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ABSTRACT 
 
Many conventional image processing algorithms such as noise filtering, sharpening and deblurring, assume a noise 
model of Additive White Gaussian Noise (AWGN) with constant standard deviation throughout the image. However, 
this noise model does not hold for images captured from typical imaging devices such as digital cameras, scanners and 
camera-phones. The raw data from the image sensor goes through several image processing steps such as demosaicing, 
color correction, gamma correction and JPEG compression, and thus, the noise characteristics in the final JPEG image 
deviates significantly from the widely-used AWGN noise model. Thus, when the image processing algorithms are 
applied to the digital photographs, they may not provide optimal image quality after the image processing due to the 
inaccurate noise model. In this paper, we propose a noise model that better fits the images captured from typical 
imaging devices and describe a simple method to extract necessary parameters directly from the images without any 
prior knowledge of imaging pipeline algorithms implemented in the imaging devices. We show experimental results of 
the noise parameters extracted from the raw and processed digital images. 
 

1. INTRODUCTION 
 
Digital imaging devices such as digital cameras or camera-phones are becoming very popular and ubiquitous. More and 
more people are capturing many digital photographs and the number of digital photographs taken is increasing rapidly. 
The overall quality of images taken by many of these imagers, however, is not always satisfactory. Many digital 
cameras or camera phones today provide poor quality shots in low illuminations such as indoors or night situations. It is 
very difficult to capture good quality photographs in these situations since elongating exposure time increases motion 
blur and shortening exposure time reduces the signal-to-noise-ratio (SNR). Image sensors in digital cameras typically 
lack the dynamic range and sensitivity to capture both the dark and bright parts of the scene. In many cases, auto-
exposure algorithm sets the exposure time such that the bright region is not overly saturated, leaving the dark region 
grossly under-exposed. Such pictures have very poor signal-to-noise-ratio (SNR) due to lack of captured photons. There 
are other scenarios, when even carefully planned shots are underexposed, such as in museums where flash is not 
permitted, or when taking a picture of a moving object at high ISO settings. In addition, low quality optics and sensors 
are included in many consumer devices, such as camera phones and PDAs. These devices are typically used to take 
unplanned casual shots, potentially in bad lighting conditions that induce increased noise. Furthermore, many of these 
devices do not have built-in-flash, making it nearly impossible to capture good quality shots in low light situations.  
 
Digital cameras and camera phones have always been in a Mega-pixel war from the very early introduction. Since the 
consumers almost always prefer higher number of pixels, this trend is expected to continue into the future although 
higher pixel count will not automatically translate into better image quality. Since the die (chip) size of the image 
sensors remain relatively constant due to the constraints set by the optics and cost, the area allocated for each pixel will 
decrease if the trend of increasing pixel count continues.1 Although higher pixel count will result in higher spatial 
resolution, it is detrimental to signal integrity at each pixel because each pixel will receive less light (photons) and 
generate less charge. The size of the individual pixel sensors has been shrinking to accomodate the large mega-pixel 
counts that the consumers demand, and these tiny pixels can only catch a small number of photons. As will be 
elaborated in Section 2, less charge captured results in lower SNR and hence lower image quality. This provides higher 
challenge for subsequent image processing algorithms to produce good quality photographs. Thus, it is important to 
understand the characteristics of noise in order to produce high quality photos from the images with low SNR. Note that 
sub-optimal image processing in the imaging devices can contribute to lower image quality as well. 
 
Many image processing algorithms such as sharpening, contrast enhancement and noise filtering are developed and 
tested under the assumption of Additive-White-Gaussian-Noise (AWGN) with constant standard deviation across the 



image.  However, this noise model is not adequate for images captured from digital cameras, scanners and cell-phone 
imagers. Thus, when the image processing algorithms are applied to the digital photographs, they cannot fully exploit 
the characteristics of noise and may not provide optimal image quality after processing due to inaccurate noise model. 
Specifically, unprocessed raw data captured straight from the image sensors contain white noise but the standard 
deviation of the noise is not constant. Furthermore, the raw image goes through several image processing steps such as 
demosaicing, color correction, gamma correction, color transformation and JPEG compression, and thus, the noise 
characteristics in the final output image deviate significantly from the widely-used AWGN noise model. In this paper, 
we propose a noise model that better fits the images captured from typical imaging devices and describe a method to 
extract necessary parameters directly from the images without prior knowledge of image processing algorithms 
implemented in the imaging devices. We show experimental results of the noise parameters extracted from the images 
and discuss how it can be used for image processing algorithms. 
 

2. NOISE MODEL FOR IMAGE SENSORS AND SIMPLE IMAGING PIPELINE 
 
In this section, we review the noise model for the image sensor and describe how the noise characteristics are modified 
with each step in the imaging pipeline of the digital cameras or camera phones. In general, the specific algorithms in the 
imaging pipeline are not publicly disclosed for most imaging devices although the overall architecture does not vary 
significantly from one device to another. We define an imaging pipeline that is general and simple for our analysis. 
Although the analysis may not be accurate for more sophisticated imaging devices, it allows us to make approximate 
predictions on the noise characteristics seen in the digital photographs.  

2.1 Noise model for image sensors 
In this subsection, we review the noise model for image sensors. More detailed analyses and descriptions can be found 
in many papers included in the reference1, 2, 3, 4, 5. Since the image quality heavily depends on the image sensors, it is 
important to examine the model of image sensors. When photons (light) hit the photo-element in each pixel, they 
generate photocurrent. During capture, each pixel converts incident light into photocurrent iph for the duration of 
exposure time T such that the accumulated signal charge, Qsig, is 

Qsig= iphT, 

assuming the pixel is not saturated. Note that the signal charge is directly proportional to the light intensity at each 
pixel. In addition to the signal charge, the accumulated dark current and the additive noise terms are added to this 
charge and the total charge, Qtot, can be expressed as 

Qtot= Qsig + idcT + Nlin + Nsq +Noffset , 

where idc is the dark current, Nlin is the shot noise term whose variance monotonically increases with the accumulated 
signal charge, Noffset is the aggregate of noise terms whose total variance is constant regardless of the signal charge, and 
Nsq is the gain fixed pattern noise whose variance increases as a quadratic function of the accumulated signal charge. 
Sources for Noffset include readout noise, reset noise, quantization noise, shot noise of the dark current and offset fixed 
pattern noise. In summary, the variance of the noise terms are 

σlin
2 = qiphT = qQsig 

σsq
2 = k1 (iphT)2 = k1Qsig

2 
σoffset

2= k0 

,where  k0 and k1 are constants and q is the electron charge. The total noise variance is 

σtot
2 = k0 + k1Qsig

2 + qQsig.     (1) 

It can be seen that the total noise variance is not a constant but a 2nd order polynomial function with respect to Qsig. As 
q, k0 and k1 are non-negative values, the noise variance increases with the signal charge at each pixel. It can be seen in 
Figure 1 which shows a plot of the noise standard-deviation (STD) versus signal charge. Although the noise variance is 
larger for higher pixel intensities, the signal quality is actually higher for high intensities. The SNR can be computed as 



SNR = Qsig
2 / ( k0 + k1Qsig

2 + qQsig). 
An example of SNR versus light intensity curve is shown in Figure 1. Note that the SNR is low and the signal integrity 
is poor when the pixels are not able to capture enough photons (i.e. dark scenes). This can cause huge problems for 
image quality due to very low SNR. When more photons can be captured by increasing the overall light intensity or 
elongating the exposure time, the SNR is increased. However, it is generally not possible to control the overall light 
intensity for most environments and there is a limit to extending the exposure time due to motion blur. Thus, the image 
quality problem is the most difficult to cope with under bad illuminations such as indoors or night times. 
 

 
Figure 1: Noise variance and SNR versus pixel intensity 

 
Although the assumption of constant standard-deviation is not valid for the noise in image sensors, the conventional 
assumption of AWGN generally holds for the raw data captured from the image sensor5. The total noise has a 
probability density function that is very close to a Gaussian distribution and the assumption of white noise also holds. 
The noise at each pixel is independent of the noise in the neighboring pixels, so the auto-correlation function of the 
noise in the image sensor is  
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2.2 Noise model for imaging pipeline 
In this subsection, we describe how the noise characteristics are modified at various stages of the imaging pipeline. We 
show that the assumption of AWGN is not valid after the raw data goes through the imaging pipeline of the imaging 
device. A simple imaging pipeline is defined for the purpose of analyzing the noise characteristics. Note that most 
imaging pipeline are more sophisticated than the simple pipeline, but are much more difficult to predict analytically 
how the noise characteristics are modified throughout the pipeline. 
 
A block diagram of a typical imaging pipeline5, 6, 7, 8, 9 for a digital camera or camcorder is shown in Figure 2. Since the 
image sensors typically have Bayer pattern overlaid on top of the image sensor, each pixel only captures the intensity 
for one color channel. Thus, demosaicing is performed to interpolate missing color channels at each pixel. (For 
example, if a pixel only captures green color channel, the blue and red color channels should be interpolated from the 
neighboring pixels.) Then, color correction is performed as the color space of the image sensor does not match that of a 
color standard or a nominal display. Typically, color correction is performed with a 3x3 matrix multiplication at each 
pixel. After color correction, in order to compensate for the non-linearity of the displays, the RGB signals are gamma 
corrected. Gamma correction is typically performed by applying a pre-defined one-to-one mapping function to the pixel 
intensities and is implemented with a table look-up. Then, the RGB values are transformed to luminance (Y) and 
Chrominance (Cb and Cr) values via multiplication of a 3x3 color transformation matrix. Most cameras apply JPEG 
compression to the YCbCr values where the Cb and Cr values are typically downsampled by 2 (both horizontally and 
vertically) and highly quantized. 
 



 
Figure 2: A simple imaging pipeline. 

2.2.1 Demosaicing 
As mentioned previously, demosaicing is performed to interpolate missing color channels at each pixel. Demosaicing is 
essentially a spatial interpolation algorithm where inter-channel correlations can be exploited to enhance the image 
quality. When a Bayer pattern is overlaid on top of the image sensor, a 2 x 2 spatial interpolation should be performed 
on the red and blue channels and the number of pixels should be increased by 2 for the green channel. Many methods 
have been developed for demosaicing and survey papers on this topic can be found in the reference.10, 11, 12, 13 
 
Consider the Bayer pattern unit in Figure 3. Each pixel only captures one color channel and demosaicing computes the 
other two missing color channels at the pixel. For example, in pixel 1, the pixel only captures the red color channel and 
the blue and green intensity values must be interpolated using the neighborhood. 
 

R1 G2
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Figure 3: A unit Bayer pattern. 
 
In our simple imaging pipeline, we assume a simple nearest neighbor replication for demosaicing. With this simple 
scheme, the intensity values are copied to the neighboring pixels. i.e., 
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When the noise goes through the demosaicing step, the noise characteristics are modified. Although the noise variance 
does not change, spatial characteristics of the noise after demosaicing are modified. Specifically, the auto-correlation of 
the noise at each color channel is not the same as Equation (2) any more. For red and blue channel, the auto-correlation 
of the noise is 
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where σ is the total standard deviation of noise. For the green channel, the auto-correlation of the noise is 
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Note that the noise now has some spatial correlation and that the low frequencies have higher power spectral density 
than the high frequencies. Thus, the noise is not white noise any more, but is colored.  

2.2.2 Color Correction 
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Color correction is typically implemented with a 3x3 matrix multiplication shown above. The elements of the matrix 
depend on the spectral response of the image sensor and the color filters. When color correction is applied, noise also 
goes through the matrix multiplication and the noise variance is changed as follows: 
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For typical color correction, the noise variance does not change significantly. However, the SNR is degraded when there 
are significant off-diagonal negative elements as the signal strength is decreased.14, 15, 16, 17 This occurs when the spectral 
response of the color filters have high correlation. The spatial characteristics of the noise are not altered significantly as 
the color correction is a pixel-wise operation. 

2.2.3 Gamma correction and contrast enhancement 

Gamma correction is applied to the color corrected R, G and B values. Typically, the intensity values go through a 
mapping function 6, 7, 8, 9, 18 
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where α, β and γ  are constants, Iin is the input prior to gamma correction and Iout is the output. To analyze the change 
in the noise standard-deviation (STD), we make a linear approximation. If we assume that the noise is typically much 
smaller than signal, then 
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for intensities near I0. If the noise standard deviation is σNin for intensities near I0, then the standard deviation, σNout, 
after gamma correction for intensities near f(I0)  is equal to  
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Note that the noise is either amplified or suppressed depending on the slope of the mapping function f() at I0. For 
typical gamma correction where γ = 2.2 in Equation (3), the noise standard deviation is decreased for dark regions and is 



increased for bright regions. It is worthwhile to point out that this analysis can be applied to any pixel-wise mapping 
operation. Many types of contrast enhancement can be analyzed similarly with the use of Equation (4). 
 
2.2.4 RGB to YCbCr conversion and image compression 
 
In most digital cameras and camera phones, RGB values are converted to YCbCr values prior to JPEG compression. 
The color transformation is performed by multiplying a 3x3 matrix to the R, G and B values. The operation is identical 
to the color correction in subsection 2.2.2 except for the differences in the specific values of the elements in the 3x3 
matrix. A typical RGB to YCbCr conversion is 
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It is worthwhile to point out that the SNR for the chrominance (Cb and Cr) channels are typically much lower than that 
of the luminance channel. The degradation of the SNR for the chrominance channels is mostly due to the reduction in 
signal energy. Note that the degradation depends on the correlation of the R, G, and B channels. The negative elements 
of the color transformation matrix reduce the signal strength while the noise strength is relatively unchanged. 
 
After the R, G and B values are transformed to Y, Cb and Cr values, the color channels are compressed independently. 
The image is divided into non-overlapping 8x8 blocks and 2D-DCT is performed on each block. The 2D-DCT 
coefficients are then quantized and the quantized values are losslessly coded with the use of run-length codes and 
Huffman-like codes. As the lossless step of the compression does not affect the image quality, we focus our attention to 
the lossy part of the compression. Typically, the high frequency components of the DCT coefficients are more coarsely 
quantized than the low frequency components. The energy in the high frequency is attenuated more than the low 
frequencies for both the signal and the noise. Thus, after JPEG compression, the noise has stronger low frequency 
component than the high frequency component and the noise becomes more spatially correlated. Note that this is more 
prominent for chrominance channels as the chrominance channels are typically downsampled spatially prior to 
compression. Furthermore, the chrominance channels are even more coarsely quantized than the luminance channel and 
the signal fidelity of the chrominance channels are more adversely affected than the luminance channel. Intuitively, 
JPEG compression spends far less bits on the chrominance channels than on the luminance channel, and thus, the 
quality of the chrominance are degraded far more than the luminance channel. 
 

3. CHARACTERIZATION OF NOISE IN DIGITAL PHOTOGRAPHS  
 
For most digital cameras, the imaging pipeline is not disclosed publicly and thus is not assumed to be known. 
Furthermore, most imaging devices employ far more sophisticated imaging pipeline that can be highly non-linear and 
difficult to analyze the effect on the noise characteristics. In this section, we discuss simple methods to analyze the noise 
characteristics directly from a digital photograph without any explicit knowledge of the imaging pipeline of the device 
that captured and processed the digital photograph. The profiling of the noise is aimed at providing more side 
information on the noise statistics for later image processing. Many image processing applications can benefit from 
more accurate knowledge of the noise in the image. Note that most image processing algorithms do not implicitly or 
explicitly assume any statistical knowledge of the noise or just assume AWGN with constant standard deviation.  
 
The overall block diagram of analyzing the characteristics of noise is shown in Figure 4. First, the areas that mostly 
contain noise (but not edges or other image features) are chosen. Second, the intensities of these areas are locally curve-
fitted to estimate the noise-free intensity values. Third, a noise map is found by subtracting the original image with the 
locally-curve-fitted image at corresponding pixel locations. Finally, the noise maps are analyzed such that various 
statistics of noise are estimated. 
 



 
 

Figure 4: Block diagram of noise analysis. 
 
To find areas that mostly contain noise (but not edges, corners or other image textures), we compute the intensity 
differences between all the immediate neighboring pixels in a local area. The local area can take any shape, but for 
simplicity of implementation, we chose to compute the intensity differences in sliding blocks. The maximum of 
absolute intensity differences in the block is compared to a threshold and the block is marked as a “noise block” if the 
maximum magnitude of the intensity differences is smaller than the threshold. A “noise block” is a block that contains 
little or no edges, corners or other image textures. Instead of the maximum neighboring pixel difference, other measures 
such as the magnitude of spatial gradients or the magnitude of Laplacians can be used as well. The threshold is a free 
parameter which can be computed by iterating such that adequate number of blocks are selected as “noise blocks”. An 
initial value of the threshold can be chosen by inspecting the image sensor specifications if available. 
Once the noise blocks are chosen, the intensities of these blocks are fitted with a smooth surface. In our implementation, 
the following model is used 

cbyaxyxI ++=),(ˆ , 

where (x,y) are pixel locations and a, b and c are curve-fit parameters. For each block, a*,b* and c* values can be found 
by minimizing the sum of the squared differences of the intensity value and the curve fit value. (i.e.,  
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where B is the areas within “noise blocks”. This equation can be solved via the least-squares method. Note that other 
smooth surfaces such as second order surfaces can be used at the cost of higher computational complexity. Once the 
curve-fits for the “noise blocks” are found, the noise map can then be computed by subtracting the actual pixel intensity 
values with the curve-fitted values. i.e.,  
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where (x, y)  is in the noise block. Once the noise map is found for all the noise blocks in the image, we can now 
compute simple statistics of the noise. First, we compute the noise standard-deviation and the mean intensity for each 
“noise block”. These values are then used to compute the noise standard-deviation (STD) versus the intensity function. 
Second, the histogram of the noise map for each block can be analyzed for probability density function of the noise. 
Third, the auto-correlation of the noise can be computed by performing the spatial averaging 
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where M is the total number of pixels used for spatial averaging. Once the auto-correlation of the noise is found, the 
power spectral density of the noise can be computed. This can be useful when the image is decomposed into several 
frequency bands prior to image processing. Note that other measures such as high-order statistics or cross-correlations 
can also be computed using the noise map as necessary. Also, it is worthwhile to point out that it is possible to compute 
these measures in any color space. For example, if the image processing is to be performed in YCbCr space, the noise 
statistics should be computed in the YCbCr space. 
 
 
 



4. EXPERIMENTAL RESULT  
 
In this section, we show some experimental result of analyzing the noise in a digital photograph. We perform two 
experiments. The first experiment is on the raw image data obtained from the image sensor with a Bayer pattern 
overlaid on top of the sensor. Due to the Bayer pattern, the red, green and blue channels are subsampled. The second 
experiment is on the processed image data obtained from a digital camera. Note that this image has been processed with 
a sophisticated imaging pipeline and the contrast was enhanced. The input images of these two experiments are shown 
in Figure 5.  
 

 
 

Figure 5: Input images for experiment (left: raw image, right: processed image ) 
 
First, we show the result of analyzing a raw image before going through any imaging pipeline. We apply our noise 
profiling methods to show that the noise profile can be explained with the image sensor model described in Section 2.1. 
The results are shown in Figure 6 and Figure 7.  

 
Figure 6: Noise STD versus intensity for red, blue and green channels 

 

 
Figure 7: Auto-correlation of noise in raw R, G and B channels (prior to demosaicing) 

 



Note that the signal versus intensity function is the same for all the color channels. This is coherent with the image 
sensor model as the noise STD only depends on the amount of charge captured at each pixel. The digital intensity values 
are directly proportional to the charge captured. It can be seen in Figure 6 that the STD increases with intensity as 
expected and that the shape of the function is what the noise model suggests (i.e. has a term that increases as square root 
of the STD). A curve-fit with the noise model in Equation (1) suggests that our noise profiling is accurate. Also, Figure 
7 shows that the spatial correlation of the noise map has nonzero value only at the origin (i.e. the noise is white), which 
is also coherent with our image sensor noise model that assumes spatially independent noise. 
 
In our second experiment, we show results on a digital image already passed through imaging pipeline and contrast 
enhancement. This photograph was captured in low illumination and the contrast of the low light areas has been 
enhanced significantly. It is assumed that we do not have any prior knowledge about the imaging pipeline that produced 
the image. The plot of noise STD versus light intensity is shown in Figure 8. It can be seen that the noise characteristics 
are very different from the noise model of the image sensor. As was predicted from Section 2.2, the noise STD versus 
intensity function is very different from the result in the first experiment (see Figure 6), due to the contrast enhancement 
and gamma correction steps in the imaging pipeline. Also note that the STD function is not the same for any color 
channels because of inter-channel operations such as color correction and color transformations in the imaging pipeline.  
 
The normalized autocorrelation of the R, G and B channels are shown in Figure 9. It can be seen that the 2D spatial 
correlation has significant non-zero value outside of the origin. This means that the noise is spatially correlated and that 
the power spectral density of the noise is higher for lower frequencies than the higher frequencies. Also, note that the 
green channel has a smaller width of spatial correlation than that of the red and blue channels. Since the number of 
pixels for the green channel is twice the number of pixels for the red or blue channel in the Bayer pattern, the spatial 
interpolation in the demosaicing step can use smaller spatial support for the green channel. This leads to smaller width 
for the spatial correlation of noise. This is consistent with the prediction in the Subsection 2.2.1.  
 
 

 
 

Figure 8: Noise STD versus intensity for red, green and blue channels 
 

 
 

 
Figure 9: Auto-correlation of noise in R, G and B channels after processing  

 



5. SUMMARY 
 
We have shown that the conventional noise model of AWGN (with constant standard-deviation) does not hold for 
images obtained from typical imaging devices such as digital cameras, scanners and cell-phone imagers. We proposed a 
noise model that better fits the images captured from typical imaging devices and described a method to extract 
necessary parameters directly from the images without any prior knowledge of imaging pipeline algorithms 
implemented in the imaging devices. We then showed experimental results of the noise parameters extracted from the 
images. 
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