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profiling, i.e., the data used in our approach is readily available from 
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ABSTRACT 
A Service Level Agreement (SLA) contains one or more Service 

Level Objectives (SLOs) that describe the agreed upon quality 

requirements at the service-level. In order to manage the service to 

meet the agreed upon SLA, it is important not only to design a 

service of the required capacity but also to monitor the service 

thereafter for violations at runtime. This objective can be achieved 

by undertaking SLA Decomposition, i.e., translating SLOs 

specified in the SLA into lower-level policies that can then be 

used for design and enforcement purposes. Such design and 

operational policies are often constraints on thresholds of lower 

level metrics. Traditionally, domain experts and administrators 

bring their knowledge to bear upon the problem of SLA 

decomposition. This practice is ad-hoc, manual, and static (i.e., 

done once). This is both costly, and not well suited to dynamic 

workloads. In the past, there has been a number of efforts to 

develop more automated and dynamic solutions, but these 

approaches have many limitations and hence pose major 

challenges to their applicability in practice.  

In this paper, we propose a systematic and practical approach that 

combines fine-grained performance modeling with regression 

analysis to translate service level objectives directly into design 

and operational policies for multi-tier applications. We 

demonstrate that our approach is practical and can be applied to 

commonly used multi-tier applications with different topologies 

and performance characteristics. Our approach handles both 

request-based and session-based workloads and deals with 

workload changes in terms of both request volume and transaction 

mix. Our approach is non-intrusive in the sense that it requires no 

specialized profiling, i.e., the data used in our approach is readily 

available from normal system and application monitoring. We 

validate our approach using both the RUBis e-commerce 

benchmark and a trace-driven simulation of a business-critical 

enterprise application. These results show the effectiveness of our 

approach.  

1. INTRODUCTION 
A Service Level Agreement (SLA) captures the agreed upon 

guarantees between a service provider and its customer. The 

ability to deliver according to a pre-defined SLA is an 

increasingly critical need in today’s highly complex and dynamic 

IT environments.  

One of the key tasks to SLA management is SLA decomposition, 

translating the high level service objectives to low level design 

and operational policies that can be then used to ensure the 

Service Level Objectives (SLOs) are met. Given an 

application/service and its corresponding SLOs, the IT operations 

team undertakes SLA decomposition by determining the design 

parameters that include identifying the operational level 

objectives that are relevant and the healthy ranges for various 

operational metrics to satisfy the SLAs. For example, for a given 

set of SLOs for an e-commerce application (e.g., response time 

requirements), domain experts make decisions about low level 

design and operational policies. A design policy setting usually 

contains system design parameters such as how many web servers, 

application servers and database servers must be allocated to 

satisfy the specified SLOs. An operational policy specifies details 

of low level metrics (e.g., system resource utilization) to monitor, 

healthy ranges of these metrics and actions to take when healthy 

ranges are violated. Such an operational policy can be used for 

monitoring potential violations and enforcement of SLOs at run 

time. Once the system is put into production, workloads and 

associated SLOs may change during operation. As a result, design 

policies need to be adjusted to ensure current system capacity is 

sufficient to handle the future workload. Operational policy 

configurations need to be adjusted as well. Traditionally, domain 

experts and administrators bring their knowledge to bear upon the 

problem of SLA decomposition. Most of the time, these decisions 

are made in an ad-hoc manner based on past experience. This 

process involves substantial manual effort and adds to the cost of 

service design and operation. Hence effective and efficient SLA 

decomposition in an automated fashion is a key requirement in 

SLA management.  

In the past, researchers have made many efforts to address SLA 

decomposition using techniques such as automated provisioning, 

capacity planning, and monitoring [16, 17, 20, 28, 29]. Previous 

studies have utilized performance models to guide resource 

provisioning and capacity planning [16, 20]. Urgaonkar et al. 

propose a dynamic provisioning technique for multi-tier 

applications [16, 17]. All these research efforts separate design 

and operations into two phases and mostly describe the capacity 

planning and resource provisioning aspects of the design phase. In 

addition, these research efforts make several simplifying 

assumptions. As a result, the practicality and effectiveness of 

these approaches pose major challenges to their applicability. We 

have identified four main problems associated with existing 

solutions that are described below. 

First, workloads in real applications are dynamic and vary over 

time.  Unfortunately, most existing solutions take into account the 

change in the volume of demand only, and assume a fixed or 

stationary transaction mix [16, 17, 28]. Changes in the volume of 

transactions (e.g., request rate) or the mixture of transaction types 

can dramatically alter an application’s performance and resource.   

Hence, a practical decomposition approach must handle workload 

changes in both the volume and transaction mix.  

Second, existing solutions model enterprise application workloads 

as either request-based (open workload) or session-based (closed 

workload) [16, 17, 26, 28]. In reality, workloads are typically 



semi-open, which is significantly different than either an open or a 

closed model [25]. Hence, a single model approach in most 

existing solutions is not sufficient to handle the diversity in 

realistic workloads. A practical approach should support multiple 

models and choose an appropriate model that is based on the 

properties of the real workload.  

Third, building accurate performance models typically requires 

input parameters such as resource demand. However, most 

existing solutions cannot provide the needed model parameters 

directly. Instead, such information must be obtained through 

application or system instrumentation. In practice, instrumentation 

of production applications is rarely done, as it is difficult, costly, 

and may introduce overhead that degrades the application’s 

performance [29].  Hence, a practical approach should be non-

intrusive and passively utilize data that is already available on 

most systems.  

Lastly, most existing solutions are not applicable to the diverse 

range of design and implementation choices. Many of them make 

simplifying assumptions about the application infrastructure, such 

as considering only one server per tier [17, 26] or uniformly 

distributing the requests across the different tiers [26]. To cope 

with the diversity and complexity in real applications, a model 

must be sufficiently general to capture the behavior of 

applications with different configurations, workloads and 

performance characteristics. 

In this paper, we propose a systematic, non-intrusive and practical 

SLA decomposition approach to address the above issues. Our 

approach combines a fine-grain performance model and a 

regression-based profiling approach to derive low-level 

operational policies from high-level objectives for multi-tier 

applications. We formalize the decomposition as a constraint 

optimization problem, and develop a constraint solver to solve it. 

Our approach provides the following four key contributions. First, 

our approach formally characterizes both request-based and 

session-based workloads. This enables us to choose an 

appropriate model based on the workload characteristics of the 

application. Second, our approach models workload as a 

transaction mix, and systematically creates a resource profile for 

each transaction type. This fine-grained model enables us to deal 

with dynamic and non-stationary workloads. Third, we use 

regression analysis to estimate the model parameters. The data 

used in our approach is readily available from regular system and 

application monitoring and requires no additional 

instrumentation. It is hence practical to apply our approach to 

production environments. Finally, the proposed modeling 

technique can model multi-tier applications with different 

topologies (i.e., any number of tiers and any number of servers at 

each tier), and different workloads (open and/or closed). As a 

result, our performance model and decomposition approach can 

be applied to a vast variety of common multi-tier applications. 

The remainder of this paper is organized as follows. Section 2 

provides an overview of our approach and our workload model. In 

Section 3, we describe profiling in detail. We present an analytical 

performance model for multi-tier applications in Section 4 and 

our decomposition approach in Section 5. The experimental 

validation of our approach is presented in Section 6.  Related 

work is discussed in Section 7. Section 8 concludes the paper and 

discusses future work.  

2. OVERVIEW OF OUR APPROACH 

2.1 Definition of a Multi-tier Application 
Multi-tier applications are common in modern enterprises. Such 

applications are comprised of a large number of components, 

which interact with one another in complex patterns. Typically, 

multi-tier applications are structured into multiple logical tiers. 

Each tier provides certain functionality to its preceding tier and 

uses the functionality provided by its successor to carry out its 

part of the overall request processing. At each tier, a load balancer 

distributes the overall load among all servers of that tier according 

to certain scheduling algorithms. Consider a multi-tier application 

consisting of M tiers, T1, … TM. In the simplest case, each request 

is processed exactly once by each tier and forwarded to its 

succeeding tier for further processing. Once the result is processed 

by the final tier TM, the results are sent back by each tier in the 

reverse order until it reaches T1, which then sends the results to 

the client. In more complex processing scenarios, each request at 

tier Ti can trigger zero or multiple requests to tier Ti+1. For 

example, a static web page request is processed by the Web tier 

entirely and will not be forwarded to the other tiers. On the other 

hand, a keyword search at a Web site may trigger multiple queries 

to the database tier.  

Table 1. Workload definition 

 

2.2 Workload Model Definitions 
There are typically a number of transaction types in any multi-tier 

application. For example, an online auction application has 

transaction types such as login, browse, bid, etc. In most cases, 

different transaction types have different service demands on 

resources. For example, bid transactions in an auction site 

typically require more CPU time than browse transactions.  As 

previously discussed, empirical workloads tend to be partially-

open, which means a user arrives and stays for a certain amount of 

time (and issues a number of requests) before they leave. Previous 

work has shown that partly-open workloads can be approximated 

using an open workload if the number of requests in a session is 

small, and a closed workload otherwise [25]. We consider these 

two types of workloads in our workload model.  

2.2.1 Open Workload  
In an open (request-based) workload, a new request to the 

application is only triggered by a new user arrival. The requests 

are independent of each other and the arrival rate is not influenced 

by the number of requests that have already arrived and are being 

processed. The number of users who interact with the application 

at any time may range from zero to infinity. An open workload is 

Type 
Workload Parameters 

 

Open  

N: number of transaction types 

(λ1, λ2, … λN): transaction mix 

where  λ i  (i =1 …N ) is the arrival rate of  requests of 

transaction type i during certain time interval 

Closed 

N: number of transaction types 

C: number of users  

Z: think time 

π (p1, p2, … pi,…pN) : transaction mix distribution 

where pi (i = 1, …N) is the percentage of requests of 

transaction type i  



characterized by an average arrival rate of requests or more 

generally by an arrival distribution. A typical open workload is a 

transaction mix of different transaction types. In real production 

systems, the transaction mix changes over time [26]. Assume the 

total number of transaction types is N. We define an open 

workload during a certain interval (e.g., 5 minutes) as a vector (λ1, 

λ2, … λN) where λi is the arrival rate of transaction type i during 

that interval. 

2.2.2 Closed Workload  
In a closed (session-based) workload, a fixed number of users 

interact with the application and each of these users issues a 

succession of requests. A new request from a user is only 

triggered after the completion of a previous request by the same 

user. A user submits a request, waits for the response of that 

request, thinks for a certain time and then sends a new request. 

The average time elapsed between the response from a previous 

request and the submission of a new request by the same user is 

called the “think time”, denoted by Z. The next request sent by a 

user is usually determined by a state transition matrix that 

specifies the probability to go from one transaction type to 

another. Assume the number of transaction types is N. The state 

transition matrix has N rows and N columns where pij represents 

the transition probability from transaction type i to transaction 

type j. Let P denote a state transition matrix of a closed workload 

and π = (pi, p2…pN) denote the stationary transaction distribution 

in a user session where pi presents the percentage of requests of 

transaction type i sent by the user based on P. We have πP = π 

and

1

1
N

i

i

p
=

=∑ . We can use the workload with a stationary 

transaction mix π to approximate the behavior of a closed 

workload with state transition matrix P [27]. A closed workload is 

characterized by the number of concurrent users C, the stationary 

distribution of transaction mix π, and the think time Z. 

The open and closed workload models are summarized in Table 1. 

Unlike many open workload models that assume a static 

transaction mix and hence use an aggregate request rate to 

characterize the workload, our transaction vector model captures 

request rate per transaction type and hence can characterize 

dynamic transaction mixes. Similarly, by explicitly incorporating 

the transaction mix distribution as part of the workload parameter 

in a closed workload, we can capture different behaviors with 

different transaction distribution.  

2.3 Our Approach 
An SLA is comprised of multiple Service Level Objectives 

(SLOs). The task of SLA decomposition is to translate SLOs into 

design parameters and bounds on low-level system resources such 

that the high-level SLOs are met.  Given a high-level performance 

SLO and a workload for a multi-tier application (in terms of either 

a transaction mix for an open workload or a transaction 

distribution for a closed workload), decomposition provides the 

resource requirements (e.g., number of servers) to handle the 

workload and meet the specified SLO. It also finds the healthy 

state of each component involved in providing the services (e.g., 

resource utilization). The decomposition process can be 

summarized as  

(R, W)� (ŋweb  θweb-cpu, ŋapp, θapp-cpu,, ŋdb,  θdb-cpu) 

where R and W denote the response time and workload 

respectively and ŋ is the number of servers at a tier and θ is the 

resource utilization. SLA decomposition problem is the opposite 

of a typical performance modeling problem, where the overall 

system’s performance is predicted based on the configuration and 

resource consumption of the sub-components.  

For example, given the performance goal of a 3-tier online e-

commerce application (e.g., response time<10 seconds), and any 

workload in term of transaction mix (e.g., browsing=10 reqs/s, 

add-to-cart=5 reqs/s, and checkout=4 reqs/s), the decomposition 

approach determines how many Web servers, application severs 

and database severs are required to handle the workload while 

satisfying the specified response time requirement. Decomposition 

further determines the healthy ranges of the resource utilization of 

each server (e.g., CPU, I/O, network, etc.) under the configuration 

during operation.  

Our SLA decomposition approach is illustrated in Figure 1. We 

undertake SLA decomposition in a systematic way. We use 

analytical performance models to capture the relationship between 

high-level performance goals (e.g., response time of the overall 

system), the application topology, and the resource usage of each 

component (e.g., CPU utilization). In particular, we develop two 

queueing network models for a multi-tier architecture, where each 

tier is modeled as a multi-station queueing center. One of the two 

models is chosen based on the properties of the real workload.  

We profile the applications and generate the resource demand of 

each transaction type at each resource. This is obtained by 

performing a statistical regression analysis on the historical or 

benchmark data. The profiling results are stored as the application 

resource profile in a repository. Combining the performance 

model and the application resource profile, the decomposition 

problem becomes a constraint satisfaction problem. Given a 

performance goal (e.g., response time), a workload (open or 

closed in terms of transaction mix) and any other constraints (e.g., 

CPU utilization < 50%), the solver takes the application resource 

profile and the analytical model as inputs and generates a low-

level policy setting. The output includes the resource 

requirements, such as how many servers at each tier are required 

to meet the SLO and the healthy bounds of resource utilization for 

each component. The resource requirement is then used for the 

design and reconfiguration of the application accordingly, while 

the healthy range is used for monitoring the systems during 

Figure 1.  Conceptual architecture  
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operation. The developed analytical models and application 

resource profiles are archived for future reuse. If the workload or 

response times change, we only need to re-solve the constraint 

satisfaction problem with new parameters to generate a new 

policy setting.  

3. PROFILING 

3.1 Profiling Overview 
Profiling creates detailed resource profiles of each component in 

the application. A resource profile captures the demand of each 

transaction type at that resource. Per-transaction type resource 

demand (e.g., a browse transaction’s CPU demand at an 

application server) is independent of the overall transaction mix 

and hence remains stable despite any changes in a workload. The 

profile only needs to be created once, and can be used to drive 

resource demand for different transaction mixes.  In order to 

obtain the resource profile, we first acquire the measurements on 

the transaction information and the resource consumption in 

different transaction mixes either from the historical data or 

through benchmarking. The latter is used for new applications 

(e.g., in design phase) where no system and application logs are 

available. We deploy a test environment, apply a variety of 

transaction mixes to the application and collect the transaction 

and resource consumption information. Regression analysis is 

then applied to the data, to derive the per transaction-type 

resource demands. The resulting resource profile for the 

application is then stored in a repository. The data required by the 

regression analysis includes system resource utilization, such as 

CPU usage, and the application workload information, such as 

transaction mix. The data is readily available from system and 

application monitoring logs. This way, our profiling is non-

intrusive since it does not require changes to existing applications 

and systems for instrumentation purposes and hence avoids most 

of the disadvantages of instrumenting the application. Further, our 

fine-grained profiles capture the resource demand at per-

transaction level and hence can handle dynamic changes in 

transaction mix. The profiling detail is discussed below.   

3.2 Resource Demand Estimation 
Two key objectives of profiling are to accurately estimate the 

resource demands for the application, and to identify the input 

parameters for the performance model. The accuracy of a 

performance model depends directly on the quality of its input 

parameters. Our regression-based profiling is based on the 

following observations.  

(1) Typically, the aggregated resource demand of all transaction 

types in a workload are measured during the profiling stage. In 

most cases, the transaction mix is assumed to be static. Hence, the 

results obtained for a workload only hold for that particular 

workload with the same transaction mix. This approach cannot be 

applied to realistic workloads where the percentage of transaction 

types changes over time.  

(2) The resource demands of different transaction types are 

usually different but the resource demand of a transaction type is 

relatively fixed irrespective of the transaction mix. Hence, it is 

better to create a profile for each transaction type (e.g., CPU 

demand for browse transaction, bid transaction, etc.) instead of 

creating an aggregated profile for the entire workload. The per-

transaction type profile remains stable across different transaction 

mix.  

(3) Few applications are currently instrumented to measure fine-

grained transaction resource information. Hence, accurately 

measuring the service demand of each component requires 

significant instrumentation of the original application. This is 

unrealistic in practice. Since the resource demand of each 

transaction type is relatively static across different transaction 

mixes, we can derive the parameter of per transaction types using 

regression-based approaches [26, 27]. 

(4) The average resource demand of a request in a workload is 

determined by the distribution of different transaction types in the 

workload and the service demand of each transaction type. Once 

we have per-transaction type profiles, given a new transaction mix, 

the aggregated resource demand can be derived from per-

transaction resource demand. 

During a certain interval, a resource’s usage is the sum of all 

transaction types’ demand at that resource, plus a base utilization 

to account for background activities that are present in real 

systems (even when the application is completely idle). Hence, a 

resource’s utilization can be obtained as follows. 

1

N

0 i i

i

U D D λ•
=

= +∑   (1) 

where U is the resource utilization, N denotes the number of 

transaction types, D0 represents the background utilization of the 

resource, Di represents the resource demand of a request of 

transaction type i at that resource, and λi is average request rate of 

transaction type i.   

In order to obtain the demand Di (i=1,… N) at each resource (e.g., 

CPU, I/O, network), we collect utilization data from each resource 

U as well as the arrival rates of different transaction types λi 

(i=1, …N) over multiple time intervals (e.g., 5 minutes, 1 hour). 

These inputs are generally available via system and application 

monitoring logs.  

The goal of profiling is to compute the resource demand of each 

transaction type at that resource D1, … DN.  This problem can be 

solved by using linear regression on a set of equations (1) at 

multiple intervals. There are numerous different linear regression 

techniques that could be utilized.  In this work, we used Least 

Squares Regression (LSR) to obtain the resource demands Di (i 

=1,…N). Other approaches, such as Least Absolute Deviations 

Regression (LADR) could also be applied, as they may provide 

some advantages over LSR (e.g., increased accuracy and 

robustness).   

We repeat the above steps for each resource and generate the 

application resource profile. The profile consists of a set of 

resource demands of each transaction type.  

4. PERFORMANCE MODEL 
Our performance model captures the relationship between the 

overall application performance as a function of transaction 

workload, the application configuration, and the resource 

performance characteristics. We utilize a queuing network model 

of multi-tier applications. M/M/1 queuing network model is used 

to evaluate the performance for open workloads, while closed 

queueing network model is used for closed workloads. Our model 

is sufficiently general to model any commonly used multi-tier e-

commerce application with different application topologies and 

workloads. Our model also handles multi-class users. The 

performance model is discussed in detail next. 



4.1 Basic Model  
An application with M tiers is modeled as a queueing network of 

M queues Q1, Q2, ...QM. (see Figure 2). Each queue represents an 

individual tier of the application and the underlying server it 

runs on. A request, after being processed at queue Qi either 
proceeds to Qi+1 or returns to Qi-1. A transition to the client 

denotes a request completion (i.e., response to the client). We use 

Vi to denote the average number of visits to queue Qi by a request. 

Our model can handle multiple visits to a tier. Given the user 

request arrival rate λ, the request arrival rate at tier i can be 

approximated as 
i iV λ× . Given the service demand Di of a request 

per visit to tier i, the average service demand per user request at 

tier i can be approximated as 
i iV D× . 

Realistic multi-tier applications typically utilize a multi-

server/processor architecture to hand a large number of requests. 

The application server tier for example may involve one or more 

application servers (e.g., JBoss). A similar notion is applicable to 

the database tier which may consist of one or more database 

servers (e.g., MySQL). In order to capture the multi-

server/processor architecture, we enhanced the basic model by 

using a multi-queue center to model each tier (see Figure 3). In 

this model, each server/processor in the tier is represented by a 

queue. The multi-queue model thus is a general representation of 

a tier. We use Ki to denote the number of servers at tier i. This 

model represents the multi-server architecture commonly utilized 

by multi-tier applications.  

4.2 Performance Model for Open Workloads 
Consider the following notation. 

M: number of tiers  (e.g., Web, APP, DB) 

N: number of transaction types (e.g., Browse, Bid) 

R: number of resources types (e.g., CPU, DISK) 

 ηk: number of servers at tier k (k = 1, … M) 

(λ1, λ1 … λN): open workload where λ i 
 is the average 

request rate of transactions type i   
Dik: service demand of transaction type i at a server of tier k  

(i =1, … N, k =1,…M) 
Ukj: utilization of resource type j at tier k (j=1…R, k = 1, 

…M) 

i: index of transaction type       

j: index of resource type      

k: index of tier  

Assume we have a perfect load balancer that evenly distributes the 

load among all servers of each tier. We model a tier with K 

servers as K M/M/1 queues. The total service time of a request at 

tier k is the weighted sum of each transaction type’s service time 

1

N
i

ik
k

i

Dλ
η

•

=
∑ . The waiting time on a resource type k at tier j 

is
2

1 1

R
jk

jkj

U

U= −∑ .  The total residence time of all requests at tier k is the 

service time plus the waiting time

2

1 1 1

N R
jki

ik
k jki j

U
D

U

λ
η

•

= =

+
−∑ ∑ . The 

average response time is the sum of the residence times at each 

tier divided by the overall request rate.  

1 1
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∑ ∑
=
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Given the application profile, the utilization U of each resource 

can be obtained as follows 

1

N

i
0 i

i

U D D λ
η•

=

= +∑    (3)          

The overall resource demand D of a transaction type at a server is 

the sum of all resource demand (e.g., CPU, DISK) at that server.  

This model is sufficiently general to capture typical multi-tier 

applications with multiple transactions types and multiple servers 

at each tier.  

Given the parameters of the applications, the application resource 

profile and an open workload 

M: number of tiers (e.g., Web, APP., DB) 

N: number of transaction types (e.g., Browse, Bid) 

R: number of resources types (e.g., CPU, DISK) 

ηk: number of servers at tier k (k = 1, … M) 

Dik: service demand of transaction type i at a server of tier k 

(λ1, λ1 … λN): transaction mix    
Equation (2) is used to predict the response time and Equation (3) 

is used to derive the resource utilization.  Unlike most 

performance models, our model takes into account the multi-

server structure and represents multi-tier applications at a fine-

granular level (i.e., per transaction type per resource 

characterization). As a result, our performance model can be 

applied to general multi-tier applications with different 

application topology and open workload with dynamic transaction 

mix.  

4.3 Performance Model for Closed Workloads  
Consider a closed workload with C users and think time Z. In 

order to capture the closed workload and the concurrency of 

multiple users, we use a closed queueing network, where we 

model C concurrent users as C delay resources with each of them 

exhibiting a service demand Z. Figure 4 shows the closed multi-

station queueing network model (QNM) of a multi-tier 

application. Each tier is modeled as a multi-station queueing 

center, with the number of stations being the tier’s total number of 

Q1

S1 , V1 

Q2 QM

S2 , V2 SM , VM 

. . .

 

Figure 2.  Basic queueing network model 

 

Figure 3.  Multi-queue  model 
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servers and each user is a delay center with service time equaling 

think time Z. We use Ki to denote the number of servers at tier i. 

Similarly, the service demand at a server of tier i is denoted by Di.  

Given  any closed workload in terms of number of users C and the 

transaction mix percentage π = (pi, p2…pK), the average service 

demand of the workload D can be computed from the application 

profile as the weight average of the service demand of each 

individual transaction 

1

N

i i

i

D p D•
=

=∑ .  

Given the parameters {C, Z, M, Ki, Di}, the proposed closed 

queueing network model can be solved analytically to predict the 

performance of the underlying system. For example, an efficient 

algorithm such as the Mean-Value Analysis (MVA) can be used 

to evaluate the closed queueing network models with exact 

solutions [5]. MVA algorithm is iterative. It begins from the 

initial conditions when the system population is 1 and derives the 

performance when the population is i from the performance with 

system population of (i-1), as follows  
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where ( )kR i is the mean response time (mean residence time) at 

server k when system population is i; ( )kR i  includes both the 

queueing time and service time; X(i) the total system throughput 

when system population is i; and ( )kQ i  is the average number of 

customers at server k when system population is i.  

Traditional MVA has a limitation that it can only be applied to 

single-station queues. In our model, each tier is modeled with a 

multi-station queueing center. To solve this problem, we adopt an 

approximation proposed by Seidmann et al. [6] to get the 

approximate solution of performance variables. In this 

approximation, a queueing center that has m stations and service 

demand D at each station is replaced by two tandem queues. The 

first queue being a single-station queue with service demand D/m, 

and the second queue is a pure delay center, with delay D×(m-

1)/m. It has been shown that the error introduced by this 

approximation is small [7]. By using this approximation, the final 

queueing network model is shown in Figure 5.  

The modified MVA algorithm used to solve our queueing network 

is presented in Figure 6. The algorithm takes the following set of 

parameters of a multi-tier application as inputs:   

C: number of users 

Z:  think time 

M: number of tiers 

Ki: number of stations at tier i (i = 1,…, M) 

Di: service demand of  a server at tier i (i = 1,…, M) 

The MVA algorithm computes the average response time R and 

throughput X of the application.  

4.4 Handling Multi-class Users 
There are typically multiple classes of users or sessions in real 

applications, representing different SLAs (e.g., Gold customers, 

Sliver customers and Bronze customers) and heterogeneous 

workloads (e.g., browsing-heavy transactions, purchase-heavy 

transactions). Constructing multiple-class models for a 

heterogeneous workload can accurately model heterogeneous 

workloads and differentiate SLA requirements of different classes. 

Such classification enables flexible admission control based on 

the importance of the class, e.g., preferentially scheduling requests 

from more important classes and dropping less important requests 

during overload. We extend our model to handle multiple classes 

of users. Interested readers, please refer to Appendix for the 

details.  

Input:  C, Z, M, Ki, Di,  (i = 1,.. M)  

Output: R, X 

//initialization 

R0 = Z; D0 = Z; Q0 = 0; 

for i = 1 to M  {  

  // Tandem approximations for each tier  

   Qi = 0; 

   qrDi = Di/Ki ;  drDi = Di ×  ( Ki-1)/Ki ;  

} 

//introduce C users one by one 

for i = 1 to C { 

for j = 1 to M { 

     Rj = qrDj ×  (1 + Qj);  // queueing resource 

     RRj = drDj;               //delay resource 

} 
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for j  =  1 to M 

   Qj = X ×  Rj; 

} 
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Figure 6.  Modified MVA algorithm  

Figure 4.  Closed multi-station queueing network model 
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Figure 5.  Approximate model for MVA analysis 
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5. DECOMPOSITION 
Given an SLO (e.g., response time) and a workload, the goal of 

decomposition is to determine the design parameters (e.g., number 

of servers at each tier) to guarantee that the system has enough 

capacity for processing the specified workload and meeting the 

proposed SLO. The output of decomposition contains operational 

policy settings such as  

• how many servers are required for each tier  

• what’s the CPU, Memory, IO utilization of each server 

As we discussed before, we generate the profile based on the 

historical data or benchmarking data with varying workloads. The 

service demand of each individual transaction type is retrieved 

from the archive, as shown in Figure 1. Given any workload and a 

response time requirement, the task of decomposition is then to 

find the set of model input parameters such as number of servers 

that satisfy the response time requirement and further derive the 

resource utilization. Decomposition thus becomes a constraint 

satisfaction problem.  We have developed a simple constraint 

satisfaction solver to solve this problem. The solver takes 

performance goal, workload, resource profiles and performance 

model as inputs and constructs a set of constraint equations. 

Various constraint satisfaction algorithms, such as linear 

programming and optimization techniques, are available to solve 

such problems [21]. Typically, the solution is non-deterministic 

and the solution space is large. However, for the problems we are 

studying, the search space is relatively small. For example, if we 

consider assigning the number of servers at each tier, we can 

efficiently enumerate the entire solution space to find a solution. 

Also, we are often interested in finding a single feasible solution 

(rather than the optimal solution), so we can stop the search once 

one is found. Other heuristic techniques can also be used during 

the search. For example, the hint that the response time typically 

decreases with respect to the increase of allocated resources  can 

also reduce the search space. 

One advantage of our approach is that once the profile and model 

are created, they can be repeatedly used to perform decomposition 

for different SLOs and workloads. That is, if the response time or 

workload changes, we only need to resolve the constraint 

satisfaction problem with the new parameters. Similarly, if the 

application is deployed to a new environment, we only need to 

regenerate the profile in that environment using regression 

analysis. Further, given high-level goals and resource availability, 

we can apply our decomposition approach for automatic selection 

of resources and for the generation of sizing specifications that 

could be used during system deployment.  

5.1 Decomposition for open workloads 
The performance model for open workload can be represented as 

follows.  
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Given an open workload in terms of transaction mix distribution 

(λ1, λ1 … λN) and a specified SLO of RT < r, the decomposition 

problem is to find a set of η1, η2, … ηM  that satisfy the constraint 

RT < r as well as determine the resource utilization Ujk under the 

configuration. Other constraints can be added, such as Ucpu < 50%, 

Udisk < 60%. To find the solution of the above equations, our 

current solver simply enumerates all combinations of different 

number of servers that satisfy the constraint and then chooses the 

combination such that the number of servers is minimized. Once 

we get the η1, η2, … ηM, the resource utilization can be computed 

based on equation (3). Implementing a more  efficient solving 

algorithm (e.g.,  from Zhang et al. [21]) is left for future work.  

5.2 Decomposition for closed workloads 
For closed workloads, the performance model does not have a 

closed form (as does the open model), but the model can be 

conceptually represented as follows.  

 1 , 1( , , , ,..., ,..., )M MRT g M C Z D Dη η=   

where M is the number of tiers, and variables RT and C denote 

response time and the number of concurrent users respectively. 

Variables ŋj and Dj represents the number of servers and average 

service demand at tier j respectively. Please see Section 4 for the 

definitions of the other variables.  The average service demand Dj 

can be estimated using the weighted average resource demand of 

each transaction type in a user session. That is, given a user 

session’s transaction mix distribution (p1, p2, … pi,…pk) and the 

resource demand of each transaction type at the resource  T1: D1, 

T2:D2, …,TN:DN,  the average resource demand  is estimated as  
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Given RT < r and a closed workload (in terms of number of users 

N and the transaction mix distributions π = (pi, p2…pK) of an M-

tier application), the decomposition problem is to find a set of ŋj 

(j = 1, …M). 

Similar to the decomposition of an open workload, the solver 

enumerates all combinations of different number of servers that 

satisfy the constraint and then chooses the combination, such that 

the number of servers is minimized. Once η1, η2, ηM are 

determined, the resource utilization is derived according to 

equation (3). Given a new workload, the average service demand 

is recomputed and the constraint satisfaction problem is solved 

again, using the new service demand parameters.  

6. EXPERIMENT EVALUATION 
We evaluated our approach with two applications, the popular 

RUBiS e-commerce application with synthetic workloads and a 

real business-critical service with real traces.   

6.1 RUBiS Testbed 
RUBiS is an eBay-like online auction site developed at Rice 

University [1]. We use a 3-tier EJB-based implementation of 

RUBiS consisting of an Apache Web server 2.0, a JBOSS 4.0.2 

application server, and a MySQL 5.0 database server, each 

running on different servers. The RUBiS implementation defines 

26 interactions, has 1,000,000 users and 60,000 items. The 

testbed includes multiple Linux servers. Each server has 2.4 GHz 

CPU, 4 GB of RAM, and a 1Gb/s Ethernet interface. We 

developed a workload generator that can produce both open and 

closed workloads. For open workloads, the workload generator 

sends requests according to a specified request rate and 



transaction mix. For closed workloads, the workload follows a 

given transition matrix to simulate multiple concurrent users 

interactions with RUBiS. The workload generator runs on a 

separate server node from any of the RUBiS systems.  

6.1.1 Performance Prediction 
To validate the correctness and accuracy of our model, we 

compare the response times predicted by our model and actual 

measurements with different workloads under different 

configurations.  

We use the workload generator to produce variable workloads 

with fluctuations in request rate and transaction mix. Application 

data is obtained from Apache and JBoss log. System utilization is 

collected every one minute using the SAR monitor. The data set 

records two kinds of data about RUBiS, application-level data 

such as transaction request rate of each transaction type, and 

system level resource utilization (e.g., CPU utilization). We then 

apply the regression analysis described in Section 3 to generate 

the application’s resource profile. Given any open or closed 

workload, we use the resource demand information obtained 

during profiling as model input parameters, and apply the 

performance model described in section 4 to derive the response 

time.  

In the first experiment, we change the workload by varying the 

number of concurrent users generated by the workload generator. 

Each run lasts 20 minutes, following a 5 minute warm-up period. 

Figure 7(a) shows the results of the average response times 

predicted by the model for 50 to 300 concurrent users on our 

RUBiS testbed. This figure also shows the actual results from this 

testbed.  From the figure we can see that the performance model 

predicts the performance of RUBiS accurately, as the maximum 

relative error is less than 15%.  In the second experiment, we 

reconfigure the RUBiS tested with two JBOSS servers and 

repeated the experiment. The Web server evenly distributes 

workload among these two JBOSS servers. The results are shown 

in Figure 7(b). In this case, our model has a maximum relative 

error of 20%. It is less accurate than single application server 

configuration due to the error introduced by multi-station 

queueing model and the load balancer overhead. The above 

results show that the regression-based profiling and the queuing 

network model can model the performance behavior of RUBiS 

application. 

In the next set of experiments, we evaluate the effectiveness of our 

approach for different mixes of browse and bid transactions. First, 

we define three typical closed workloads of 200 users with 

different transaction mixes: CW1: browse dominant, CW2: 

balanced and CW3: bid dominant. For each workload, we use the 

profile and model to predict the average response time, and then 

  

Figure 8. Performance with different workloads 
(a) Closed Workload (b) Open Workload 

  
Figure 7.  Performance with different number of users  

(a) One JBOSS Server (b) Two JBOSS Server 

  



compare the results with the actual performance. The results are 

depicted in Figure 8(a). The results show that our model can 

accurately predict the performance for different closed workloads 

with different transaction mixes. Similarly, we define three typical 

open workloads with different transaction mixes: OW1, OW2 and 

OW3 and compare the accuracy of response time predicted by our 

model for each workloads. The results depicted in Figure 8(b) 

indicate that our model can also work well with open workloads. 

These results clearly demonstrate that our model can use the same 

profiling results (i.e., model input parameters) obtained during 

profiling to predict the performance of any unforeseen transaction 

mixes.   

We also conducted a similar evaluation of the RUBiS 

configuration with 2 JBOSS servers. We obtained similar results, 

and thus do not include the figures here. 

6.1.2 Deriving Operational Policies 
One of the goals of our SLA decomposition is to derive healthy 

ranges of system metrics and configure lower level operational 

policies accordingly. In this set of experiments, we evaluate how 

well our model can be used to derive such low-level policies 

given a workload or transaction mix. Resource consumption at the 

Web tier and database tier are negligible in our testbed, so we 

focus on the resource utilization of the application server tier only. 

Given a workload, we derive the CPU utilization as described in 

Section 4. Figure 9 compares the CPU utilization predicted and 

measured for three different transaction mixes. As shown in this 

figure, the maximum relative error is less than 10%.  We also have 

similar results for multi-server RUBiS, which we do not include 

here.  

6.1.3 Decomposition Effectiveness 
In this section, we evaluate the effectiveness of our SLA 

decomposition. Given any workload and SLOs, our 

decomposition module constructs a set of constraints and then 

solves the corresponding constraint satisfaction problem. The 

output of decomposition contains the number of servers required 

at each tier to meet the response time requirements, as well as the 

resource utilization of the configuration. In the following 

experiments, given any SLO in terms of workload and a response 

time requirement, we generate the number of application servers 

needed, and predict the average CPU utilization. We then 

configure RUBiS based on these derived settings. We validate our 

design by applying the workload, and measuring the actual 

performance of RUBiS and comparing the results with the SLO. 

We also compare the predicted CPU utilization with the actual 

CPU utilization. A guideline regarding resource utilization is to 

keep peak utilizations of resources, such as CPU, below 70% [14]. 

In practice, enterprise system operators are typically even more 

cautious than this conservative guideline. Hence, we also put 

additional constraints of CPU utilization to be less than 60% in 

our evaluation.  

Table 2. Decomposition results for closed workload 

 

In these experiments, we first consider the high level SLOs in 

terms of the number of concurrent users, the transaction mix and 

the average response time. Table 2 summarizes the input and 

output of decomposition for four different SLOs. The first column 

shows the input to our decomposition and the second column 

describes the output of decomposition such as the system design 

parameter (i.e., number of JBOSS servers) and the healthy range 

of CPU utilization under the proposed configuration. The 

measurement column shows the actual measurement of response 

time and the CPU utilization of the system with the design.   

As shown in the first row, for the SLO of 100 users with browse-

intensive transaction mix and response time < 5 seconds, 

decomposition determines that only one server is required to 

ensure the SLO and the response time and CPU utilization are 

3.49 seconds and 21.8% respectively. The actual measurements of 

response time and CPU utilization are 3.03 seconds and 24.5%.  

This shows that the design can meet SLOs and the utilization 

prediction is close to real system measurement. The second SLO 

has 100 users but with a different transaction mix (i.e., bidding 

intensive). We can see from this experiment that the 

decomposition results are close to the actual measurements.  The 

third input involves 200 concurrent users and browsing intensive 

transactions, the decomposition result shows that only one server 

is needed to meet the SLO. The fourth input has 200 users with 

bidding intensive workload, which is more resource demanding. 

The decomposition module determines that 2 servers are required 

to handle the workload and meet the response time requirement. 

The actual performance shows that the design can meet the 

requirement and the prediction of response time and CPU 

utilization are relatively accurate. From the above results, we can 

see that our decomposition approach can be effectively applied to 

design and monitor such multi-tier applications with different 

SLOs. 

In order to further check the applicability of our approach, we also 

apply the decomposition to SLOs involving open workloads. We 

experimented with four different SLOs. In the experiment, the 

workload is specified in terms of request rate and transaction mix. 

Input Output  Measurement 

Workloads and SLOs 
Num. of 

App. 

Servers 

Resp. 

Time 

CPU 

Utili. 

Resp. 

Time 

CPU 

Utili. 

User=100 Browse Intensive
Response time<5 sec    1 3.49 s 21.8% 3.03 s 24.5% 

User=100 Bidding Intensive
Response time< 5 sec   1 4.03 s 35.6% 4.36 s 33.2% 

Users=200 Browse Intensive  
Response time < 5 sec. 1 4.77s  43.2% 4.67 s 47.8% 

User=200 Bidding Intensive 
Response time< 5 sec. 2 4.24 s 37.4% 4.43 s 32.9% 

Figure 9. CPU utilization with different workloads 



These results are summarized in Table 3. The results show that 

our approach can also work well with open workloads.  

Table 3. Decomposition results for open workload 

 

6.2 Production Application 
 We also evaluate the ability of our decomposition approach to 

generate low-level resource utilization policies for a real business-

critical enterprise application. This service consists of roughly 20 

servers and processes tens of millions of application-level 

transactions per day. The service is CPU and network intensive 

and its performance is crucial to many other services. In the 

evaluation, we run the service with a 24 hour request trace from 

one of the actual servers. As described in Section 3, the profile 

captures the CPU and network demand for each transaction type. 

We then extract two typical workloads with different transaction 

mixes: a lightweight one and a heavyweight one. Given these two 

workloads, we apply the decomposition approach to generate the 

CPU and network bounds and further create monitoring policies 

based on the derived CPU and network bounds.  The monitoring 

policies are according to the utilization predicted by the 

decomposition model. We apply the workloads and measure the 

actual CPU and network utilization. The actual CPU resource 

utilization and the monitoring policies are shown in Figure 10. As 

shown in the figures, the monitoring policies accurately capture 

the healthy range of the application for different workloads. These 

policies can be continuously used to assess how the system is 

performing and evaluate whether it will violate any of the goals it 

was designed for. For example, for the first workload, it should 

warrant CPU Utilization to be around 20%. This metric has to be 

monitored to make sure that the higher level SLA is met. For 

example, appropriate actions can be taken when the threshold is 

violated. This can be defined in an operational policy. In addition, 

such monitoring policies will also provide a mechanism using 

which we could predict or even avoid future SLA violations by 

provisioning the system accordingly in design or capacity 

planning phase.  

7. RELATED WORK 
Our previous work proposes an SLA decomposition approach 

based on profiling and a queueing network model [28]. Although 

it shares some common features with approach presented in this 

paper, the basic assumption and modeling techniques are quite 

different. Our early work focused on managing resource 

assignment of virtual machines, and the profiling and modeling 

were relatively simple. The approach presented in this paper aims 

to develop a practical and advanced model that can be applied to 

real multi-tier applications with complex, dynamic, non-stationary 

workloads and varying topologies. Compared to our earlier work, 

the novel contributions and significant enhancements can be 

summarized as follows.  First, the new performance model is 

much more advanced and it models multi-tier applications in a 

much finer-grain manner. Through explicitly modeling per-

transaction resource demand, the new approach can handle any 

unforeseen workloads with different transaction mixes. This is 

very important improvement since workloads in real production 

applications are typically non-stationary [25]. Second, our new 

approach is non-intrusive. The profiling in our early work requires 

significant efforts to instrument the system and conduct controlled 

benchmarking in order to collect monitoring data, while our new 

approach can perform profiling from readily available monitoring 

data. Third, by defining the workload as transaction mix and 

introducing open queueing and closed queuing models, our 

approach can handle both open and closed workloads in a 

consistent manner. Fourth, our model can directly derive the 

healthy range of low level system metrics and further develop 

monitoring policies from the profiles. We also increased the 

Input Output  Measurement 

 Workloads and SLOs 
Num. of  

App.  

Servers 

Resp. 

Time 

CPU  

Utili. 

Resp. 

Time 

CPU 

Utili. 

30 reqs/s Browse Intensive  
Response time<5 sec    1 3.88 s 23.4% 3.67 s 25.1% 

30 reqs/s Bidding Intensive 
Response time< 5 sec   

1 4.53 s 37.3% 4.75 s 42.0% 

40 reqs/s Browse Intensive  
Response time < 5 sec. 

1 4.47s  40.1% 4.81 s 44.5% 

40 reqs/s Bidding Intensive 
Response time< 5 sec. 

2 3.94 s 32.3% 4.33 s 36.7% 

 

Figure 10.  Monitoring Policies 

(a) CPU Utilization (b) Network Usage 



number of system metrics considered. Finally, we evaluate our 

approach with a real production application. It has been shown 

that the approach works well for realistic workload under normal 

system load. 

A lot of research efforts have been undertaken to develop 

queueing models for multi-tier business applications. Many such 

models concern single-tier Internet applications, e.g., single-tier 

web servers [9, 10, 11, 12]. A few recent efforts have extended 

single-tier models to multi-tier applications [16, 17, 19]. The most 

recent and accurate performance model for multi-tier applications 

is proposed by Urgaonkar et al. [17].  Similar to our closed 

workload model, their model uses a closed queueing network 

model and Mean Value Analysis (MVA) algorithm for predicating 

performance of multi-tier applications.  Despite the similarities, 

our model is different from theirs in the following aspects.  First, 

we explicitly model the service demand or resource demand per 

transaction type. As a result, given any unforeseen transaction 

mix, our model can derive the aggregated service demand for that 

type of workload and use it as model input parameters to predict 

the performance. Urgaonkar et al. estimate model parameters for 

certain transaction mixes and hence the results are expected to 

work for the similar types of transaction mix. Once the transaction 

mix changes, a set of new parameters has to be obtained. Second, 

their model parameter estimation requires detailed service demand 

information that is not readily available from traditional 

monitoring, e.g., instrumentation is required to collect data from 

MySQL database server while our profiling requires only system 

level utilization and application transaction statistics which are 

generally available from any applications. Considering the 

unpredictability  and the large number of transaction mixes in real 

applications, we expect their approach is more difficult to apply in 

practice. Third, we use a multi-station queue while their model 

assumes a single-station queue. The use of multi-station queues 

also enables us to model a multi-server tier the same way as a 

single server tier. The approximate MVA algorithm for a multi-

station queue is more accurate than simply adjusting the total 

workload. Fourth, Urgaoknar et al. take into account congestion 

effects in their model.  We have not addressed that yet partly 

because it is undesirable for a production application to operate 

under high system load. Though our model can be adjusted to 

handle imbalance across tier replicas based on queueing theory, 

we have not explored these areas yet. Finally we also report our 

validation results on both RUBiS testbed and a real production 

application with non-stationary workloads while their evaluation 

is based on RUBiS testbed with a stationary synthetic workload. 

Kelly et al. present an approach to predicting performance as a 

function of workload [26]. Their model explicitly models non-

stationary transaction mix and shares some features with our open 

workload model. Both models employ an open queueing network 

model. The main difference is that they model the aggregated 

service time across all tiers, while our model associates service 

times at a per-tier level. Their model works well for the purpose of 

performance prediction, but for the purpose of decomposition, 

necessary to model the application in a finer-grained manner. 

Another improvement from our open workload model is that we 

generalize M/M/1 queue to K M/M/1 queues and hence can 

handle general multi-server configuration in typical multi-tier 

applications. This extension is required by the decomposition. In 

addition, our model explicitly models the visit rate at each tier, 

and hence can handle non-uniform requests distribution across 

tiers.  

The regression-based profiling presented by Zhang et al. [27] is 

similar to our profiling, but we model multi-tier applications at a 

much finer-granularity. Schroeder et al. considered open and 

closed workloads as part of a separate study [25], but their focus 

is on the workloads themselves. Zhang et al. present a nonlinear 

integer optimization model for determining the number of 

machines at each tier in a multi-tier server network [20]. The 

techniques to determine the bounds can be applied to solve our 

constraint optimization problem. Sharc dynamically allocates 

resources based on past usage [18]. The focus is mainly in 

building effective resource control mechanisms for large clusters. 

Gupta et al. address the system behavior with fluctuating loads 

[30]. Squillante et al. studied the complex behaviors in high 

volume Web sites that exhibit strong dependence structures and 

demonstrated that the dependence structure can be accurately 

represented by an arrival process with strong correlations [31]. 

8. CONCLUSION AND FUTURE WORK 
One of the most important tasks towards SLA management is to 

automate the process of designing and monitoring systems for 

meeting higher level business goals. It is an intriguing but difficult 

task due to the complexity and dynamism inherent in today’s 

multi-tier applications. In this paper, we propose a systematic and 

non-intrusive approach that combines performance modeling with 

performance profiling to solve this problem by translating high-

level goals to more manageable low-level sub-goals. These sub-

goals feature several low-level system metrics and application 

level attributes which are used for creating, designing, and 

monitoring the application to meet high level SLAs. Compared 

with existing approaches, our performance modeling and SLA 

decomposition have several desirable features. Our approach can 

deal with dynamically changing workloads in terms of change in 

both request volume and transaction mix. Our approach is non-

intrusive in the sense that it requires no instrumentation and the 

data used in our approach is readily available from standard 

system and application monitoring. Our approach can process 

both request-based and session-based workloads.  

In the future, we will look at SLA management that takes into 

account multiple components: complex service infrastructures, 

multiple quality of service metrics (e.g.,, performance, 

availability, and power), the impact of constraints imposed by 

security and resource consumption, as well as conflicting interests 

from the multiple parties involved (infrastructure provider, service 

provider, and end-user).  We are also interested in investigating 

the dynamic selection of an appropriate workload and 

performance model for real semi-open workload.  
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Input:  Nc, Zc, M, Ki, Sc,i, Vc,i (i = 1,.. M, c = 1... C)  

Output: Rc, Xc ( c = 1,… C) 

//initialization 

 Q0 = 0; 
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for i = 1 to M   Qi = 0;  

for c =1 to C    {Rc,0 = Zc; Dc, 0 = Z c;} 

 

 for c =1 to C  

      for i  = 1 to M {  

         / / Tandem approximations for each tier  

         Dc,i  = (Sc,i * Vc,i) / Vi,0; 

         qrDc,i = Dc,i/Ki ;  drDc,i = Dc,i ×  ( Ki-1)/Ki ;  

      } 

 

 for  n = 1 to N 

   for each feasible population with total number of  n = 

        (n1,….nC)       

   { 

      for c = 1 to C  { 

    for i = 1 to M { 

         Rc,i = qrDc,i ×  (1 + Qi);  // queueing resource 

         RRc,i = drDc,i;                //delay resource 

   } 
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APPENDIX  Handling Multi-class Users 
   

Let C be the number of classes. Each class C has a fixed number 

of users NC with think time Zc. Let Sc,i denote the service time of 

class Ci at tier i and Vc,i denote request rate of class Ci at tier i.  

The multi classes closed queueing network can be analytically 

solved by using an extension of the single class MVA algorithm. 

The extended algorithm is presented in the Figure on the right. 

The algorithm takes the following set parameters of as inputs and 

computes the per-class response time Rc and throughput Xc.  

C: number of classes 

Nc: number of users of class c; (c = 1,…,C) 

Zc:  think time of class c; (c=1,…,C) 

M: number of tiers 

Ki: number of stations at tier i (i = 1,…,M) 

Sc,i: service time of class c at tier i (c = 1,…,C  i = 1… M) 

Vc,i: mean request rate of tier i (c = 1, …, C   i = 1… M) 

The complexity of the algorithm is ∏
=

+
C

c

cNCM
1

)1(  where CM is 

the complexity of the computations for one feasible population, 

and the product term is the total number of feasible populations. 

The space complexity is ∏
=

+
C

c

cNM
1

)1( . The time and space 

complexities are proportional to the number of feasible 

populations and hence it can require excessive time and space for 

the large number of classes or large number of users. 

Approximation algorithms are often used in practice. It has been 

demonstrated that approximate algorithms are quite accurate and 

require much less storage than the exact algorithm. The saving in 

time is considerable though it is harder to quantify because of the 

iterative nature of the approximation algorithms.  

 


