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1. Introduction

The newsboy problem has played a central role at the conceptual foundations of stochastic
inventory theory, and variants of it have been used in analysis of decision problems – such as
capacity, allocation and overbooking – under demand uncertainty. In the classical newsboy
problem, a firm facing uncertain demand orders a quantity of a perishable item prior to
observing demand. If the demand realization is less than the ordered quantity, then the firm
will have excess inventory in hand that will perish. If demand turns out to be more than the
ordered quantity, then the firm will miss the opportunity of additional profit. In the well–
known characterization, the optimal order quantity, which balances the marginal expected
cost of ordering one more unit against the marginal expected revenue from satisfying an
additional demand, is a critical quantile of the demand distribution.

In the standard newsboy model, strategic interactions are assumed away by taking the
demand faced by a firm as a model primitive. In many practical situations, however, the
details of the market interaction does matter for the order quantity decisions. Some or all
of a firm’s unsatisfied demand can be served by other firms offering substitutes; and, vice
versa, a firm may be able to sell more than its initial market share in case the rival firm is
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understocked. Under such conditions, a firm’s payoff depends on rival firms’, as well as its
own, order quantities and appropriate analysis of optimal inventory decisions requires a game
theoretic approach. The resulting model, dubbed the competitive newsboy model, has been
studied in the literature starting with the seminal works of Parlar (1988), studying the case
where the firms’ initial demands are statistically independent, and Lippman and McCardle
(1997), studying the cases where the demands faced by competing firms are derived from a
general class of rationing rules applied to the total industry demand.

A natural extension of the competitive newsboy analysis involves incorporating informa-
tion asymmetry. Asymmetric information adds a new dimension to the competitive newsboy
problem. Firms may be asymmetrically informed in a competitive newsboy setting due to two
broad reasons. The firms may be privately informed about their cost and/or revenue struc-
tures. Alternatively, there may be asymmetric information regarding the market demand.
Alternative specifications for the key structural elements – e.g., the nature of information
asymmetry, the structure of the market and firm demands – span a number of interesting
classes of models. Among these are models of newsboy oligopoly, and models that allow
arbitrary statistical dependence in firm demands, and in cost structures.

In this paper, we study the competitive newsboy problem with asymmetric cost informa-
tion. The competitive newsboy model we study is built on Parlar (1988) and Lippman and
McCardle (1997). The industry demand is random. There are two firms among whom the
industry demand is split. Each firm has private information about their costs. If the demand
that is allocated to one firm exceeds the order quantity of that firm, a portion of the excess
demand spills over to the rival firm. As standard in analysis of games of incomplete infor-
mation, we use the Bayesian–Nash equilibrium as the solution concept. In a Bayesian–Nash
equilibrium each player’s strategy is a best response against the strategies of the competing
players.

The rest of this paper is organized as follows. In Section 2, we review the related literature.
In Section 3, we introduce a model of inventory competition under asymmetric information.
Section 4 presents our main results on the characterization of equilibrium and comparative
statics analysis. We present the full characterization of equilibrium in a parametric version
of the model under uniform demand distribution and a linear split rule in Section 5. We
conclude and suggest some avenues for future research in Section 6. All proofs as well as
detailed derivations are contained in the Appendix.

2. Literature Review

The literature on multiple item inventory problem with substitution dates back to the paper
by Mcgillivray and Silver (1978). However, the role of competition has not been studied until
the pioneering work of Parlar (1988). Parlar studies a competitive newsboy problem with
two firms managing two substitutable items facing independent demands. A deterministic
fraction of unsatisfied demand for each item can be substituted to the other item, if that
item has excess stock. It is shown that a unique Nash equilibrium exists. It is also shown
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that total profits of two competing firms are less than that would have been obtained if they
were to cooperate. Wang and Parlar (1994) and Karjalainen (1992) generalize the results of
Parlar for the 3 and n firms cases, respectively.

Lippman and McCardle (1997) consider the competitive newsboy problem under a general
setting with respect to how initial demands are generated and how excess demand is reallo-
cated. It is assumed that each firm’s initial demand is a result of an allocation of the industry
demand which is a random variable. In deterministic rules, a specific deterministic function
of the industry demand is allocated to each firm in competition. In stochastic rules, a firm’s
initial allocation depends on the outcome of a random variable (independent demands as in
Parlar (1988) can be shown to be a special case of stochastic splitting). If a firm’s initial
demand exceeds its order quantity, a non–decreasing function of the excess demand is reallo-
cated to each other firm. Lippman and McCardle (1997) show the existence of an equilibrium
in the general setting. For the case of symmetric firms and continuous distributions of effec-
tive demand for each firm, they also show the uniqueness of the equilibrium. For the case of
two firms, they show that competition leads to higher inventory in the system.

Netessine and Rudi (2003) characterize the equilibrium for the case of n firms when the
initial demands follow a multi–variate continuous distribution and excess demands spill over
fractionally to other firms. The uniqueness of the equilibrium is shown with further conditions
and a comparison of centralized and competitive order quantities is provided.

Mahajan and van Ryzin (2003) study a model where the firms’ demands are generated
by a dynamic process – heterogeneous consumers arrive sequentially and choose a vendor
based on a utility maximization criterion and availability at the time of their arrival. They
characterize the equilibrium and show its uniqueness for the case of symmetric firms. They
also show that competition leads to overstocking.

Serin (2007) considers the possibility of a Stackelberg game in the competitive newsboy
problem. She considers both Nash equilibrium solutions and Stackelberg equilibrium solution
and gives conditions under which these two lead to the same inventory levels.

Anupindi and Bassok (1999) study the impact of competition and centralization among two
retailers on the performance of a supplier in the upper echelon. Under the optimal wholesale
pricing mechanism, they show that there is a threshold for the level of substitution, above
which the supplier may prefer a decentralized system.

There are other papers in operations literature where competition carries on for multiple
periods and backordering is possible. In Hall and Porteus (2000) and Liu et al. (2007), two
firms compete on product availability which impacts the market share in future periods.
However, within each period that is modeled as a newsboy problem, no substitution occurs.
Netessine et al. (2006) model substitution to a competing firm in the current period as well
as backordering in future periods.

We restricted our literature review on the horizontal inventory competition. There is a
growing body of operations literature where inventory competition takes place between dif-
ferent echelons in the supply chain. Examples include Cachon (2001) and Cachon and Zipkin
(1999).
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Our model in spirit is similar to Parlar (1988) and Lippman and McCardle (1997). We
extend the model in Lippman and McCardle (1997) for the case of non–identical firms and
asymmetric information. We show the existence of an equilibrium and show its uniqueness
under fairly general assumptions. To our knowledge this is the first study that incorporates
the important impact of private information on equilibrium behavior of firms competing on
inventory or product availability. Also to our knowledge, this is the first study in operations
literature that models horizontal competition under asymmetric information.

The asymmetric information newsboy duopoly game we study can be transformed to a
supermodular game. Supermodular games were first introduced by Topkis (1979) who show
that there exists at least one pure strategy Nash equilibrium in a full information super-
modular game. Milgrom and Roberts (1990) show that a large class of games in economics
literature are supermodular and thus have equilibrium. Supermodularity is also used recently
to study games in operations literature. Examples include Lippman and McCardle (1997),
Bernstein and Federgruen (2003) and Cachon (2001). Vives (1990) uses supermodularity to
show the existence of pure strategy Nash equilibrium for compact action spaces and complete
separable metric type spaces. This work is recently extended by Athey (2001) to include a
larger class of type and strategy spaces which satisfy the single crossing condition. Van Zandt
and Vives (2007) shows the existence of Bayesian–Nash equilibrium for supermodular asym-
metric information games when type sets are discrete and action sets are continua. Our model
of asymmetric information newsboy duopoly is an instance of the general class of incomplete
information games studied in Van Zandt and Vives (2007).

3. A Model of Newsboy Duopoly

We consider an industry served by two firms i = 1,2 that offer two substitutable items.
Throughout, we assume that the two firms are risk–neutral.

3.1. Industry and Firm Demands

The total industry demand D is a continuous positive random variable with an everywhere
positive density function g(). Thus, the distribution function G(), and the survival function
G(), where G(x) = 1−G(x) = Pr(D≥ x), are strictly monotonic.

As in Lippman and McCardle (1997), demand faced by each firm is determined in a two-
step rationing process. First, for any realization, d, of random market demand, initial market
shares of the two firms are determined by a deterministic function s such that firm 1’s initial
market share is s(d) and that of firm 2 is ŝ(d) = d − s(d). The share function s satisfies
0≤ s(d)≤ d for all d. To guarantee that both market shares are non–decreasing in market
demand realization, we assume 0≤ s′(d)≤ 1.

A given initial market share function s induces random demands faced by firm 1, D1 =
s(D), and firm 2, D2 = ŝ(D) = D− s(D). By construction, the initial demands faced by the
two firms, (D1,D2), are comonotonic since both are deterministic monotone functions of the
industry demand.
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In the second step, given realized market demand and the order quantities of the two firms,
if firm j is stocked out, then some portion, ai, of firm j’s underage goes to firm i. Thus, the
effective demand Ri for firm i is the sum of initial allocation and the reallocation:

Ri(Qj) = Di + ai(Dj −Qj)+.

where (x)+ denotes max{x,0} and ai ∈ [0,1] for i = 1,2 is the demand substitution rate from
firm j to i and is assumed to be deterministic. For notational simplicity, we suppress the
dependence of the effective demand on other arguments. The effective demand of firm i, Ri,
is a continuous random variable and its distribution is induced by the distributions of initial
demands. Effective demands (R1(Q2),R2(Q1)) are also comonotonic random variables for all
values of Q1 and Q2.

As a first attempt to incorporate private information into the competitive newsboy prob-
lem, we take the two items produced by the two firms as perfect substitutes: a1 = a2 = 1.
Despite obvious reduction in model dimensions and notational economy that come with this
assumption, this is not without loss of generality. We leave many interesting and impor-
tant issues related to finer details of the substitution possibilities to future work. However,
our main findings (equilibrium existence and qualitative features of the equilibrium) are not
affected by this assumption1.

3.2. Cost and Information Structures

Firm i pays a unit cost for the items that he purchases. We take the type set of firm i, denoted
Ci, as the set of values his unit cost can take. Firm i’s type is governed by a probability
measure pi over Ci. Type distributions of the two firms are independent. Each firm observes
his own cost prior to deciding his order quantity, but he does not observe the other firm’s
cost. From firm j’s perspective, firm i’s unit cost is a random variable Ci with support Ci and
distribution pi.

In this paper, we focus on the case with discrete type sets. Specifically, the unit cost of each
firm can take one of two values, i.e., Ci = {ciL, ciH} with ciL < ciH . We assume that firm 1’s
unit cost is c1H with probability p1(c1H) = p and c1L with probability p1(c1L) = 1− p1(c1H) =
(1− p ) and firm 2’s unit cost is c2H with probability p2(c2H) = q and c2L with probability
p2(c2L) = 1−p2(c2H) = (1− q). With appropriate relabeling of the players, we take c1H ≤ c2H .

We assume that salvage prices and back–order costs are 0. (The analysis can easily be
extended to relax this assumption.) We also assume, without loss of generality, that each firm
earns a normalized revenue of 1 per unit of good he sells. This normalization can be achieved
by changing the unit of measurement for costs. Under this normalization, we have c2H ≤ 1. In
fact, all our results remain unchanged if one were to take per unit revenues, instead of unit
costs, as the source of private information.

Finally, all elements of the model except the cost realizations are common knowledge at
the time the order quantity decisions are made.

1 For example, by taking share functions parameterized by the substitution parameters, z1(D,a1) = s(D) + a1ŝ(D) and
z2(D,a2) = ŝ(D)+ a2s(D), the analysis below can be extended to the more general case.
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3.3. Actions, Strategies and Payoffs

For each player i the order quantities are the action sets, Qi = [0,Qi], where Qi is the optimal
order quantity of firm i assuming that he gets all of the industry demand D with the smallest
possible value of ci. Finally, firm i’s expected payoff is Πi :Q×C →< where C = C1×C2 and
Q=Q1×Q2.

A pure strategy for player i is a function which maps his type into his action set, Qi : Ci →Qi

where Qi(ci) is the strategy choice for type ci of player i. Player i’s interim2 expected payoff
Πi is his expected profit conditional on his realized type ci and order quantity Q, when his
rival follows the strategy Qj():

Πi(ci,Q) = ECj
[πi(Q,Qj(Cj), ci)] =

∑
cj∈Cj

pj(cj)πi(Q,Qj(cj), ci),

where, conditional on Cj = cj,

πi(Q,Qj(cj), ci) = ERi(Qj(cj))

[
min{Ri(Qj(cj)),Q}

]− ciQ

is the player’s ex post profit when his unit cost is ci and his order quantity Q.

4. Equilibrium Order Quantities

A strategy profile Q∗ = (Q∗
1(),Q

∗
2()) is a Bayesian–Nash equilibrium if, for each player i, and

each type ci ∈ Ci of player i,

Q∗
i (ci)∈ argmax

Q∈Qi

∑
cj∈Cj

pj(cj)πi(Q,Qj(cj), ci).

Let QiL = Qi(ciL) be the order quantity of player i if his cost is ciL and let QiH = Qi(ciH) be
the order quantity of player i if his cost is ciH . Let (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) denote a Bayesian–

Nash equilibrium. Interim expected payoffs conditional on own cost realizations are:

Π1(c1L,Q1L) = q E[min{R1(Q2H),Q1L}] + (1− q)E[min{R1(Q2L),Q1L}]− c1LQ1L,

Π1(c1H ,Q1H) = q E[min{R1(Q2H),Q1H}] + (1− q)E[min{R1(Q2L),Q1H}]− c1HQ1H ,

Π2(c2L,Q2L) = pE[min{R2(Q1H),Q2L}] + (1− p)E[min{R2(Q1L),Q2L}]− c2LQ2L,

Π2(c2H ,Q2H) = pE[min{R2(Q1H),Q2H}] + (1− q)E[min{R2(Q1L),Q2H}]− c2HQ2H .

A standard property of newsboy models is that ∂ER[min{R,Q}]/∂Q = Pr(R≥Q). Thus,
taking the derivative of each type’s payoff with respect to his action, the Bayesian–Nash
equilibrium order quantities (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) satisfy the following conditions:

q Pr(R1(Q2H)≥Q1L)+ (1− q)Pr(R1(Q2L)≥Q1L)− c1L = 0, (1)
q Pr(R1(Q2H)≥Q1H)+ (1− q)Pr(R1(Q2L)≥Q1H)− c1H = 0, (2)
pPr(R2(Q1H)≥Q2L)+ (1− p)Pr(R2(Q1L)≥Q2L)− c2L = 0, (3)

pPr(R2(Q1H)≥Q2H)+ (1− p)Pr(R2(Q1L)≥Q2H)− c2H = 0. (4)

2 The terms ex ante, interim and ex post refer to conditioning with respect to the realizations of firm types. Through-
out, demand remains uncertain. That is, no new information becomes available about market demand, and, thus, all
expressions are ex ante with respect to demand.
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4.1. Equilibrium Existence

Equilibrium exists under more general assumptions than we make. For instance, the theorem
below is valid for arbitrary type sets, not only discrete types. Furthermore, as noted by
Lippman and McCardle (1997) in their model of complete information, the existence of
equilibrium does not require any assumption on the split functions, or on the joint distribution
of the initial demands.

Van Zandt and Vives (2007) shows the existence of Bayesian–Nash equilibrium for super-
modular asymmetric information games when type sets are discrete and action sets are con-
tinua. Our model of asymmetric information newsboy duopoly is an instance of the general
class of incomplete information games studied in Van Zandt and Vives (2007). To establish
the existence of pure strategy equilibrium we verify that the equilibrium existence conditions
in Van Zandt and Vives (2007) are satisfied in our setting. These conditions are: (i) the payoff
function πi is supermodular in Qi, (ii) it has increasing differences in (Qi,Qj), and (iii) it has
increasing differences in (Qi, ti), where ti =−ci.

Theorem 1. A pure strategy Nash equilibrium exists for the newsboy duopoly game with
asymmetric information.

4.2. Preliminary Observations on the Equilibrium

In characterizing the structure of equilibrium, some preliminary remarks will be useful. We
start with some observations on the best response functions. We then examine optimal order
quantities in the absence of strategic interactions to establish a baseline.

Our first claim exploits the assumption that the split functions s(·) and ŝ(·) are determin-
istic and increasing, thus invertible.

Claim 1. min{s−1(x), ŝ−1(y)} ≤ x + y≤max{s−1(x), ŝ−1(y)}.
The best response functions of the two types of firm 1, (Q∗

1L(Q2L,Q2H),Q∗
1H(Q2L,Q2H)),

and those of firm 2, (Q∗
2L(Q1L,Q1H),Q∗

2H(Q1L,Q1H)), solve:

q Pr(R1(Q2H)≥Q∗
1L)+ (1− q)Pr(R1(Q2L)≥Q∗

1L)− c1L = 0,

q Pr(R1(Q2H)≥Q∗
1H)+ (1− q)Pr(R1(Q2L)≥Q∗

1H)− c1H = 0,

pPr(R2(Q1H)≥Q∗
2L)+ (1− p)Pr(R2(Q1L)≥Q∗

2L)− c2L = 0,

pPr(R2(Q1H)≥Q∗
2H) + (1− p)Pr(R2(Q1L)≥Q∗

2H)− c2H = 0.

Since Ri(Q) and, hence, Pr(Ri(Q)≥Qi) are non–increasing in Q, best response functions for
both types of both players are non–increasing in both arguments.

Stand–alone order quantities in the absence of competitive interactions will play a useful
role as a baseline. We denote by (Qo

1L,Qo
1H ,Qo

2L,Qo
2H) the vector of optimal order quantities

for the case with no spillovers (i.e., no competitive interaction).
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Lemma 1. The vector of stand–alone order quantities (Qo
1L,Qo

1H ,Qo
2L,Qo

2H) is the unique
solution to the system of equations:

Pr(D1 ≥Q1L) = c1L, P r(D1 ≥Q1H) = c1H ,

P r(D2 ≥Q2L) = c2L, P r(D2 ≥Q2H) = c2H .

The ranking of optimal order quantities of the two types of a player is straightforward – the
higher a firms’ unit cost the lower his stand–alone order quantity: Qo

1L ≥Qo
1H and Qo

2L ≥Qo
2H .

In contrast, comparison of the order quantities across firms is complicated by the fact that
relative rankings of the firms’ market shares and unit costs are not a priori restricted. In
general, depending on the relative orderings of market shares and unit costs, all rankings of the
four order quantities (Qo

1L,Qo
1H ,Qo

2L,Qo
2H) that are compatible with the orderings Qo

1L ≥Qo
1H

and Qo
2L ≥Qo

2H are possible.
One needs further assumptions on market shares and unit costs to be able to rank the

stand–alone order quantities of the two firms. For example, if unit costs and initial market
shares are perfectly negatively correlated (so that the initial market share of the firm with
the lower unit cost exceeds that of the firm with higher unit cost for all demand realizations)
then stand–alone order quantities are ordered in the same way as initial market shares.

Note, on the other hand, that stock–out levels, (Pr(Di ≥ Qo
ix) : i ∈ {1,2}, x ∈ {L,H}),

are ordered the same way as the unit costs. This simple observation, combined with our
assumption that initial demands of the two firms are monotone functions of a common market
demand, allows a complete ordering of the transformed order quantities:

Claim 2. For x, y ∈ {L,H}, c1x ≤ c2y if and only if s−1(Qo
1x)≥ ŝ−1(Qo

2y).

Returning to the analysis of the equilibrium conditions, we first note an observation on the
stock–out probability of firm i with order level Qi. For firm 1:

Pr(R1(Q2)≥Q1) = Pr(D1 +(D2−Q2)+ ≥Q1) = Pr(s(D)+ (ŝ(D)−Q2)+ ≥Q1) =
Pr(D≥ ŝ−1(Q2),D≥Q1 + Q2)+ Pr(D≤ ŝ−1(Q2),D≥ s−1(Q1)).

Similarly, for firm 2:

Pr(R2(Q1)≥Q2) = Pr(D2 +(D1−Q1)+ ≥Q2) = Pr(ŝ(D)+ (s(D)−Q1)+ ≥Q2) =
Pr(D≥ s−1(Q1),D≥Q2 + Q1)+ Pr(D≤ s−1(Q1),D≥ ŝ−1(Q2)).

Second, we observe that low–cost type of each player orders a larger quantity than his
high–cost type in equilibrium.

Claim 3. (i) Q∗
1L > Q∗

1H , (ii) Q∗
2L > Q∗

2H .

Using stand–alone order quantities as a baseline, the next claim shows that order quantities
strictly less than the stand–alone order quantities are dominated. Thus, presence of spillovers
leads to order quantities that are no less than the order quantities without spillovers. This
means that competition does not lead to a decrease in total industry inventory.
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Claim 4. (i) Q∗
1L ≥Qo

1L, (ii) Q∗
1H ≥Qo

1H , (iii) Q∗
2L ≥Qo

2L, (iv) Q∗
2H ≥Qo

2H .

The following lemma identifies a useful boundary condition that ties the equilibrium order
quantity of one of the players to the stand–alone order quantity for the high–cost type of
that player.

Lemma 2. In a Bayesian–Nash equilibrium either (i) Q∗
2H = Qo

2H or (ii) Q∗
1H = Qo

1H .

Next, equilibrium order quantities of high–cost types of the two firms are ordered up to
transformation by initial market shares:

Lemma 3. If c1H ≤ c2H , then s−1(Q∗
1H)≥ ŝ−1(Q∗

2H).

Finally, in equilibrium, the firm with highest possible unit cost orders his optimal quantity
under no competition.

Lemma 4. If c1H ≤ c2H , then Q∗
2H = Qo

2H .

When c1H = c2H , high–cost types of both firms order their optimal quantities under no
competition, i.e., Q∗

2H = Qo
2H and Q∗

1H = Qo
1H .

As a final observation, we note that the best response function of the second firm’s high–
cost type is flat at its stand–alone level when the order quantities of the first firm’s two types
exceed their respective stand–alone levels:

Lemma 5. For c1H ≤ c2H , Q∗
2H(x, y) = Qo

2H for all (x, y)≥ (Qo
1L,Qo

1H).

4.3. Structure of the Equilibrium

Summarizing the observations in the previous sub–section, under the player labeling with
c1H ≤ c2H , the conditions for equilibrium can be stated as follows:

q Pr(R1(ŝ(G
−1

(c2H)))≥Q∗
1L)+ (1− q)Pr(R1(Q∗

2L)≥Q∗
1L) = c1L,

q Pr(R1(ŝ(G
−1

(c2H)))≥Q∗
1H)+ (1− q)Pr(R1(Q∗

2L)≥Q∗
1H) = c1H ,

pPr(R2(Q∗
1H)≥Q∗

2L)+ (1− p)Pr(R2(Q∗
1L)≥Q∗

2L) = c2L,

Q∗
2H = ŝ(G

−1
(c2H)).

We can now state the main theorem of this paper that characterizes the structure of
equilibrium order quantities.



10

Theorem 2. Assume, without loss of generality, that c1H ≤ c2H . (Q∗
1L,Q∗

1H ,Q∗
2L,Q∗

2H) is
a Bayesian–Nash equilibrium if and only if

1) Q∗
2H = ŝ(G

−1
(c2H))

2) Q∗
1L,Q∗

1H and Q∗
2L satisfy one of the following sets of conditions:

(i) q G(Q∗
1L + ŝ(G

−1
(c2H)))+ (1− q) G(s−1(Q∗

1L)) = c1L (i1)

q G(Q∗
1H + ŝ(G

−1
(c2H)))+ (1− q) G(s−1(Q∗

1H)) = c1H (i2)

p G(Q∗
2L +Q∗

1H)+ (1− p) G(Q∗
2L + Q∗

1L) = c2L (i3)

ŝ−1(Q∗
2L) ≥ s−1(Q∗

1L) (i4)

(ii) q G(Q∗
1L + ŝ(G

−1
(c2H)))+ (1− q) G(Q∗

2L + Q∗
1L) = c1L (ii1)

q G(Q∗
1H + ŝ(G

−1
(c2H)))+ (1− q) G(s−1(Q∗

1H)) = c1H (ii2)

p G(Q∗
2L +Q∗

1H)+ (1− p) G(ŝ−1(Q∗
2L)) = c2L (ii3)

s−1(Q∗
1L) > ŝ−1(Q∗

2L) ≥ (s−1(Q∗
1H) (ii4)

(iii) q G(Q∗
1L + ŝ(G

−1
(c2H)))+ (1− q) G(Q∗

1L + ŝ(G
−1

(c2L))) = c1L (iii1)

q G(Q∗
1H + ŝ(G

−1
(c2H)))+ (1− q) G(Q∗

1H + ŝ(G
−1

(c2L))) = c1H (iii2)

Q∗
2L = ŝ(G

−1
(c2L)) (iii3)

s−1(Q∗
1H) > ŝ−1(Q∗

2L) (iii4)

Before we proceed with discussion of properties of the equilibrium, we first show that it is
unique.

Theorem 3. The vector of order quantities (Q∗
1L,Q∗

1H ,Q∗
2L,Q∗

2H) in Theorem 2 is unique.

Uniqueness of solutions for each block of equations is a straightforward consequence of the
continuity of the demand distribution. To establish uniqueness of the equilibrium, we rule
out the possibility that the two or more blocks of equations may have solutions that also
satisfy the corresponding inequality. This is done in the Appendix A.4.

A notable pattern in the equilibria across the model space is the recursive structure of
the order quantities. This pattern greatly simplifies the computation of equilibrium order
quantities. The order quantity of the player type with highest unit cost is determined based
on the demand distribution, the split function and his unit cost, independently of other
parameters of the game. The remaining equilibrium quantities are obtained recursively. At
each step, substituting for the previously computed equilibrium values, a single equation is
solved for a single unknown equilibrium quantity.
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The recursive pattern of the equilibrium quantities reflect the fact that the equilibrium is
partially dominance–solvable, which in turn is a consequence of the supermodular structure
of the game. By Claim 4 above, any quantity strictly less than the stand–alone order quantity
is strictly dominated by the stand–alone order quantity for every type. Given this fact and
Lemma 5, order quantities strictly greater than the stand–alone order quantity are also
dominated by the stand–alone order quantity for the highest cost type (c2H). Thus, a two–step
reasoning pins the equilibrium behavior of the highest cost type.

4.4. Corollaries

In this sub–section we consider several corollaries of Theorem 2 for special cases of the general
model. The first corollary considers a model with ex ante symmetric cost structures without
restricting the initial market shares. In the second corollary, we impose a restriction on the
initial market share function so that one of the firms has larger initial market share for all
demand realizations. Corollary 3 presents the equilibrium for the case with fully symmetric
firms where both initial market shares and ex ante cost structures are identical. In Corollary
4, we remove the restrictions on the initial market shares and consider an extreme form of
ex ante cost asymmetry: one firm’s unit costs are uniformly higher than the other firm’s unit
costs for all type realizations. Finally, in Corollary 5, we consider a model with symmetric
initial market shares and unrestricted ex ante asymmetries in the cost structures. As these
corollaries are obtained through straightforward substitutions, we omit the proofs.

Corollary 1. Assume that the two firms are ex ante symmetric with respect to costs.
That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Then (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) is a Bayesian–

Nash equilibrium if and only if

1) Q∗
2H = ŝ(G

−1
(cH))

2) Q∗
1L,Q∗

1H and Q∗
2L satisfy one of the following sets of conditions:

(i) q G(Q∗
1L + ŝ(G

−1
(cH))) + (1− q) G(s−1(Q∗

1L)) = cL (i1)

q G(Q∗
1H + ŝ(G

−1
(cH)))+ (1− q) G(s−1(Q∗

1H)) = cH (i2)

p G(Q∗
2L + Q∗

1H)+ (1− p) G(Q∗
2L + Q∗

1L) = cL (i3)

ŝ(Q∗
2L) ≥ s−1(Q∗

1L) (i4)

(ii) q G(Q∗
1L + ŝ(G

−1
(cH))) + (1− q) G(Q∗

2L + Q∗
1L) = cL (ii1)

q G(Q∗
1H + ŝ(G

−1
(cH)))+ (1− q) G(s−1(Q∗

1H)) = cH (ii2)

p G(Q∗
2L + Q∗

1H)+ (1− p) G(ŝ−1(Q∗
2L)) = cL (ii3)

s−1(Q∗
1L) > ŝ(Q∗

2L) ≥ s−1(Q∗
1H) (ii4)
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Further simplification is possible under the assumption that initial market shares of the
two firms are uniformly ranked, i.e., one firm’s initial market share is higher than the other’s
for all demand realizations. By relabeling firms if necessary, we can take initial market shares
to favor firm 1: s(d)≥ d/2.

Corollary 2. Assume that the two firms are ex ante symmetric with respect to costs.
That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Furthermore, assume s(d) ≥ d/2 for all
demand levels d. Then (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) is a Bayesian–Nash equilibrium if and only if

Q∗
2H = ŝ(G

−1
(cH)) and (Q∗

1L,Q∗
1H ,Q∗

2L) solves:

q G(Q∗
1L + ŝ(G

−1
(cH)))+ (1− q) G(s−1(Q∗

1L)) = cL,

q G(Q∗
1H + ŝ(G

−1
(cH)))+ (1− q) G(s−1(Q∗

1H)) = cH ,

p G(Q∗
2L +Q∗

1H)+ (1− p) G(Q∗
2L + Q∗

1L) = cL.

When the two firms are fully symmetric in terms of cost structures and initial market
shares, we get a fully symmetric equilibrium.

Corollary 3. Assume that the two firms are ex ante symmetric with respect to costs.
That is, c1H = c2H = cH , c1L = c2L = cL, and p = q. Furthermore, let s(d) = ŝ(d) = d/2 for all
demand levels d. Then (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) is a Bayesian–Nash equilibrium if and only if

Q∗
1H = Q∗

2H = Q∗
H = (1/2)(G

−1
(cH)) and Q∗

1L = Q∗
2L = Q∗

L where Q∗
L solves

q G(Q∗
L +(1/2)G

−1
(cH))+ (1− q) G(2Q∗

L) = cL.

The next corollary looks at the case where one firm has a cost disadvantage for all cost
realizations.

Corollary 4. Assume that c1H ≤ c2L. Then (Q∗
1L,Q∗

1H ,Q∗
2L,Q∗

2H) is a Bayesian–Nash
equilibrium if and only if

Q∗
2H = ŝ(G

−1
(c2H))

Q∗
2L = ŝ(G

−1
(c2L))

q G(Q∗
1L + ŝ(G

−1
(c2H)))+ (1− q) G(Q∗

1L + ŝ(G
−1

(c2L))) = c1L

q G(Q∗
1H + ŝ(G

−1
(c2H))) + (1− q) G(Q∗

1H + ŝ(G
−1

(c2L))) = c1H .

As a final corollary, we present the equilibrium order quantities for symmetric initial market
shares. In this special case, the equilibrium conditions can be stated explicitly in terms of
the exogenous cost parameters, in contrast to the implicit characterization in Theorem 2. For
each of the three possible orderings of the unit cost parameters, we have a different set of
equilibrium conditions.
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Corollary 5. Assume that s(d) = ŝ(d) = d/2 and, without loss of generality, that c1H ≤
c2H . Then (Q∗

1L,Q∗
1H ,Q∗

2L,Q∗
2H) is a Bayesian–Nash equilibrium if and only if

1) Q∗
2H = (1/2)G

−1
(c2H)

2) Q∗
1L,Q∗

1H and Q∗
2L satisfy one of the following sets of conditions:

(i) If c2L ≤ c1L ≤ c1H ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H)) + (1− q) G(2Q∗

1L) = c1L (i1)

q G(Q∗
1H +(1/2)G

−1
(c2H))+ (1− q) G(2Q∗

1H) = c1H (i2)

p G(Q∗
2L + Q∗

1H)+ (1− p) G(Q∗
2L + Q∗

1L) = c2L (i3)

(ii) If c1L ≤ c2L ≤ c1H ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H))) + (1− q) G(Q∗

2L + Q∗
1L) = c1L (ii1)

q G(Q∗
1H +(1/2)G

−1
(c2H))+ (1− q) G(2Q∗

1H) = c1H (ii2)

p G(Q∗
2L + Q∗

1H)+ (1− p) G(2Q∗
2L) = c2L (ii3)

(iii) If c1L ≤ c1H ≤ c2L ≤ c2H

q G(Q∗
1L + (1/2)G

−1
(c2H)) + (1− q) G(Q∗

1L + (1/2)G
−1

(c2L)) = c1L (iii1)

q G(Q∗
1H +(1/2)G

−1
(c2H))+ (1− q) G(Q∗

1H +(1/2)G
−1

(c2L)) = c1H (iii2)

Q∗
2L = (1/2)G

−1
(c2L) (iii3)

4.5. Intra–equilibrium Comparisons

As noted in Claim 3 above, equilibrium is monotone: low–cost type of a firm orders a larger
quantity than his high–cost type. Without further restrictions on the initial market shares and
the level of unit costs, this is about the extent of what can be said regarding intra–equilibrium
comparisons. That is, no general ranking of order quantities across firms is possible without
imposing further structure on the model. Furthermore, even under normalization an analog
of Claim 2 does not hold for equilibrium order quantities. The only possible ranking is the one
provided in Lemma 3 that ranks the normalized equilibrium order quantities of the high–cost
types of the two firms.

An interesting observation can be made using the characterization in Corollary 4 in the
previous section to illustrate a general phenomenon of inter–type externality. The equilibrium
characterization there remains valid for a range of unit costs with c2L < c1H < c2H . In this
equilibrium, both types of firm 2 choose an order quantity equal to his stand–alone quantity
while it is common knowledge that firm 1 may have larger unit cost. That is, low–cost type
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firm 2 ignores spillover from the less efficient type of the rival firm. This is due to the fact
that high–cost type of firm 1, while less efficient than the low–cost type firm 2, selects a large
order quantity expecting spillover demand from the less efficient type of firm 2. The increased
order quantity of the firm 1H forces firm 2L to stick to Qo

2L.

4.6. Comparative Statics

Comparative static analysis of the equilibrium and payoffs with respect to the exogenous
parameters of the model is done in two parts. We first establish general comparative statics
results with respect to two exogenous functions in the model, namely, the demand and the
market share function. Then we derive explicit comparative static expressions for the scalar
parameters.

Theorem 4. Let DA and DB be two positive random variables such that DA dominates DB

under first order stochastic dominance. Then, the equilibrium order quantities with industry
demand DA are larger than the equilibrium order quantities with industry demand DB.

Theorem 5. If sA(d) > sB(d) for all positive real numbers d, then the equilibrium order
quantities of both types of firm 1 (firm 2) are larger (respectively, smaller) when the split
function is sA than the order quantities under sB.)

In Table 1, we provide the signs of all first order derivatives of equilibrium order quantities
with respect to the exogenous scalar parameters, c1L, c1H , p, c2L, c2H and q. The explicit
expressions for the comparative statics derivatives themselves are provided in Appendix A.7.
Cases (i), (ii) and (iii) correspond to the cases in Theorem 2.

Table 1 Comparative Statics

Cases Quantities Conditions c1L c1H p c2L c2H q
Q∗

2H 0 0 0 0 − 0

Q∗
1L − 0 0 0 + +

(i) Q∗
1H 0 − 0 0 + +

Q∗
2L G(Q∗

1L + Q∗
2L) > 0 + + + − − −

Q∗
2L G(Q∗

1L + Q∗
2L) = 0 0 + + − − −

Q∗
1L G(Q∗

1L + Q∗
2L) > 0 − − − + + +

(ii) Q∗
1L G(Q∗

1L + Q∗
2L) = 0 − 0 0 0 + +

Q∗
1H 0 − 0 0 + +

Q∗
2L 0 + + − − −

Q∗
1L G(Q∗

1L + Q∗
2L) > 0 − 0 0 + + +

Q∗
1L G(Q∗

1L + Q∗
2L) = 0 − 0 0 0 + +

(iii) Q∗
1H G(Q∗

1H + Q∗
2L) > 0 0 − 0 + + +

Q∗
1H G(Q∗

1H + Q∗
2L) = 0 0 − 0 0 + +

Q∗
2L 0 0 0 − 0 0
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As expected, the equilibrium order quantities for both players are non–increasing with
respect to their own costs and non–decreasing with respect to their rival’s costs. In equilib-
rium, each player orders more as his rival’s probability of being high type increases. Con-
versely, each player orders less as his own probability of being high type increases. This is
due to information asymmetry between players and can be explained as follows. Suppose the
probability of being high type for firm 1 is increasing. In this case, firm 2 will be ordering
more since he will anticipate a higher chance of low order quantity from firm 1. This will
lead firm 1 to expect less spillover from firm 2 and hence order less himself. Whether these
monotonicities are strict or not depend on specific cases and conditions as given in Table 1.
The only exception to these results is that firm 2’s (the firm with larger high cost) equilibrium
order quantity when his type is high only depends on its own cost as shown in Theorem 2.

5. A Special Case: Uniform Demand and Linear Market Shares

In this section, we present the full explicit characterization of the equilibrium and the cor-
responding payoff functions for uniformly distributed demand and linear market share func-
tions: D ∼ Uniform(0,1), and s(D) = sD and ŝ(D) = (1 − s)D. Under uniform demand
and linear market shares, an instance of the model is represented by 7 parameters:
(c1L, c1H , c2L, c2H , p, q, s).

As shown in Section 4, while Q∗
2H = (1− s)(1− c2H), solution to Q∗

1L, Q∗
1H and Q∗

2L (and
the corresponding payoffs) requires a detailed analysis.

5.1. A Partition of the Parameter Space

Detailed analysis, provided in Appendix A.8, lead to 8 regions in the parameter space. In
each of the 8 regions, different equilibrium quantities and payoff functions are valid. In other
words, in each of these regions the equilibrium structure (functional form) of at least one of
endogenous variable is different from its from in other regions. The conditions that determine
the partition of the parameter space are as follows: Denoting p̂ = sp and q̂ = (1− s)q,

(1− q̂) c2L < c1H −q̂ c2H (CA)
c1L < q̂ c2H (CB)

(1− q̂) c2L < p̂c1H −p̂ q̂ c2H (CC)
q̂ c2L < −c1H + q̂ c2H (CD)

−(1− p̂) c1L +(1− q̂) c2L < p̂c1H −q̂ c2H (CE)
p̂ c1L +(1− q̂) c2L < p̂c1H (CF )

(1− p̂) (1− q̂) c1L + q̂ (1− q̂) c2L < p̂ q̂ c1H +q̂ (1− p̂− q̂) c2H (CG)
c1L + q̂ c2L < q̂ c2H (CH)

The 8 different regions that these equilibrium conditions lead to are given in Figure 1.

5.2. Equilibrium Order Quantities

Q∗
1L,Q∗

1H and Q∗
2L and payoffs π1(c1L, c2L), π1(c1H , c2L), π2(c1L, c2L) and π2(c1H , c2L) in these

regions can be found using the following table:
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Region 1 Region 2 Region 3 Region 4 Region 5 Region 6 Region 7 Region 8

CAC B      CC CB      CC
CA CD CH

CF CGCF CG
CE CHCDCE

Figure 1 Conditions characterizing the partition of the parameter space

Table 2 Functional forms of endogenous variables by parameter region

Region Q1L Q1H Q2L π1(c1L,c2L) π1(c1H,c2L) π2(c1L,c2L) π2(c1H,c2L)
1 Qα

1L Qα
1H Qα

2L πα
1 (c1L, c2L) πα

1 (c1H , c2L) πα
2 (c1L, c2L) πα

2 (c1H , c2L)
2 Qβ

1L Qα
1H Qα

2L πβ
1 (c1L, c2L) πα

1 (c1H , c2L) πβ
2 (c1L, c2L) πα

2 (c1H , c2L)
3 Qβ

1L Qα
1H Qβ

2L πβ
1 (c1L, c2L) πα

1 (c1H , c2L) πγ
2 (c1L, c2L) πα

2 (c1H , c2L)
4 Qα

1L Qα
1H Qγ

2L πγ
1 (c1L, c2L) πα

1 (c1H , c2L) πδ
2(c1L, c2L) πα

2 (c1H , c2L)
5 Qγ

1L Qα
1H Qγ

2L πδ
1(c1L, c2L) πα

1 (c1H , c2L) πδ
2(c1L, c2L) πα

2 (c1H , c2L)
6 Qα

1L Qβ
1H Qδ

2L πγ
1 (c1L, c2L) πβ

1 (c1H , c2L) πδ
2(c1L, c2L) πβ

2 (c1H , c2L)
7 Qα

1L Qγ
1H Qδ

2L πγ
1 (c1L, c2L) πγ

1 (c1H , c2L) πδ
2(c1L, c2L) πβ

2 (c1H , c2L)
8 Qδ

1L Qγ
1H Qδ

2L πδ
1(c1L, c2L) πγ

1 (c1H , c2L) πδ
2(c1L, c2L) πβ

2 (c1H , c2L)

The equilibrium order quantity for firm 1 when his type is low takes four different functional
forms:

Qα
1L = 1− c1L

q
− (1− s)(1− c2H),

Qβ
1L =

(1− c1L− q(1− s)(1− c2H))
(q + (1− q)/s)

,

Qγ
1L = 1− c1L− q(1− s)(1− c2H)− (1− q)(1− c2L)

(p+(1− p)/(1− s))
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+
(1− q)p(1− c1H − q(1− s)(1− c2H))
(q +(1− q)/s)(p+(1− p)/(1− s))

,

Qδ
1L = 1− c1L− q(1− s)(1− c2H)− (1− q)(1− s)(1− c2L).

When firms 1’s type is high, his equilibrium order quantity takes three possible forms:

Qα
1H =

(1− c1H − q(1− s)(1− c2H))
(q +(1− q)/s)

,

Qβ
1H = 1− c1H

q
− (1− s)(1− c2H),

Qγ
1H = 1− c1H − q(1− s)(1− c2H)− (1− q)(1− s)(1− c2L).

Finally, the low type of firm 2 has four different functional forms for his equilibrium order
quantity:

Qα
2L = 1− c2L

p
− (1− c1H − q(1− s)(1− c2H))

(q +(1− q)/s)
,

Qβ
2L = 1− c2L− p (1− c1H − q (1− s)(1− c2H))

(q +(1− q)/s)
− (1− p)(1− c1L− q(1− s)(1− c2H))

(q + (1− q)/s)
,

Qγ
2L =

(1− c2L)
(p +(1− p)/(1− s))

− p (1− c1H − q(1− s)(1− c2H))
(q +(1− q)/s)(p +(1− p)/(1− s))

,

Qδ
2L = (1− s)(1− c2L).

5.3. Equilibrium Payoffs

When both firms have low costs, Firm 1’s ex post payoff can take four different functional
forms:

πα
1 (c1L, c2L) =

1
2

s− c1LQ1L,

πβ
1 (c1L, c2L) = Q1L(1− c1L)− (Q1L)2

2s
,

πγ
1 (c1L, c2L) =

1
2

+
(Q2L)2

2(1− s)
−Q2L− c1LQ1L,

πδ
1(c1L, c2L) = Q1L(1− c1L) +

(Q2L)2

2(1− s)
− (Q1L +Q2L)2

2
.

Firm 2’s payoff, similarly, has four possible functional forms when both firms have low cost:

πα
2 (c1L, c2L) =

1
2

(1− s)− c2LQ2L,

πβ
2 (c1L, c2L) =

1
2

+
(Q1L)2

2s
−Q1L− c2LQ2L,

πγ
2 (c1L, c2L) = Q2L(1− c2L)+

(Q1L)2

2s
− (Q1L + Q2L)2

2
,

πδ
2(c1L, c2L) = Q2L(1− c2L)− (Q2L)2

2(1− s)
.
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When firms 1 and 2 have low and high costs, respectively, we have three possibilities for the
payoff for firm 1’s payoff:

πα
1 (c1H , c2L) = Q1H(1− c1H)− (Q1H)2

2s
,

πβ
1 (c1H , c2L) =

1
2

+
(Q2L)2

2(1− s)
−Q2L− c1HQ1H ,

πγ
1 (c1H , c2L) = Q1H(1− c1H)+

(Q2L)2

2(1− s)
− (Q1H +Q2L)2

2
;

and two possible forms for the payoff for firm 2:

πα
2 (c1H , c2L) = Q2L(1− c2L)+

(Q1H)2

2s
− (Q1H + Q2L)2

2
,

πβ
2 (c1H , c2L) = Q2L(1− c2L)− (Q2L)2

2(1− s)
.

When firm 2 has a high cost, the payoffs of the two players are same in all regions:

π1(c1L, c2H) = Q1L(1− c1L)+
Q2

2H

2(1− s)
− (Q1L + Q2H)2

2
,

π1(c1H , c2H) = Q1H(1− c1H)+
Q2

2H

2(1− s)
− (Q1H + Q2H)2

2
,

π2(c1L, c2H) = π2(c1H , c2H) = (1− s)(1− c2H)2/2.

5.4. Comparative Statics

We present the explicit expressions for comparative static derivatives for the equilibrium
order quantities for the uniform demand and linear split case in Appendix A.9. Comparative
static sign patterns are summarized in Table 3. This is a specific version of Table 1 for the
uniform demand and linear split function. Since s characterize the whole split function in
this case, we also provide the comparative statics with respect to s in this table.

Table 3 Comparative Statics for Uniform Demand Case

Qα
1L Qβ

1L Qγ
1L Qδ

1L Qα
2L Qβ

2L Qγ
2L Qδ

2L Qα
1H Qβ

1H Qγ
1H Q2H

c1L − − − − 0 + 0 0 0 0 0 0
c1H 0 0 − 0 + + + 0 − − − 0

p 0 0 − 0 + + + 0 0 − − 0
c2L 0 0 + + − − − − 0 0 + 0
c2H + + + + − − − 0 + + + −

q + + + + − − − 0 + + + 0
s + + + + − − − − + + + −
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6. Concluding Remarks

We studied a model of inventory competition in a newsboy duopoly under asymmetric
cost information. We showed that a pure strategy Bayesian–Nash equilibrium exists under
fairly general assumptions. We characterized the equilibrium for the case where the indus-
try demand is allocated between two firms using a deterministic split function and show its
uniqueness. We showed that presence of strategic interactions creates incentives to increase
order quantities for all firm types except the type that has the highest possible unit cost, who
orders the same quantity as he would as a monopolist newsboy facing scaled version of the
market demand. Therefore, competition leads to higher total inventory in the industry. The
equilibrium conditions have an interesting recursive structure that enables an easy computa-
tion of the equilibrium order quantities. Comparative statics analysis shows that a stochastic
increase in market demand or an increase in one firm’s initial allocation of the total industry
demand lead to higher inventory for that firm. We finally derived a complete characterization
of the equilibrium and its comparative statics for the case of uniform demand and linear split
rule.

Certain extensions of the current model are relatively straightforward and not likely to
change the structure of the equilibrium qualitatively. For instance, allowing more than two
levels for the unit costs, will lead to more complicated but qualitatively similar equilibrium
characterization in that many of the claims, the recursive structure of the equilibrium order
quantities, and, particularly, the behavior of the highest–cost type will remain valid with this
extension.

Information asymmetry adds a new dimension to the competitive newsboy problem. Alter-
native specifications for the key structural elements of the current model – e.g., the the
nature of information asymmetry, and the structure of the market and firm demands – span
a number of interesting classes of models we intend to explore in the future. Among these
are models of newsboy oligopoly, and models that allow arbitrary statistical dependence in
firm demands, and in cost structures.
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Appendix A:

A.1. Proof of Theorem 1
First, define Y2 = −Q2 so that Q1 × Y2 is a lattice (This order change is necessary to form a supermodular game).
Moreover, let t1 =−c1, t2 = c2 and define effective demand functions as Ri : tj →<. Then for

π1(Q1, y2, t1, t2) = E[min{R1(t2),Q1}] + t1Q1,
π2(Q1, y2, t1, t2) = E[min{R2(t1),−y2}] + t2y2.

The supermodularity and continuity of these functions and the increasing differences in (Q1, y2) are proved in Lippman
and McCardle (1997). The only thing remains is to show that π1 has increasing differences in (Q1, t1) and π2 has
increasing differences in (y2, t2) (Again, πi is not directly dependent on the type of firm j. Hence, increasing differences
for (Q1, t2) and (y2, t1) are trivially satisfied.). Let ς1(t1) = π1(Q

′
1, y2, t1, t2)− π1(Q1, y2, t1, t2) where Q′1 ≥Q1 for given

y2, t2. Then

ς1(t1) = E[min{R1(t2),Q
′
1}]−E[min{R1(t2),Q1}] + t1[Q

′
1−Q1].

Define t′1 such that t′1 ≥ t1. It follows that ς(t′1)− ς(t1) = [t′1 − t1][Q
′
1 −Q1] ≥ 0. Thus π1 has increasing differences in

(Q1, t1). Similarly, ς2(t2) = π2(Q1, y
′
2, t1, t2)−π2(Q1, y2, t1, t2) where y′2 ≥ y2 for given Q1, t1. Then

ς2(t2) = E[min{R2(t1),−y′2}]−E[min{R2(t1),−y2}] + t2[y
′
2− y2].

Define t′2 such that t′2 ≥ t2. It follows that ς(t′2)− ς(t2) = [t′2 − t2][y
′
2 − y2] ≥ 0. Thus π2 has increasing differences in

(y2, t2). Since our priors over the types are independent, the condition for priors to be increasing with respect to types
is trivially satisfied. The existence of pure strategy Nash equilibrium follows. ¤

A.2. Proof of Claims 1-4 and Lemmas 2–5

Proof of Claim 1: Let min{s−1(x), ŝ−1(y)} = ŝ−1(y), i.e., s−1(x) ≥ ŝ−1(y). Suppose, to get a contradiction, that
s−1(x) < x + y. Then x < s(x + y) = x + y − ŝ(x + y), since ŝ(x) = x− s(x). Thus, ŝ(x + y) < y, and x + y < ŝ−1(y).
Therefore, s−1(x) < ŝ−1(y), yielding a contradiction. The second inequality is established similarly. ¤

Proof of Claim 2: Pr(D1 ≥Qo
1H) = Pr(D≥ s−1(Qo

1H)) = c1H ≤ c2H = Pr(D≥ ŝ−1(Qo
2H)).

Hence, s−1(Qo
1H)≥ ŝ−1(Qo

2H). ¤

Proof of Claim 3: (i) (1) evaluated at Q1L = Q∗1H is positive.
(ii) Similar argument with (i). ¤

Proof of Claim 4: We will only show (i). Other cases are established similarly. Evaluating the left hand side of (1)
at Q1L = Qo

1L gives:

q Pr(D1 +(D2−Q2H)+ ≥Qo
1L)+ (1− q)Pr(D1 +(D2−Q2L)+ ≥Qo

1L)− c1L

≥ q Pr(D1 ≥Qo
1L) + (1− q)Pr(D1 ≥Qo

1L)− c1L = Pr(D1 ≥Qo
1L)− c1L = 0

Thus, Q∗1L ≥Qo
1L. ¤

Proof of Lemma 2: Assume that s−1(Q∗1H) > ŝ−1(Q∗2H). First note that,

Pr(D2 +(D1−Q1)
+ ≥Q2) = Pr(D≥ s−1(Q1),D≥Q1 + Q2)+ Pr(D≤ s−1(Q1),D≥ ŝ−1(Q2)).

By substituting this in (4) we obtain:

pPr(D≥ s−1(Q∗1H),D≥Q∗2H + Q∗1H)+ pPr(D≤ s−1(Q∗1H),D≥ ŝ−1(Q∗2H))+
(1− p)Pr(D≥ s−1(Q∗1L),D≥Q∗2H + Q∗1L)+ (1− p)Pr(D≤ s−1(Q∗1L),D≥ ŝ−1(Q∗2H))− c2H = 0

Since s−1(Q∗1H) > ŝ−1(Q∗2H), s−1(Q∗1L) > ŝ−1(Q∗2H) by Claim 3. By Claim 1, Pr(D ≥ s−1(Q∗1H),D ≥ Q∗2H + Q∗1H) =
Pr(D≥ s−1(Q∗1H). In addition, Pr(D≥ s−1(Q∗1H))+ Pr(ŝ−1(Q∗2H)≤D≤ s−1(Q∗1H)) = Pr(D≥ ŝ−1(Q∗2H)). Therefore,

pPr(D≥ ŝ−1(Q∗2H))+ (1− p)Pr(D≥ ŝ−1(Q∗2H))− c2H = Pr(D≥ ŝ−1(Q∗2H))− c2H = 0.

Thus, Q∗2H = Qo
2H . Using s−1(Q∗1H)≤ ŝ−1(Q∗2H) < ŝ−1(Q∗2L) in (2) in a similar fashion gives the result Q∗1H = Qo

1H . ¤

Proof of Lemma 3: Assume to the contrary that for c1H ≤ c2H , s−1(Q∗1H) < ŝ−1(Q∗2H). Then, by Lemma 1, Q∗1H =
Qo

1H . By Claims 2 and 3, we get s−1(Q∗1H)≥ s−1(Qo
1H)≥ ŝ−1(Qo

2H) and

Pr(D≥Q∗2H + Q∗1H)≤ Pr(D≥Qo
2H + Qo

1H) < Pr(D≥Qo
2H + ŝ(s−1(Qo

2H))) = Pr(ŝ(D)≥Qo
2H) = c2H . (∗)

Now, we have either s−1(Q∗1L) > ŝ−1(Q∗2H) or s−1(Q∗1L) ≤ ŝ−1(Q∗2H). In the first case equilibrium condition (4)
simplifies to:

c2H = pPr(D≥Q∗2H + Q∗1H)+ (1− p)Pr(ŝ(D)≥Q∗2H) ≤ pPr(D≥Q∗2H + Q∗1H)+ (1− p)c2H ,
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since Pr(ŝ(D)≥Q∗2H)≤ Pr(ŝ(D)≥Qo
2H) by Claim 4 and Pr(ŝ(D)≥Qo

2H) = c2H by definition. This leads to

c2H ≤ pPr(D≥Q∗2H + Q∗1H) + (1− p)c2H ≤ Pr(D≥Q∗2H + Q∗1H),

which is a contradiction to (∗).
For the second case, the equilibrium condition (4) simplifies to:

c2H = pPr(D≥Q∗2H + Q∗1H)+ (1− p)Pr(D≥Q∗2H + Q∗1L) < Pr(D≥Q∗2H + Q∗1H),

since Q∗1L > Q∗1H by Claim 3. Again this contradicts (∗). ¤

Proof of Lemma 4: By Lemma 2, c1H ≤ c2H implies s−1(Q∗1H)≥ ŝ−1(Q∗2H). Using this condition in Lemma 1 yields
the desired result. ¤

Proof of Lemma 5: First note that Qo
iL and Qo

iH are stand-alone order levels for firms i = 1,2. It is important to
notice that each firm will at least play his stand-alone order quantity in the equilibrium. Now, define Q1

2H as the order
level of high type of firm 2 when firm 1 plays his stand-alone quantities for both his types in the equilibrium i.e.,

pPr(ŝ(D)+ (s(D)−Qo
1H)+ ≥Q1

2H)+ (1− p)Pr(ŝ(D)+ (s(D)−Qo
1L)+ ≥Q1

2H)− c2H = 0.

and Q1
2H ≥Qo

2H since firm 2 will play at least his stand-alone order level. Rewriting the equilibrium condition gives,

pPr(D≥ s−1(Qo
1),D≥Qo

1H + Q1
2H)+ pPr(D≤ s−1(Qo

1H),D≥ ŝ−1(Q1
2H))

+(1− p)Pr(D≥ s−1(Qo
1L),D≥Qo

1L + Q1
2H)+ (1− p)Pr(D≤ s−1(Qo

1L),D≥ ŝ−1(Q1
2H))− c2H = 0.

For this equilibrium condition, we have three possibilities: ŝ−1(Q1
2H) ≤ s−1(Qo

1H), s−1(Qo
1H) < ŝ−1(Q1

2H) ≤ s−1(Qo
1L)

and s−1(Qo
1L) < ŝ−1(Q1

2H). First assume ŝ−1(Q1
2H)≤ s−1(Qo

1H), then the equilibrium condition becomes:

pPr(D≥ ŝ−1(Q1
2H))+ (1− p)Pr(D≥ ŝ−1(Q1

2H))− c2H = Pr(D≥ ŝ−1(Q1
2H))− c2H = 0.

Thus, Q1
2H = Qo

2H . Now, we assume that s−1(Qo
1H) < ŝ−1(Q1

2H) < s−1(Qo
1L). Moreover, if we use the fact that s−1(Qo

1H) <
Qo

1H + Q1
2H (by Claim 1), the condition becomes

0 = pPr(D≥Qo
1H + Q1

2H)+ (1− p)Pr(D≥ ŝ−1(Q1
2H))− c2H

< pPr(D≥ s−1(Qo
1H)) + (1− p)Pr(D≥ s−1(Qo

1H))− c2H

= Pr(D≥ s−1(Qo
1H))− c2H = c1H − c2H

Thus, c1H > c2H which is a contradiction to our assumption that c1H ≤ c2H . A similar proof can be obtained for
s−1(Qo

1L)≤ ŝ−1(Q1
2H). Hence, Q1

2H = Qo
2H which implies that any order quantity of high type of firm 2 satisfies Q2H ≤

Qo
2H . Combining this with the fact that Q2H ≥Qo

2H , we obtain Q2H = Qo
2H . ¤

A.3. Proof of Theorem 2

Under an increasing and deterministic split function, we know that there is a unique Bayesian–Nash equilibrium and
using Lemma 3, our unique equilibrium conditions take the form:

q Pr(D≥Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)Pr(D1 +(D2−Q∗2L)+ ≥Q∗1L) = c1L,

q Pr(D≥Q∗1H + ŝ(G
−1

(c2H)))+ (1− q)Pr(D1 +(D2−Q∗2L)+ ≥Q∗1H) = c1H ,
pPr(D2 + (D1−Q∗1H)+ ≥Q∗2L)+ (1− p)Pr(D2 +(D1−Q∗1L)+ ≥Q∗2L) = c2L,

Q∗2H = ŝ(G
−1

(c2H)).

Now, if we use D1 = s(D) and D2 = ŝ(D) and use the fact that,

Pr(D1 +(D2−Q2)
+ ≥Q1) = Pr(D≥ ŝ−1(Q2),D≥Q2 + Q1)+ Pr(D≤ ŝ−1(Q2),D≥ s−1(Q1)),

P r(D2 +(D1−Q1)
+ ≥Q2) = Pr(D≥ s−1(Q1),D≥Q1 + Q2)+ Pr(D≤ s−1(Q1),D≥ ŝ−1(Q2)),

which can be obtained using a simple conditional probability argument, equilibrium conditions will become:

q Pr(D≥Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ ŝ−1(Q∗2L),D≥Q∗2L + Q∗1L)
+(1− q)Pr(D≤ ŝ−1(Q∗2L),D≥ s−1(Q∗1L)) = c1L, (A1)

q Pr(D≥Q∗1H + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ ŝ−1(Q∗2L),D≥Q∗2L + Q∗1H)
+(1− q)Pr(D≤ ŝ−1(Q∗2L),D≥ s−1(Q∗1H)) = c1H , (A2)

pPr(D≥ s−1(Q∗1H),D≥Q∗2L + Q∗1H)+ pPr(D≤ s−1(Q∗1H),D≥ ŝ−1(Q∗2L))
+(1− p)Pr(D≥ s−1(Q∗1L),D≥Q∗2L + Q∗1L)

+(1− p)Pr(D≤ s−1(Q∗1L),D≥ ŝ−1(Q∗2L)) = c2L, (A3)

Q∗2H = ŝ(G
−1

(c2H)). (A4)
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The proof of part 1 follows since Q∗2H = ŝ(G
−1

(c2H)) is obviously an equilibrium condition.

Part 2 has three separate subsets. To prove (i), let ŝ−1(Q∗2L)≥ s−1(Q∗1L). (A1) becomes (i1):

qG(Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ ŝ−1(Q∗2L),D≥Q∗2L + Q∗1L)+ (1− q)Pr(D≤ ŝ−1(Q∗2L),D≥ s−1(Q∗1L))

= qG(Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ s−1(Q∗1L)) = qG(Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)G
−1

(s−1(Q∗1L)) = c1L.

Similarly, using the fact that ŝ−1(Q∗2L)≥ s−1(Q∗1L) implies ŝ−1(Q∗2L)≥ s−1(Q∗1H), (A2) becomes (i2):

qG(Q∗1H + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ ŝ−1(Q∗2L),D≥Q∗2L + Q∗1H)+ (1− q)Pr(D≤ ŝ−1(Q∗2L),D≥ s−1(Q∗1H))

= qG(Q∗1L + ŝ(G
−1

(c2H)))+ (1− q)Pr(D≥ s−1(Q∗1H)) = qG(Q∗1H + ŝ(G
−1

(c2H)))+ (1− q)G
−1

(s−1(Q∗1H)) = c1H .

And combining two inequalities, (A3) becomes (i3):

pPr(D≥ s−1(Q∗1H),D≥Q∗2L + Q∗1H)+ pPr(D≤ s−1(Q∗1H),D≥ ŝ−1(Q∗2L))
+(1− p)Pr(D≥ s−1(Q∗1L),D≥Q∗2L + Q∗1L)+ (1− p)Pr(D≤ s−1(Q∗1L),D≥ ŝ−1(Q∗2L))
= pPr(D≥Q∗2L + Q∗1H)+ (1− p)Pr(D≥Q∗2L + Q∗1L)

= pG
−1

(D≥Q∗2L + Q∗1H)+ (1− p)G
−1

(D≥Q∗2L + Q∗1L) = c2L.

The proof for (ii) and (iii) follows similarly under s−1(Q∗1L) > ŝ−1(Q∗2L)≥ s−1(Q∗1H) and s−1(Q∗1H) > ŝ−1(Q∗2L). ¤

A.4. Proof of Theorem 3

First, since the demand has a continuous distribution, the inverse of distribution function G and G are well-defined.
Only one of the (i),(ii) or (iii) given in Theorem 2 can be satisfied since a vector of order quantities satisfying one of
the inequality conditions (i4),(ii4) or (iii4) cannot satisfy others.

Take the region (i). There can be only one Q∗1L satisfying condition (i1) which is:

qG(Q∗1L + ŝ(G
−1

(c2H))) + (1− q)G(s−1(Q∗1L)) = c1L,

since s−1, ŝ−1 and G
−1

gives unique results and it does not depend on any other variables. Similarly, only one Q∗1H

satisfies (i2):

qG(Q∗1H + ŝ(G
−1

(c2H)))+ (1− q)G(s−1(Q∗1H)) = c1H .

Since both Q∗1L and Q∗1H are unique, (i3) i.e.,

pG(Q∗2L + Q∗1H)+ (1− p)G(Q∗2L + Q∗1L) = c2L,

also gives a unique Q∗2L. Thus, the set of order quantities satisfying region (i) is unique.
Similar arguments are valid for regions (ii) and (iii). The argument so far does not rule out multiple equilibria each

of which is the unique solution of one of three blocks of equalities. Finally, we need to show that only one of that three
cases can arise.

Assume to the contrary that case (i) and (ii) gives different solutions. Now, let (Q∗1L,Q∗1H ,Q∗2L,Q∗
2H) and

(Q̂1L, Q̂1H , Q̂2L, Q̂2H) be the solutions of cases (i) and (ii) respectively. First notice that Q∗1H = Q̂1H = Q1H and Q∗2H =
Q̂2H = Q2H since they require the same conditions. However, low type quantities should satisfy:

q G(Q∗1L + Q2H)+ (1− q) G(s−1(Q∗1L)) = q G(Q̂1L + Q2H)+ (1− q) G(Q̂2L + Q̂1L)
p G(Q∗2L + Q1H)+ (1− p) G(Q∗2L + Q∗1L) = p G(Q̂2L + Q1H)+ (1− p) G(ŝ−1(Q̂2L))

ŝ−1(Q∗2L)≥Q∗1L + Q∗2L ≥ s−1(Q∗1L)
ŝ−1(Q̂2L) < Q̂1L + Q̂2L < s−1(Q̂1L)

where inequalities come from Claim 4. Thus, we have

q G(Q∗1L + Q2H)+ (1− q) G(s−1(Q∗1L)) > q G(Q̂1L + Q2H)+ (1− q) G(s−1(Q̂1L))
p G(Q∗2L + Q1H)+ (1− p) G(ŝ−1(Q∗2L)) < p G(Q̂2L + Q1H)+ (1− p) G(ŝ−1(Q̂2L))

which implies Q∗1L < Q̂1L and Q∗2L > Q̂2L (Remember that G is a decreasing function.). If we use this in equilibrium
conditions,

G(s−1(Q∗1L)) < G(Q̂2L + Q̂1L)
G(Q∗2L + Q∗1L) > G(ŝ−1(Q̂2L))

meaning that both Q∗1L + Q∗2L > s−1(Q∗1L) > Q̂2L + Q̂1L and Q̂2L + Q̂1L > ŝ−1(Q̂2L) > Q∗2L + Q∗1L should be true, which
is a contradiction. The proof for other cases are similar.

Thus, the solution given by Theorem 2 is unique. ¤
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A.5. Proof of Theorem 4

Let GA and GB be the distribution functions of DA and DB , respectively. DA stochastically dominates DB . Thus,
GA(x)≤GB(x) and GA(x)≥GB(x) for all x. Since GA and GB are decreasing functions, G

−1
A (y)≥G

−1
B (y) for all y. We

define (QA
1L,QA

1H ,QA
2L,QA

2H) and (QB
1L,QB

1H ,QB
2L,QB

2H) as the equilibrium order quantities for DA and DB , respectively.
Returning to the result of Theorem 2, we have three possible cases. Consider the equilibrium conditions in case (i).

Now, since ŝ is an increasing function, there exists δ2H = QA
2H −QB

2H = ŝ(G
−1
A (c2H))− ŝ(G

−1
B (c2H))≥ 0. Note that, the

stock–out probability of firm 2 under high type does not change.
Now, by (i2),

q GA(QA
1L + QA

2H)+ (1− q) GA(s−1(QA
1L)) = q GB(QB

1L + QB
2H)+ (1− q) GB(s−1(QB

1L)).

Since the stock–out probability of firm 2 under high type does not change and low type of firm 1 gets spillover only from
high type of firm 2, the probability of firm 1’s getting a spillover should not change.

Let δ1L = QA
1L−QB

1L. We can rewrite the equilibrium condition as,

q GA(QA
1L + QA

2H)+ (1− q) GA(s−1(QA
1L)) = q GB(QA

1L + QA
2H − δ1L− δ2H)+ (1− q) GB(s−1(QA

1L− δ1L)),

We know that for any {x1, x2}, if GA(x1) = GB(x2) then x1 ≥ x2. Moreover, since the spillover probability does not
change, GA(s−1(QA

1L))≥GB(s−1(QA
1L)) should be satisfied. Thus, the difference between order quantities is positive,

i.e., δ1L ≥ 0 and QA
1L ≥QB

1L.
By a similar argument for (i2), δ1H = QA

1H −QB
1H ≥ 0.

For (i3), we have

p GA(QA
2L + QA

1H)+ (1− p) GA(QA
2L + Q∗1L) = p GB(QB

2L + QA
1H − δ1H)+ (1− p) GB(QB

2L + QA
1L− δ1L).

From previous argument, we know that the stock–out probability of firm 1 does not change with a stochastic increase in
demand distribution. (Equilibrium order quantities increase to compensate the change in demand distribution.) Using a
similar argument for (i3), δ2L = QA

2L−QB
2L ≥ 0. Thus all the equilibrium order quantities increase.

Similar proof for cases (ii) and (iii). ¤

A.6. Proof of Theorem 5
As s increases uniformly, ŝ−1 increase, ŝ and s−1 decreases. From Theorem 2, as s increases, Q∗2H decreases.

From (i1),

q G
A
(Q∗1L + Q∗2H)+ (1− q) G

A
(s−1(Q∗1L)) = c1L.

If s increases uniformly, s−1 decreases. Hence, Q1L should increase to satisfy the equilibrium condition. Similarly, Q∗1H

increases as s increases.
From (i3),

p G
A
(Q∗2L + Q∗1H)+ (1− p) G

A
(Q∗2L + Q∗1L) = c2L.

Since Q∗1L and Q∗1H increase, Q∗2L should decrease to compensate. Similar argument applies for cases (ii) and (iii). ¤

A.7. Comparative Statics

This section summarizes the comparative statics results for general demand distributions. But we need the following
results.

First note that s′ = ∂s(D)/∂D > 0 and ŝ′ = ∂ŝ(D)/∂D > 0 since we assume both s and ŝ are increasing and deter-
ministic functions. Then the derivative of the inverses of the split functions can be found by

(s−1)′ =
∂s−1(Q)

∂Q
=

1

s′(s−1())
> 0

(ŝ−1)′ =
∂ŝ−1(Q)

∂Q
=

1

ŝ′(ŝ−1())
> 0

We use these results to find the signs of derivatives of order quantities with respect to each parameter in the model.
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Table 4 Derivatives w.r.t. c1L

Q Conditions c1L Sign

Q2H 0

Q1L G(s−1(Q1L)) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1L))
< 0

G(s−1(Q1L)) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

(i) Q1H 0

Q2L G(Q1L + Q2L) > 0 − (1−p)g(Q1L+Q2L)
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

( ∂Q1L
∂c1L

) > 0

G(Q1L + Q2L) = 0 0

Q1L G(Q1L + Q2L) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
< 0

G(Q1L + Q2L) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

(ii) Q1H 0

Q2L 0

Q1L G(Q1L + Q2L) > 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
< 0

(iii) G(Q1L + Q2L) = 0 − 1

qg(Q1L+ŝ(G
−1

(c2H )))
< 0

Q1H 0

Q2L 0

Table 5 Derivatives w.r.t. c1H

Q Conditions c1H Sign

Q2H 0

Q1L 0

(i) Q1H − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

Q2L G(Q1L + Q2L) > 0 − pg(Q1H+Q2L)
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

( ∂Q1H
∂c1H

) > 0

G(Q1L + Q2L) = 0 − ∂Q1H
∂c1H

> 0

Q1L G(Q1L + Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L

∂c1H
) < 0

G(Q1L + Q2L) = 0 0

(ii) Q1H − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H

∂c1H
) > 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂c1H

> 0

Q1L 0

(iii) Q1H G(Q1H + Q2L) > 0 − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
< 0

G(Q1H + Q2L) = 0 − 1

qg(Q1H+ŝ(G
−1

(c2H )))
< 0

Q2L 0

.
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Table 6 Derivatives w.r.t. c2L

Q Conditions c2L Sign

Q2H 0

Q1L 0

(i) Q1H 0

Q2L G(Q1L + Q2L) > 0 − 1
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L + Q2L) = 0 − 1
pg(Q1H+Q2L)

< 0

Q1L G(Q1L + Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L

∂c2L
) > 0

G(Q1L + Q2L) = 0 0

(ii) Q1H 0

Q2L G(ŝ−1(Q2L)) > 0 − 1

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
< 0

G(ŝ−1(Q2L)) = 0 − 1
pg(Q1H+Q2L)

< 0

Q1L G(Q1L + Q2L) > 0 (1−q)ŝ′g(Q1L+Q2L)/g(G
−1

(c2L))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L + Q2L) = 0 0

(iii) Q1H G(Q1H + Q2L) > 0 (1−q)ŝ′g(Q1H+Q2L)/g(G
−1

(c2L))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H + Q2L) = 0 0

Q2L − ŝ′

g(G
−1

(c2L))
< 0

Table 7 Derivatives w.r.t. c2H

Q Conditions c2H Sign

Q2H − ŝ′

g(G
−1

(c2H ))
< 0

Q1L G(s−1(Q1L)) > 0 ŝ′g(Q1L+ŝ(G
−1

(c2H)))/g(G
−1

(c2H ))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1L))
> 0

G(s−1(Q1L)) = 0 ŝ′

qg(G
−1

(c2H ))
> 0

(i) Q1H
ŝ′g(Q1H+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(Q1L + Q2L) > 0 − pg(Q1H+Q2L)∂Q1H/∂c2H+(1−p)g(Q1L+Q2L)∂Q1L/∂c2H
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L + Q2L) = 0 − ∂Q1H
∂c1H

< 0

Q1L G(Q1L + Q2L) > 0 qŝ′g(Q1L+ŝ(G
−1

(c2H )))/g(G
−1

(c2H))+(1−q)g(Q1L+Q2L)(∂Q2L/∂c2H )

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
> 0

G(Q1L + Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

(ii) Q1H
ŝ′g(Q1H+ŝ(G

−1
(c2H )))/g(G

−1
(c2H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H

∂c2H
) < 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂c2H

< 0

Q1L G(Q1L + Q2L) > 0 qŝ′g(Q1L+Q2H )/g(G
−1

(c2H ))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L + Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

(iii) Q1H G(Q1H + Q2L) > 0 qŝ′g(Q1H+Q2H )/g(G
−1

(c2H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H + Q2L) = 0 ŝ′

g(G
−1

(c2H ))
> 0

Q2L 0

.
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Table 8 Derivatives w.r.t. p

Q Conditions p Sign

Q2H 0

Q1L 0

(i) Q1H 0

Q2L G(Q1L + Q2L) > 0 G(Q1H+Q2L)−G(Q1L+Q2L)
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

> 0

G(Q1L + Q2L) = 0 G(Q1H+Q2L)
pg(Q1H+Q2L)

> 0

Q1L G(Q1L + Q2L) > 0 − (1−q)g(Q1L+Q2L)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
( ∂Q2L

∂p
) < 0

G(Q1L + Q2L) = 0 0

(ii) Q1H 0

Q2L G(ŝ−1(Q2L)) > 0 G(Q1H+Q2L)−G(ŝ−1(Q2L))

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
> 0

G(ŝ−1(Q2L)) = 0 G(Q1H+Q2L)
pg(Q1H+Q2L)

> 0

Q1L 0

(iii) Q1H 0

Q2L 0

Table 9 Derivatives w.r.t. q

Q Conditions q Sign

Q2H 0

Q1L G(s−1(Q1L)) > 0 G(Q1L+ŝ(G
−1

(c2H )))−G(s−1(Q1L))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1L))
> 0

G(s−1(Q1L)) = 0 G(Q1L+ŝ(G
−1

(c2H)))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(i) Q1H
G(Q1H+ŝ(G

−1
(c2H )))−G(s−1(Q1H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(Q1L + Q2L) > 0 − pg(Q1H+Q2L)∂Q1H/∂q+(1−p)g(Q1L+Q2L)∂Q1L/∂q
pg(Q1H+Q2L)+(1−p)g(Q1L+Q2L)

< 0

G(Q1L + Q2L) = 0 − ∂Q1H
∂q

< 0

Q1L G(Q1L + Q2L) > 0 G(Q1L+ŝ(G(c2H )))−G(Q1L+Q2L)−(1−q)g(Q1L+Q2L)(∂Q2L/∂q)

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+Q2L)
> 0

G(Q1L + Q2L) = 0 G(Q1L+ŝ(G(c2H)))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(ii) Q1H
G(Q1H+ŝ(G

−1
(c2H )))−G(s−1(Q1H ))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)(s−1)′g(s−1(Q1H ))
> 0

Q2L G(ŝ−1(Q2L)) > 0 − pg(Q1H+Q2L)

pg(Q1H+Q2L)+(1−p)(ŝ−1)′g(ŝ−1(Q2L))
( ∂Q1H

∂q
) < 0

G(ŝ−1(Q2L)) = 0 − ∂Q1H
∂q

< 0

Q1L G(Q1L + Q2L) > 0 G(Q1L+ŝ(G(c2H)))−G(Q1L+ŝ(G(c2L)))

qg(Q1L+ŝ(G
−1

(c2H )))+(1−q)g(Q1L+ŝ(G
−1

(c2L)))
> 0

G(Q1L + Q2L) = 0 G(Q1L+ŝ(G(c2H)))

qg(Q1L+ŝ(G
−1

(c2H )))
> 0

(iii) Q1H G(Q1H + Q2L) > 0 G(Q1H+ŝ(G(c2H)))−G(Q1H+ŝ(G(c2L)))

qg(Q1H+ŝ(G
−1

(c2H )))+(1−q)g(Q1H+ŝ(G
−1

(c2L)))
> 0

G(Q1H + Q2L) = 0 G(Q1H+ŝ(G(c2H)))

qg(Q1H+ŝ(G
−1

(c2H)))
> 0

Q2L 0

.
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A.8. Equilibrium under Uniform Demand and Linear Market Shares

The equilibrium conditions under the assumption D∼Uniform(0,1) are as follows:

q(1−min{1,Q1H + Q2H})+ (1− q)(1−min{1,max{Q2L/(1− s),Q1H + Q2L}})
+(1− q)(max{min{1,Q2L/(1− s)}−min{1,Q1H/s},0}) = c1H

q(1−min{1,Q1L + Q2H})+ (1− q)(1−min{1,max{Q2L/(1− s),Q1L + Q2L})
+(1− q)(max{min{1,Q2L/(1− s)}−min{1,Q1L/s},0}) = c1L

Q2H/(1− s) = 1− c2H

p(1−min{1,max{Q1H/s,Q1H + Q2L}}+max{min{1,Q1H/s}−min{1,Q2L/(1− s)},0})
+(1− p)(1−min{1,max{Q1L/s,Q1L + Q2L}})

+(1− p)(max{min{1,Q1L/s}−min{1,Q2L/(1− s)},0}) = c2L

Solution for Q2H = (1− s)(1− c2H) is straight forward. However in order to obtain the solutions for Q1L,Q1H and
Q2L we have to know the ordering for Q1L/s, Q1H/s, Q2L/(1− s), 1 and whether Q1L + Q2L, Q1H + Q2L,Q1L + Q2H

and Q1H + Q2H are greater than 1 or not. We can summarize all the possibilities as:

{Q1L
s

> 1, Q1L
s
≤ 1} {Q1H

s
> 1, Q1H

s
≤ 1} { Q2L

(1−s)
> 1, Q2L

(1−s)
≤ 1}

{Q1L
s

> Q2L
(1−s)

, Q1L
s
≤ Q2L

(1−s)
} {Q1H

s
> Q2L

(1−s)
, Q1H

s
≤ Q2L

(1−s)
}

{Q1L + Q2L > 1,Q1L + Q2L ≤ 1} {Q1H + Q2L > 1,Q1H + Q2L ≤ 1}
{Q1L + Q2H > 1,Q1L + Q2H ≤ 1} {Q1H + Q2H > 1,Q1H + Q2H ≤ 1.}

We have 512 different possibilities for Q1L,Q1H and Q2L each leading to a different region in the 7 dimensional space.
However, the number of regions can be reduced to 8 regions as shown below.

First, if both of the players have a high type, then the total inventory cannot exceed 1 and if second firm has high
type since he does not expect any spillover. This is simply due to the suboptimality of all values greater than 1. Second,
some of the conditions imply the others. For example, if Q1L/s > 1 and Q2L/(1− s) > 1 then Q1L + Q2L > 1. Third,
Q2L/(1− s) > Q1L/s implies Q2L/(1− s) > Q1H/s since low type of a firm orders as much as high type of the firm due
to submodularity. Similarly, Q2L/(1− s)≤Q1H/s implies Q2L/(1− s)≤Q1L/s.

Using these kind of arguments we reduce the conditions to form 8 different regions. It can be shown that it is not
possible to reduce the conditions further without making additional assumptions on the parameters.

Region Conditions

1 Q1L

s
> 1 , Q2L

(1−s)
> 1

2 Q1L + Q2L > 1 , Q1L

s
≤ 1

3 Q1L + Q2L ≤ 1 , Q1L

s
≤ Q2L

(1−s)

4 Q1L + Q2L > 1 , Q2L

(1−s)
≤ 1 , Q1H

s
≤ Q2L

(1−s)

5 Q1L + Q2L ≤ 1 , Q1L

s
> Q2L

(1−s)
, Q1H

s
≤ Q2L

(1−s)

6 Q1H + Q2L > 1 , Q1H

s
> Q2L

(1−s)

7 Q1L + Q2L > 1 , Q1H + Q2L ≤ 1 , Q1H

s
> Q2L

(1−s)

8 Q1L + Q2L ≤ 1 , Q1H

s
> Q2L

(1−s)

In each of the regions, the given inequalities simplify the equilibrium conditions leading to an easy computation of
the equilibrium order quantities.

For Region 1, we reduce the equilibrium conditions to the following form:

q(1−Q1H −Q2H)+ (1− q)(1−Q1H/s) = c1H ,
q(1−Q1L−Q2H) = c1L,
Q2H/(1− s) = 1− c2H ,

p(1−Q1H −Q2L) = c2L.

It is straightforward to find the order quantities for this region:

Q1H = (1−c1H−q(1−s)(1−c2H ))
(q+(1−q)/s)

Q1L = 1− c1L
q
− (1− s)(1− c2H),

Q2H = (1− s)(1− c2H) Q2L = 1− c2L
p
− (1−c1H−q(1−s)(1−c2H))

(q+(1−q)/s)
.

Now, by plugging these quantities into necessary inequalities, we obtain:
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Q1L

s
> 1 ⇒ 1− c1L

q
− (1− s)(1− c2H) > s

⇒ c1L

q
− (1− s)(1− c2H) < 1− s ⇒ c1L

q
− (1− s)c2H < 0

⇒ c1L < q(1− s)c2H

Q2L

(1− s)
> 1 ⇒ 1− c2L

p
− (1− c1H − q(1− s)(1− c2H))

(q +(1− q)/s)
> 1− s

⇒ c2L

p
+

s(1− c1H − q(1− s)(1− c2H))

(1− (1− s)q)
< s ⇒ c2L

p
− s(c1H − q(1− s)(c2H))

(1− (1− s)q)
< 0

⇒ c2L <
sp(c1H − q(1− s)c2H)

1− (1− s)q

Thus, Region 1 can be characterized by two inequalities:

c1L < q(1− s)c2H ,

c2L <
sp(c1H − q(1− s)c2H)

1− (1− s)q
.

These conditions are necessary and sufficient, i.e., if these inequalities are satisfied, then equilibrium order quantities
take the values in Region 1.

In a similar fashion, we can obtain the conditions for all 8 regions. This is summarized in Figure 1.

A.9. Comparative Statics under Uniform Demand and Linear Market Shares

Q1L →

Qα
1L Qβ

1L Qγ
1L Qδ

1L

c1L − 1
q

− 1
(q+(1−q)/s)

−1 −1

c1H 0 0 − s(1−s)(1−q)p
(1−(1−s)q)(1−sp)

0

p 0 0 s(1−s)(1−q)(c2L−c1H+q(1−s)(c2H−c2L))

(1−(1−s)q)(1−sp)2
0

c2L 0 0 (1−s)(1−q)
1−sp

(1− q)(1− s)

c2H (1− s) s(1−s)q
(1−sp)

q(1−s)(1−q(1−s)−ps2)
(1−(1−s)q)(1−sp)

q(1− s)

q c1L
q2

s(1−s)(c2H−c1L)

(1−(1−s)q)2
(1−s)((1−(1−s)q)2(c2H−c2L)−ps2(c2H−c1H ))

(1−(1−s)q)2(1−ps)
(1− s)(c2H − c2L)

s (1− c2H) 1− c2H + (1−q)(c2H−c1L)

(1−(1−s)q)2
q(1− c2H)+ (1− q)( (1−s)(1−q)(1−c2L)

(1−sp)2
+ s(1−s)pq(1−c2H )

(1−(1−s)q)(1−sp)
q(1− c2H)+ (1− q)(1− c2L)

+ p(1−2s+s2p−(1−s)2q)(1−c1H−q(1−s)(1−c2H))

(1−(1−s)q)2(1−sp)2
)

Q2L →

Qα
2L Qβ

2L Qγ
2L Qδ

2L

c1L 0 s(1−p)
(1−(1−s)q)

0 0

c1H
s

(1−(1−s)q)
sp

(1−(1−s)q)
s(1−s)p

(1−(1−s)q)(1−sp)
0

p c2L
p2

s(c1H−c1L)
(1−(1−s)q)

s(1−s)(c1H−c2L−q(1−s)(c2H−c2L))

(1−(1−s)q)(1−sp)2
0

c2L − 1
p

−1 − (1−s)
(1−sp)

−(1− s)

c2H − qs(1−s)
(1−(1−s)q)

− qs(1−s)
(1−(1−s)q)

− pqs(1−s)2

(1−(1−s)q)(1−sp)
0

q − s(1−s)(c2H−c1H )

(1−(1−s)q)2
− s(1−s)(c2H−c1L−p(c1H−c1L))

(1−(1−s)q)2
− ps(1−s)2(c2H−c1H )

(1−(1−s)q)2(1−sp)
0

s − (1−q)(1−c1H )

(1−(1−s)q)2
− (1−q)(1−pc1H−(1−p)c1L)

(1−(1−s)q)2
− (1−s)(1−q)(1−c2L)

(1−sp)2
− s(1−s)pq(1−c2H)

(1−(1−s)q)(1−sp)
−(1− c2L)

− q2(1−s)2(1−c2H )−q(1−2s)(1−c2H )

(1−(1−s)q)2
+ q2(1−s)2(1−c2H )−q(1−2s)(1−c2H)

(1−(1−s)q)2
− p(1−2s+s2p−(1−s)2q)(1−c1H−q(1−s)(1−c2H))

(1−(1−s)q)2(1−sp)2
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Q1H and Q2H →
Qα

1L Qβ
1L Qγ

1L Q2H

c1L 0 0 0 0

c1H − s
(1−(1−s)q)

− 1
q

−1 0

p 0 0 0 0

c2L 0 0 (1− q)(1− s) 0

c2H
qs(1−s)

(1−(1−s)q)
(1− s) q(1− s) −(1− s)

q s(1−s)(c2H−c1H )

(1−(1−s)q)2
c1H
q2 (1− s)(c2H − c2L) 0

s sq(1−c2H )
(1−(1−s)q)

+ (1−q)(1−c1H−q(1−s)(1−c2H ))

(1−(1−s)q)2
(1− c2H) q(1− c2H)+ (1− q)(1− c2L) −(1− c2H)


