and

index 450 is +45 degrees.) Every 0.2 degrees in the range [-45, 45] degrees is checked.

Skew values for the solid regions are added to those for the non-solid regions. Instead of

using the centroids, however, each boundary pixel for the solid regions is used for angle

calculation.

The two arrays of 451 angle increments for the reference and potentially defective image

are then compared by finding the maximum number of matched bins (which corresponds

to the best correlation) between the two angle histograms, denoted pAngles1 and

pAngles2 in the following code fragment.

for(n = 0; n< nAngles; n++)

{

marker = n - midpoint;

for(p = marker; p < (marker+nAngles); p++)

13

{

if((p>=0) && (p<nAngles) && ((p-marker)>=0) && ((p-

marker)<nAngles))

{

min = pAngles1[p-marker];

if(pAngles2[p] < min)

min = pAngles2[p];

matchedBins[n] += min;

}

}

}

The maximum value of matchedBins is offset from -225 to 225 (we assume they are

within 45 degrees of each other) from the midpoint (225). From it we can directly

calculate the differential skew.

For example, consider the following two histograms:

pAngles1[0,0,4,5,2,3,0]

pAngles2[3,6,1,3,1,0,0]

When pAngles2 is offset from pAngles1 by -3 pixels we get matched bins from the

following alignment:

pAngles1[0,0,0,0,0,4,5,2,3,0]

pAngles2[3,6,1,3,1,0,0,0,0,0]

14

In this case, there are no matched bins as there is a 0 at each position between them.

However, when pAngles2 is offset from pAngles1 by -2 pixels, we get the following

alignment:

pAngles1[0,0,0,0,4,5,2,3,0]

pAngles2[3,6,1,3,1,0,0,0,0]

Now we see that in the sixth position we have matched bins and the sum is 1. Continuing

in this manner for -1, 0,+1, +2, and +3 pixels gives the sums 3+1=4, 1+3+1=5,

4+1+2+1=9, 3+5+1+3=12, and 3+2+1=6. Therefore, when pAngles2 is offset by +2

pixels, we get the best alignment (matched bins = 12).

allbins

SbinpAnglesbinpAngles
0

21)}(),({

Equation 1: Bin Alignment

Each step is done for all of the color planes and this allows us to more precisely define

the angle difference. If the differential skew angle is nonzero, we rotate the second

(defective) image to match the first image using standard 3-shear rotation. Both images

are then aligned in the x and y directions using the same algorithm above for determining

the maximum matched bins. Four aligned and de-skewed images are created for use by

the defect detection algorithms. These are the R, G, and B grayscale images together

with the intensity channel.

argmax,shift S
|S| < length of
array

15

The image registration algorithm also generates several error maps that we may be able to

use in the final decision function. Intensity and color difference maps are created by

subtracting the fully-aligned defective images from the reference images. Hue

approximates are used rather than raw color channels.

The hue approximates are the subtractive colors of R-G, G-B, and B-R for sRGB. Using

these subtractive colors allows us to find defects of any hue and are less targeted to the

RGB primaries. The pixels in the defective image are then back-projected to the

reference image and a search is done in a local neighborhood of the back-projected point

for the minimum difference in intensity, R-G, G-B, or B-R. The benefits realized by this

include:

 The number of false alarms are reduced as slight mis-registrations are overlooked

 Only defects which stand out relative to their near surroundings are targeted

 The effects of Grey-level differences in edges are largely overcome

Finally, we add the differences in intensity, R-G, G-B, and B-R to the same defect map

and then threshold the summed defects. A binary map and a file containing defect

regions as XML class objects are created for use by downstream defect detection systems

to disambiguate real defects from false alarms.

Defect Detection

Given a reference image, the problem of detecting defects becomes a problem of finding

differences between the two images. A naive approach is to subtract one image from the

16

other. However, a couple of factors make this approach impractical. First, the scanner

may introduce artifactual differences between the images. Second, registration is

frequently imperfect and can introduce errors.

One approach we use for our experiments is based loosely on the Structural Similarity

Information Measure (SSIM11). This general-purpose measure of image quality takes into

account the Human Visual System (HVS). An additional, complementary detection

method looks for specific defects, namely scratches, which have been characterized as

common on the press. Scratches are sometimes difficult to detect with general purpose

detection methods because of the typically low-contrast nature of these types of defects.

Once the reference and potentially defective images are registered and pre-processed (e.g.

noise removal, blurring, etc.), defect detection is performed using the two images. The

subsections below describe two algorithms we currently use: structural dis-similarity and

the scratch detector.

Structural Dis-similarity

The structural dis-similarity measure is based on the idea that every region in the print

image should have a similar region nearby in the reference image, unless it contains a

defect. The most prevalent similarity measures, such as difference or sum squared error,

are easy to understand and use, but they do not correspond well to perceived visual

quality12,13. Our defect detection algorithm uses ideas from SSIM 11 which assigns a

similarity value to two images (Equation 2). SSIM has three components: a luminance

17

measure (Equation 3), which compares the mean values of two regions; a contrast

measure (Equation 4), which compares the standard deviation of the two regions, and a

structural measure, which compares the correlation of the regions (Equation 5).

)],([)],([)],([),(yxsyxcyxlyxSSIM

Equation 2

1
22

12
),(

C

C
yxl

yx

yx

Equation 3

2
22

22
),(

C

C
yxc

yx

yx

Equation 4

3

32
),(

C

C
yxs

yx

xy

Equation 5

Where:

))((
1

1
1 yi

N

i xixy yx
N

Equation 6

Our algorithm performs an additional local registration for each pixel by looking for the

best match between images using the SSIM measure. Searching for the best local match

is related to techniques from optical flow14. Once we have the best match between the

digital reference and scanned image, we then measure the dis-similarity between the

images. Our measure, Structural Dis-Similarity Index Measure (DSIM) uses only the

contrast and structure measures to determine if two pixels are sufficiently different from

18

each other to signal a defect. During experimentation we discovered that while luminance

is helpful for finding the closest pixel match, it is actually a hindrance when trying to

determine whether a defect is present or not. Ignoring mean differences when looking for

true defects reduces luminance fluctuations that may show up as defects but were actually

introduced during the scan process. The basic algorithm is as follows:

For each pixel p in input image:

k x k neighborhood: x = x(p), centered at p:

1. Find best matching k x k pixel neighborhood y =

y(p)in reference image within window of size W x W

2. Compute DSIM:

),()),(1(yxsyxc

Equation 7

The potential results of this computation need to be explained. The contrast measure can

vary between 0 and 1, with 0 meaning the two points in the images are different and 1

indicating similarity. When a defect is present the pixels containing the defect would

have deviation measurements that are different from those on the other image. The

structure measure may vary between -1 and 1, with -1 indicating a negative correlation

and 1 indicating similarity. Any value close to the zero, whether positive or negative is

an important indicator of dis-similarity.

Table 1 shows the expected results of the DSIM algorithm based on the values of the

structure and contrast similarity measures. These measures are rarely exactly -1, 0, or 1,

but a value between them. It does not seem intuitive that if either the structure or contrast

19

variables contain 1 (meaning they are very similar) and the other variable contains 0; the

answer should be “Maybe”. In fact, if a defect exists, we expect both variables to be

highly dissimilar, even though they measure different attributes of the image. The most

obvious case where this situation might occur is when the defect contrast is low with

respect to the background on which it sits. The contrast measure would be similar on

both images, but the structure measure should show low correlation between them.

Table 1: Defect Detection Result Map

Structure Val Contrast Val (1-Contrast) |(1-Contrast)*Structure| Defect?

-1 1 0 0 Maybe

-1 0 1 1 Yes

0 1 0 0 Maybe

0 0 1 0 Maybe

1 1 0 0 No

1 0 1 1 Maybe

The result of applying this measure is a kind of difference image. This image is then

thresholded to obtain a binary error map. The structural dissimilarity measure is

particularly adapted to tune out noise and respond to mismatched edges. For example,

Figure 2, part (a) illustrates a typical print in RGB colorspace. Figure 2, part (b) contains

the portion of the print containing a defect in the green channel. Figure 2, part (c) shows

the error map generated by DSIM for the error. The small defect can clearly be seen and

easily detected as a defect.

20

Figure 2: DSIM-- (a) Defective Image; (b) Enlarged image of defect; (c) DSIM Results

Sparse Projection-Based Scratch Detector (SPSD)

DSIM is a general purpose defect detector in that defects of all shapes and sizes are

caught by it without any defect-specific knowledge of the defects themselves. As we will

see in the Experimental Set-up & Results section, the DSIM algorithm missed 27% of the

defects present in 454 prints. The unique characteristics of the majority of the missed

defects, called scratches, suggest using a dedicated scratch detector that performs better

than a general-purpose defect detector. The majority of these scratch defects have several

characteristics in common. They are usually very thin and they may have very light

contrast with the surrounding background, which can be textured or noisy. In other

words, these defects have a very low signal-to-noise ratio. They are similar to image

features such as line edges and they may appear across the entire page or as a local

segment. In order to overcome these difficulties, we use the directional coherence of

these scratches and the fact that the direction of the scratch is usually known in advance.

The main idea of our approach is to improve contrast by projecting (summing) pixels

along the scratch.

21

Figure 3: Block diagram of scratch detection method

Figure 3 contains a block diagram of the scratch detection algorithm. The input to the

algorithm consists of the reference and potentially defective images. The first block of the

algorithm divides reference and tested images into overlapping segments. The segment

size can either be fixed or, it can be chosen adaptively. The second block is the

morphological projection operation; in order to improve delectability of low contrast

defects we use morphological operations revealing local maxima (minima) in reference

and tested images. Then, each segment of the maps of local maxima is projected

(summed) in a particular direction. This effectively represents a 2 dimensional to 1

dimensional data transformation. An alternative, more computationally efficient way to

perform morphological projection is to first perform summation, and then apply a 1

dimensional morphological operation that finds local maxima. The third block of the

algorithm takes 1 dimensional derivatives of the projected segment data, and aligns the

reference and tested projection derivatives. The fourth block calculates a similarity

measure between the reference and tested projection derivatives. This similarity measure

is sparsity related and reflects the difference in the number of spikes in the corresponding

segments. In our experiments we used kurtosis as a sparsity measure. Finally, the

similarity measure is subject to a thresholding operation. The threshold value is

22

proportional to the reference segment activity. This effectively reduces false detection of

intrinsic image features such as line segments and various edges. Segments wherein the

difference is greater than a predefined threshold are marked as defective.

A map of defective segments is generated as output from the process. Figure 4 shows an

example of the error map output by the scratch detector. The highlighted blocks show

where defects were found in the image.

Figure 4: Results--Error map of Scratch Detection method

Real-time defect detection

The defect detection system operates as part of a variable data printing system and

therefore needs to operate in real-time. This requirement translates to a processing rate of

23

at least one page per second in current industrial printing systems. We focused on the

DSIM computation as this is the most expensive part of the system. The algorithm

compares block-similarity and searches for the best matching block. This operation is

time consuming since it requires a window of pixels for every pixel in the image to be

compared to the corresponding window in the reference image. The key observation in

accelerating DSIM is that it is a massively parallel algorithm. Per-pixel decisions only

depend on a small number of nearby pixels, and the computation is order independent.

Moreover, the algorithm is compute-intensive and not memory bounded. These

characteristics make DSIM a perfect candidate for acceleration on Graphics Processing

Units (GPUs). Implementing computationally intensive algorithms on GPUs is a trend

that becomes more and more prevalent, and this is a good example where the

characteristics of an algorithm and a computing environment match.

We implemented the algorithm using the CUDA15 computing interface from Nvidia.

CUDA gives the programmer low level access to the massive computational capacity of

the GPU. The implementation follows closely after the algorithm, and achieves

parallelism that is dictated by the number of processing units in the GPU. To reduce

memory access each image is stored in texture data storage which is cached and

optimized for a two-dimensional memory access pattern. Additionally, DSIM for each

pixel is computed for every color-channel independently. This significantly improves the

memory access time since each pixel is only accessed once. After the R, G and B per-

24

channel DSIM values are computed their values are combined with a logical OR operator

to yield the final DSIM decision.

The code was tested on Geforce 8800 GTX and Quadro FX 3700 graphics cards. It is

able to achieve 3.75 Mpixel/second data rate. When compared to a serial C

implementation that was not optimized and tuned, we see a significant improvement of

up to an order of magnitude.

Decision Function

A critical part of the system involves notifying the operator that a defect has occurred and

the seriousness of it (press-stopping or not). The decision function takes results generated

by the detection algorithm and uses it as input to the decision function. Because the

defect map is binary, morphological filtering is applied efficiently to reduce the noise and

remove visually imperceptible defects. Morphological filtering is commonly used for

reducing noise without destroying important information in the image.

We use a 3x3 square Gaussian filter as the structure element for both the open and close

morphological operations. Once the image is filtered, we do a simple projection in both

the horizontal and vertical to determine if real defects occur on the page. In our

experimental results, if more than two pixels are “on” in a single row or column, we

trigger a defect warning. Size and shape of the defect can subsequently be used to

determine whether the defect warrants an automatic shut-down of the machine or a

warning to the operator without affecting the current print job. Additionally, the location

25

of the defect can be quickly determined from the results of the morphological operations.

This is helpful in a closed-loop system that automatically diagnoses the printer problem.

Experimental Set-up and Results

We conducted a large scale experiment to test our detection algorithms. Our experiment

consisted of 454 scanned images of 320mm x 464mm size prints from the HP Indigo

press. While most contain defects, 22 randomly placed images did not and were included

to ensure the algorithm would not find defects on images that contained no defects (i.e.

false alarms). Reference images were generated by scanning good prints on the same

scanner used for scanning defective prints. Using a printed reference avoids technical

difficulties related to the format of the digital data. At the same time, technical challenges

related to comparing images, such as registration, are retained.

During registration we find the differential skew, as this decreases the chances for error.

This claim is based on a test of 40 differently-skewed pairs of files for which the skew is

considered difficult to determine. The test showed that when using differential skew, the

correct skew value was determined correctly for 92.5% of the difficult files. When using

absolute skew, the skew on files with one skewed image was incorrectly identified for

15% of the cases. Difficult files where skew angle errors differed relatively between two

files resulted in a 20% rate of incorrectly identified skew values.

As part of the registration, a set of four images are generated for both the reference and

the potentially defective images, corresponding to the red, blue, green, and intensity

26

planes of the image. The DSIM algorithm is then run on each of the color planes

separately. The resulting error images are OR'ed together to obtain a final error map.

During analysis we found that all four color planes were necessary because different

defects show up in different color planes due to the highly variable nature of the prints

themselves.

Table 2 summarizes the detection results of the DSIM algorithm on 454 samples prints

containing 1653 defects. The table shows that the total number of defects found in 454

prints was 1193. This represents about 73% of the total number of defects. Most of the

defects that were missed were low-contrast defects. Low-contrast defects are those

defects with intensity values that are very close to the intensity values of the background

on which it sits. Many of the low-contrast defects missed are defined as “scratches” and

were found by the sparse projection-based scratch detector.

For DSIM, the rate of false alarms is low at 1%. It should also be noted that most of the

false alarms were of a single type that were traced to a problem with the scanner used to

scan in the images. The Sparse Projection-Based Scratch Detector found the majority of

the defects missed by DSIM.

Table 2: DSIM & Scratch Detector Results

Type Total Defects Total
Found

Total Missed Detected False Alarms

DSIM 1653 1193 460 72% 1%

Scratch Detector 325 217 108 67% 0.036%

Union 86%

27

While this large-scale experiment is a good test of the algorithms developed so far, it

should be kept in mind that it is not a substitute for a test of the system. Obviously, a test

of the system would include the prototype scanner and some way of determining the

severity of the defect.

Recently, we have implemented the system using an HP Indigo press with an inline

scanner attached to a bridge at the output of the press. This was a preliminary test used to

determine the feasibility of the algorithms in a real environment. While mechanical

issues prevented us from running a large-scale experiment, we were able to confirm that

the software components worked well and runtime was very close to that required. The

following example illustrates the results we typically observed.

Figure 5 shows a cropped version of both a reference (left) and defective (right) image.

The defect is a very small white spot within the letter “i” in the word “Action!”. The

defect can be seen in Figure 6 as the small whitish area in the right part of the dot.

Figure 7 shows both the contrast and structure measures for this portion of the image. In

these images, higher values (white) indicate higher similarity between the images. The

contrast map (right) shows the defect quite clearly. It is harder to see the defect on the

structure map; however, the values for the defective pixels are lower than those

surrounding them.

28

Figure 8 shows the entire defect map for the image. We use this map to determine

whether a defect exists or not. The small defect on the dot of the “i’’ shows up near the

middle and right of the figure. The figure also shows that there are many other

differences between the images. The most obvious are the edges of the images on the left

and bottom. This is due to a slight scaling issue between the defective and reference

images. We use the decision function to remove this type of false alarm and noise to

clean up the defect map for reporting true defects.

Figure 9 shows the results of applying morphology on the defect map of Figure 8. The

figure is zoomed to show the portion of the image containing the defect. The real defect

was found and additionally, a line at the very bottom of the image. This is a real artifact

caused by a situation in which the scanned image is actually shorter than the scan bed. It

should also be noted, that no false alarms occurred on this image.

Figure 5: Images-- (a) Reference Image; (b) Defective Image

29

Figure 6: Zoomed Defect on dot in "i" in Action Word

Figure 7: Similarity Measures: a). Structure, b). Contrast

Figure 8: Results DSIM - Whole Image

30

Figure 9: Defect Map after Morphology: Right Half

We were able to run enough samples to show feasibility. Interestingly, most of the

software worked very well and timing was very close. The most valuable information we

discovered during these tests were new technical challenges that need to be addressed in

building a fully functional system. One problem involved the prototype paper handling

system which caused the paper to frequently jam prior to going under the scan head. This

resulted in severe skewing problems from which our registration algorithm was unable to

recover. There are also various parameters which are user-settable on the press, for

example scale, which are not necessarily communicated to the detection algorithm. This

causes problems with registration later because the scale of one image may be very

different from the other. This test was instrumental in developing our path forward as we

discovered issues that could not be predetermined using simulations.

31

Conclusions and Future Work

We have described an on-line, automatic defect detection system for VDP prints. We

have shown work-to-date and demonstrated that our algorithms consistently detect a

variety of defects with a very low false alarm rate. We carefully analyzed a set of results

from an experiment using the DSIM and scratch detection algorithms on 454 images. We

have also successfully demonstrated feasibility by testing the system on an HP Indigo

commercial press.

In the future there are a few important issues that need to be addressed: .

 Tune existing algorithms for best performance in terms of defects identified and low

false alarms.

 Develop additional detection algorithms for low-contrast, defects which are still not

easily detected.

 Compensation for potential mismatch between digital and printed images:

o Stretching/Skew from belts, paper, blanket, writing head

o Vibration on the press

o Dot Gain

o Illumination and reflection

 A large-scale experiment using a working commercial press needs to be run in order

to determine additional issues that should be resolved before a fully functional defect

detection system can be complete.

32

Acknowledgements

We would gratefully like to acknowledge the help of Avi Malki of HP Indigo in making

the testing of our latest version of the system functional. Without his unflagging support

and hard work, the machine test would not have been possible. In addition, we would like

thank Rodolfo Jodra of Hewlett-Packard Company for his effort in bringing the scanner

to fruition. Many other people at HP Indigo worked on the hardware aspects of the

system and we would like to thank them as well.

33

Appendix A – Tables

Table 3: Inspection Systems

System Image
Type

Defects
Detected

Detection
Method

%
Inspected

%
Detection

Rate

False
Alarm
Rate

Real Time

Offset Print
16 4 color All Template Match 100% NR* NR* NR*

Offset Print
17 grey-level

map
All Template Match,

Image Subtraction
100% NR NR On-Line, Image

Proc. boards
using SIMD

Offset Print
18 RGB

converted to
CIELAB

dotgain,
density,

registration

Template Match Patches NR NR OffLine

Offset Print
19 grey-level

map
All Template Match

Subtraction

100% NR NR CPU with INTEL
IPP

Offset Print
20 grey-level

map
All Template Match

Subtraction

100% NR NR NR

Printing
21 luminance

channel
All Template Match,

subtraction, adaptive
thresholds

< 100% 95% 0.5% OnLine

Web-Inspect,

General
22

grey-level
map

All Rule-Based, Auto-
regression, multi-

level thresholding,
defect-free reference

100% NR NR FPGA Video
Processor for
data acquire

Web-Inspect,

Paper
23

grey-level
map

All Rule-Based, feature
detect&

segmentation, self-
organizing map

(SOM)

100% NR NR algorithms
implemented in

pipelined
architecture

using VHDL

Textile
24 grey-level

map
All Rule-based, match

with learned
characteristics of

defect free samples

100% 100% 0.0 OffLine

Textile
(Wool)25

RGB +
Human-

Visual
Color space

All Rule based, adaptive
thresholds using

defect free samples,
feature extraction

100% 90% NR video acquire &
processing board

Textile
26 grey-level &

binary
All Rule based, adaptive

thresholds using
defect-free samples,

feature extraction

100% ~80% NR video acquire &
processing board

Textile
27 grey-level &

binary
All Rule-based,adaptive

thresholds(2) using
defect-free samples,

noise filtering

100% 91% NR DSP & FPGA
boards

Textile (Lace)
28

grey-level &
binary

All Template Match,user-
settable thresholds,

Morphological
filtering

100% NR NR OffLine,
Algorithmic

speed-up

* NR – Not Reported in publication.

34

Table 4: Inspection Systems - Continued

System Image
Type

Defects
Detected

Detection
Method

%
Inspected

%
Detection

Rate

False
Alarm
Rate

Real Time

Textile
29 Wavelet

transform,
grey-level,

& binary

All Rule-Based,
search for

disruptions in
patterns,
attenuate

background,
accentuate

defects

100% 89% 2.5% DSP image
acquire, dual

frame
processing

Textile(Pattern)
30 Grey-level

& binary
All Template

Match, adaptive
thresholding (2)

based on
statistical parms

of ref image,
erosion

100% 86.2% 4.3% DSP board,
FPGA

Textile(plain
weave)31

Grey-level
& binary

All Hybrid,Image
preprocessing

(noise reduce,),
local variance,
median filter,

adaptive
threshold

100% 91% 7% Frame
grabber, 2
CPUs for

parellel
processing

Texture(wood)
32 Grey-level

& binary
Defect

Specific
Rule-Based,

Pyramid
linking(multi-
resolution) for
segmentation,
trained Bayes

classifier

100% 81% NR VAX 11-
785, NCUBE

sys with 8
processors

PCB
33 Grey-level

& binary
Defect

Specific
Hybrid, Design

data as
reference,

image
subtraction,

morphological
operations,

statistical
inference on

defect

100% 95% 0.5% Specialized
image

processor

PCB
34 Grey-level

& binary
Defect

Specific
Template

Match, diffs
between 2 parts

PCBs using 2
types lighting

NR 100% 5% Algorithms
implemented
in hardware

PCB
35 Grey-level

& binary
NR Template

Match,
Morphology to

create
difference maps

from defective
&reference
images not

precisely
aligned,

thresholded

NR 95% 5% FPGA

35

Table 5: Inspection Systems - Continued

System Image
Type

Defects
Detected

Detection
Method

%
Inspected

%
Detection

Rate

False
Alarm

Rate

Real
Time

Misc.(Tiles)
36 4 color

channels
Defect

Specific
Hybrid,

Template match
for patterned
tiles, texture

analysis based
on auto-

regression for
textured.

Statistical
estimates from

good images

All NR NR NR

Misc.(Color CRT)
37

Y, PB, PR
channels

Defect
Specific

Rule-based,
white

conformity
measure based
on contrast &

luminance and
compared with

results with
human subjects

All NR NR NR

Misc.(flat metal)
38 grey level

& binary
All Rule-based:

Segmentation,
morphological

ops (noise
reduce), expert

sys for
classification

All NR NR MATROX
IP board,

DSP
processor

Misc.(stampings)39 grey level All Template
Match,Image

subtraction,
preprocess:

blur/Smooth by
Sobel edge

detect, ID by
region connect,

threshold,
clustering

All NR 2% NR

36

Table 6: Inspection Algorithms

Algorithm Image Type Detection Method %
Detection

Rate

False Alarm
Rate

Web-Inspect, Non-woven
40 luminance

channel
Rule-Based, Statistical estimates NR NR

Textile
41 NR Rule based, Detect Outliers

outside regular features
NR NR

Textile
42 grey level

image
Hybrid, Feature vector and co-

variance matrix extracted. Z2 for
each window thresholded for

significance level

NR NR

Textile
43 grey level

image
Rule-Based, Trained NN, truth

hand-generated
NR NR

Textile
44 grey level

image
Rule-Based, Statistical parameters

determined from training on
samples

100% 0

Textile
45 grey level

image
Rule-Based, Linear NN & NN

feature vectors with PCA
(Principal Component Analysis)

to reduce vector size

NR NR

Textile, patterned
46 grey level

image
Template Match, image

subtraction of wavelet transform,
thresholding, noise filtering

97.7% NR

7
Textile grey level

image
Rule-Based, feature extraction

based Auto-correlation function,
SOM classification

NR NR

Web (Paper)
47 grey level

image
Rule-Based, feature

extraction:local binary patterns,
feature reduction, SOM

classification

88.7% -
99.8%

NR

Texture (Granite)
48 RGB color and

CIELAB
transform

Rule-Based, Probability based on
color and blob inspection

NR NR

PCB
49 binary images Rule-Based, Segmentation using

mathematical morphology
NR NR

Misc.(Leather)
50 grey level

image
Rule-Based, Edge detection to ID

edges, accept/reject edge as defect
based on pooled variances of

areas around defects, 2 thresholds
determined apriori

NR NR

Misc.(Machined Parts)
51 grey level

image
Rule-Based, feature extraction:

Morphological ops, recursive
adaptive thresholding algorithm

NR NR

37

1 D. A. Silverstein and J. E. Farrell, ICIP'96, IEEE International Conference on Image

Processing, SOMEWHERE, 881--884, (1996).

2 Timothy S. Newman and Anil K. Jain, Computer Vision and Image Understanding 61,

231--262 (1995).

3 Shang-Hong Lai and Ming Fang, Real-Time Imaging 5, 3--14 (1999).

4 Madhav Moganti and Fikret Ercal, Computer Vision and Image Understanding 63,

287--313 (1996).

5 Roland T. Chin, in Computer Vision: Theory and Industrial Applications, edited by

Carme Torras, Vol. 1, p.377--404.

6 Byron E. Dom and Virginia Brecher, Machine Vision and Applications 8, 5--19

(1995).

7 A. S. Tolba and A. N. Abu-Rezeq, Computers In Industry 32, 319--333 (1997).

8 Ajay Kumar, IEEE Transactions on Industrial Electronics 55, 348-363 (2008).

9 Bill Smith, IEEE Spectrum 30, 43--47 (1993).

10 J. Kittler and J. Illingworth, Pattern Recognition 19, 41--47 (1986.).

11 Zhou Wang, Alan C. Bovik, Hamid R Sheikh, and Eero P. Simoncelli, IEEE

Transactions on Image Processing 13, 600--612 (2004).

12 Alan C. Bovik, Zhou Wang, and Ligang Lu, IEEE International Conference on

Acoust., Speech, and Signal Processing, Orlando, FL, 3313--3316, (2002), edited by

Billene Mercer IEEE, (2003).

13 Ahmet M. Eskicioglu and Paul S. Fisher, IEEE Transactions on Communications 43,

2959--2965 (1995).

38

14 B.K.P. Horn and B. G. Schunk, Artificial Intelligence 17, 183--203 (1981).

15 NVIDIA CUDA Compute Unified Device Architecture. Programming Guide, version
2.0 (2008)

16 Petra Perner, Machine Vision and Applications 7, 135--147 (1994).

17 F. Torres, J. M. Sebastian, L. M. Jimenez, and O. Reinoso, Image and Vision

Computing 16, 947--958 (1998).

18 Hansjorg Kunzli, Freddy Deppner, Karl Heuberger, and Yufan Jiang, SPIE, Color

Imaging: Device-Independent Color, Color Hardcopy, and Graphic Arts III, San Jose,

286--291, (1998).

19 Hui-Chao Shang, You-Ping Chen, Wen-Yong Yu, and Zu-De Zhou, International

Journal of Advanced Manufacturing Technology 33, 756-765 (2007).

20 N. G. Shankar, N. Ravi, and Z. W. Zhong, 4th International Conference on Control and

Automation, Montreal, Canada, 794-798, (2003).

21 F. Trucheteta, IEEE International Conference on Industrial Electronics, Control

and Instrumentation, Maui, Hawaii, 1882--1887, (1993).

22 S. Hossain Hajimowlana, Roberto Muscedere, Graham A. Jullien, and James W.

Roberts, Real-Time Imaging 5, 23--34 (1999).

23 Jukka Iivarinen, Katriina Heikkinen, Juhani Rauhamaa, Petri Vuorimaa, and Ari Visa,

International Journal of Pattern Recognition and Artificial Intelligence 14, 735--755

(2000).

24 Aura Conci and Claudia Belmiro Proenca, ACM 14th International Conference on

Software Engineering and Knowledge Engineering, Ischia, Italy, 707--714, (2002).

ACM, New York, (2002).

39

25 Liwei Zhang, Abbas Dehghani, Zhenwei Su, Tim King, Barry Greenwood, and Martin

Levesley, Real-Time Imaging 11, 257--269 (2005).

26 Che-Seung Cho, Byeong-Mook Chung, and Moo-Jin Park, IEEE Transactions on

Industrial Electronics 52, 1073--1079 (2005).

27 Panagiotis Mitropulos, SPIE-IS\&T, Electronic Imaging, Machine Vision Applications

in Industrial Inspection, Machine Vision Applications in Industrial Inspection, VII,

San Jose, CA, 59--69, (1999), edited by Kenneth W. Tobin SPIE--The International

Society for Optical Engineering, (1999).

28 H. R. Yazdi and T. G. King, Real-Time Imaging 4, 317--332 (1998).

29 Hamed Sari-Sarraf and James S. Goddard, Jr., IEEE Transactions on Industry

Applications 35, 1252--1259 (1999).

30 Radovan Stojanovic, Panagiotis Mitropulos, Christos Koulamasand, Yorgos

Karayiannis, Stavros Kaubias, and George Papadopoulos, Real-Time Imaging 7, 507--

518 (2001).

31 Ahmed Abouelela, Hazem M. Abbas, Hesham Eldeeb, Abdelmonem A. Wahdan, and

Salwad M. Nassar, Pattern Recognition Letters 26, 1435--1443 (2005).

32 D. Brzakovic, H. Beck, and N. Sufi, Pattern Recognition 23, 99--107 (1990).

33 Haruo Yoda, Yozo Ohuchi, Yuzo Taniguchi, and Masakazu Ejiri, IEEE Transactions

on Pattern Analysis and Machine Intelligence 10, 4--16 (1988).

34 Yasuhiko Hara, Hideaki Doi, Koichi Karasaki, and Tadashi Iida, IEEE Transactions on

Pattern Analysis and Machine Intelligence 10, 69--78 (1988).

40

35 Hiroyuki Onishi, Yasushi Sasa, Kenta Nagai, and Shoji Tatsumi, IECON'02, IEEE

28th International Conference on Industrial Electronics, Control, and Instrumentation,

Seville, Spain, 2208--2213, (2002).

36 G. S. Desoli, S. Fioravanti, R. Fioravanti, and D. Corso, IEEE International Conference

on Industrial Electronics, Control, Instrumentation and Automation, Maui, HI, 1871--

1876, (1993).

37 Toshio Asano, Keisuke Kawame, Jun Mochizuki, and Nobuo Fukuhara, IECON'92,

IEEE International Conference on Industrial Electronics, Control, Instrumentation and

Automation, San Diego, 725--730, (1992).

38 C. Fernandez, C. Platero, P. Campoy, and R. Aracil, IECON'93, IEEE International

Conference on Industrial Electronics, Control, and Instrumentation, Lahaina, Hawaii,

1993, (1854--1859).

39 Ralf Langenback, Alexander Ohl, Peter Scharf, and Jorg Semmler, SPIE, Machine

Vision Applications in Industrial Inspection, IX, San Jose, CA, 9--19, (2001).

40 D. Brzakovic, N. S. Vujovic, and H. Sari-Sarraf, IEEE International Conference on

Robotics and Automation, Albuquerque, NM, 1--8, (1997).

41 Dmitry Chetverikov, 15th International Conference on Pattern Recognition, Barcelona,

Spain, 521--524, (2000).

42 George Mamic, 15th International Conference on Pattern Recognition, Barcelona,

Spain, 767--770, (2000).

43 Claus Neubauer, 11th International Conference on Pattern Recognition, The Hague,

The Netherlands, A688--A691, (1992).

41

44 Fernand S. Cohen, Zhigang Fan, and Stephane Attali, IEEE Transactions on Pattern

Analysis and Machine Intelligence 13, 803--808 (1991).

45 Ajay Kumar, Pattern Recognition 36, 1645--1659 (2003).

46 Henry Y.T. Ngan, Grantham K.H. Pang, S. P. Yung, and Michael K. Ng, Pattern

Recognition 38, 559--576 (2005).

47 Topi Maenpaa, Markus Turtinen, and Matti Pietikainen, Real-Time Imaging 9, 289--

296 (2003).

48 K. Y. Song, J. Kittler, and M. Petrou, Image and Vision Computing 14, 667-683

(1996).

49 Seyfullah Halit Oguz and Levent Onural, IEEE International Conference on Robotics

and Automation, Sacramento, CA USA, 2696--2701, (1991). IEEE Computer Society

Press, (1991).

50 W. Wen and A. Xia, Pattern Recognition Letters 20, 315-328 (1999).

51 Frank Y. Shih and O. Robert Mitchell, IEEE International Conference on Robotics and

Automation, Philadelphia, PA, USA, 1764-1766, (1988). IEEE Computer Society

Press, (1988).

