

Semantic Views for Controlled Access to the Semantic Web
Geetha Manjunath, Craig Sayers, Dave Reynolds, Venugopal KS, Swarup Kumar Mohalik,
Badrinath R, John Ludd Recker, Malena Mesarina
HP Laboratories
HPL-2008-15
February 26, 2008*

semantic web,
security,
access control,
semantics,
views, RDF,
OWL

The Semantic Web provides a good data integration and knowledge
representation framework enabling sophisticated applications to reason
and infer new information. Controlled access to data is extremely
important when such data is being shared among multiple users. In this
paper, we describe a framework that provides selective access to RDF
data by supporting strict views over the semantic store. We propose a
view specification language that enables specification of access
restrictions using domain semantics. The view specification is
materialized as an RDF graph model representing a sub ontology of the
base ontology by our view system. Standard SPARQL queries and other
graph operations can be performed on this view model. Our view
mechanism has been implemented over the popular semantic web
software framework, Jena and Joseki.

 Internal Accession Date Only Approved for External Publication

Presented and published in Workshop on Semantic Web for Collaborative Knowledge Acquisition, SWeCKA’07

© Copyright 2008 Hewlett-Packard Development Company, L.P.

- 1 -

Abstract
The Semantic Web provides a good data
integration and knowledge representation
framework enabling sophisticated applications to
reason and infer new information. Controlled
access to data is extremely important when such
data is being shared among multiple users. In this
paper, we describe a framework that provides
selective access to RDF data by supporting strict
views over the semantic store. We propose a view
specification language that enables specification of
access restrictions using domain semantics. The
view specification is materialized as an RDF graph
model representing a sub ontology of the base
ontology by our view system. Standard SPARQL
queries and other graph operations can be
performed on this view model. Our view
mechanism has been implemented over the popular
semantic web software framework, Jena and
Joseki.

1 Introduction
The Semantic Web [11] provides a common framework
allowing data to be shared and reused across applications,
enterprises, and communities. It is a collaborative effort led
by the W3C with participation from a large number of
researchers and industrial partners. Based on the Resource
Description Framework (RDF) [13], the Semantic Web
project intends to create a universal medium for exchange of
data by providing semantics to information. It is particularly
suited to model applications which involve distributed
information problems such as integration of data from
multiple sources, publication of shared vocabularies to
enable interoperability, and development of resilient
networks of systems which can cope with changes to the
data models [1]. Restricted access to data in such an open
framework is very important to ensure data privacy and to
protect the system from malicious users.

Let us briefly look at the core elements of the Semantic Web
framework. The principal technologies of the Semantic Web
fit into a set of layered specifications. It is built over the
foundation of URI’s, XML, and XML namespaces. The first

1 Swarup is now at General Motors India. This work was done

when he was at Hewlett Packard.

layer has the Resource Description Language, which is the
primary data representation language specified as RDF
Core. This flexible data representation does not require a
pre-specified schema for structured data as it is based on a
simple notion of RDF statements or triples consisting of
subject, predicate and object for every assertion. The second
layer is the Ontology Layer that includes the RDF Schema
language [14] and the Web Ontology language (OWL) [16].
This enables specification of the domain semantics through
concepts and known-relationships among them. Building on
these core components is a standardized SQL-like query
language called SPARQL [15] enabling RDF stores to be
queried remotely.

We propose a view system that enables controlled access to
the RDF store using an ontology-based specification. Views
are an established technology for relational and object
databases. Views are typically, used for enabling
customized presentation of data as needed by an application
or a user. They provide the programmer a degree of
abstraction from the physical structure and schema of the
underlying database. Analogous to the relational databases,
there have been some efforts in providing views over
semantic information as well. However, at a gross level the
aim of most of this prior research has been for
personalization, integration, and versioning of information
(see section 6 for details). Our work focuses on supporting
multiple views over an RDF store purely from a security
standpoint – to provide authorized access to different
elements of a semantic store.

The key contributions of this work are:
• A View Generation and Querying Framework that enables
differential access to an RDF store – enabling user specific
authorized access to semantic store.
• A View Mechanism that enables storing of the view
specification in the same RDF store as the data; enabling
administrative data, metadata and application data to be
treated equally.
• A View Specification Language for Semantic Web which
is expressed using the Web Ontology Language (OWL). We
also define a View Ontology for View Specification.
• Implementation of the View Mechanism using the Jena
Semantic Web Framework.

This paper is structured as follows. Section 2 provides a
description of the abstract notion of views over semantic

Semantic Views for Controlled Access to the Semantic Web

Geetha Manjunath, Craig Sayers, Dave Reynolds, Venugopal KS,
Swarup Kumar Mohalik1, Badrinath R, John Ludd Recker, Malena Mesarina

Hewlett Packard Laboratories
Contact Email: geetha.manjunath@hp.com

- 2 -

Pat Joe Sue

Kick Off
Meeting

SRS Review
Meeting

Fun
Committee

Minutes

Room
Orion

Room
Indus

Room
Enigma

attendee
attendee

attach

relatedTo

location
location

location

organizer

organizer

organizer

Figure 1: Example RDF graph for event scheduling

attendee

location
location

dtstart
dtend

dtstart
dtend

dtstart
dtend

web with a simple example. In Section 3, we articulate the
requirements of a view mechanism over the Semantic Web.
The design of our framework is described in section 5 where
we propose a view specification language and describe the
different modules that processes it. More detailed
implementation description is available in Section 6 which
is followed by a section that narrates the related efforts for
this problem of supporting views over semantic store.

2 Views
A view of a semantic store is a window to the base semantic
store. Two primary uses of views are to enhance usability of
data (providing personalized access to data that is relevant
to an application) and to enable controlled access to data
(giving access to part of the data depending upon the roles
of its users). When used for access control, views provide a
mechanism for enabling data security. As per the Semantic
Web architecture, every ontology is associated with a set of
RDF triples. A view defines a subset of these RDF triples of
the base ontology to be visible. A typical use case would be

a security administrator defining a view through a view
specification and setting permissions to different users to
access to different views.
Let us take an example. Consider the somewhat familiar
activity of scheduling Video Conferences among selected
invitees. Figure 1 has a sample RDF graph showing three
Persons (Pat, Joe, Sue) invited to two conferencing events
(meetings) scheduled in more than one room (among rooms
Orion, Indus and Enigma). The graph represents a model in
the iCalendar ontology [12] showing instances of the
Vevent Class (representing the details of an event). Only a
few properties and attributes of the Vevent class are shown
here for simplicity, the complete event data would include
other attributes of the attendees (email address), event
schedule and so on.

Clearly, there will be a major privacy concern if a single
global calendar data store containing all the details of the
events scheduled in all the rooms, were visible to everyone.
This is especially so if the video conferencing service is

Figure 2: RDF graph seen by admin of Room Indus

Pat Joe Sue

Room
Indus

location

organizer
organizer

organizer

location

dtstart
dtend

dtstart
dtend

dtstart
dtend

organizer

Figure 3: The RDF graph seen by Joe.

dtstart
dtend

Pat Joe Sue

Kick Off
Meeting

SRS Review
Meeting

Minutes

Room
Orion

Room
Indus

Room
Enigma

attendee
attendee

attach

relatedTo

location
location

organizer

attendee

location
location

dtstart
dtend

- 3 -

used by commercial organizations who do not want their
competitors to know about their meetings and attendees. We
would therefore like to restrict the view of the calendar data
to a subset of the information that a person is allowed to see.
For instance, the administrator of a conference room should
be allowed to know when a particular room is needed and
when it is free – so that he or she can schedule the
maintenance activities in the free period and keep the room
ready when needed. However, the attendee and event details
are not needed for this function. So, administrators should
see only scheduling details of all the events being held in the
specific rooms that they administer. Similarly, the attendees
of a particular event should be able to see all the details of
the events but only for those that they are invited to.

Figure 2 and 3 show the different RDF graphs that should
be seen by these two classes of users. The admin of Room
Indus would only see the organizer name and time schedule
of the events scheduled in Indus – all the remaining
information is hidden. On the other hand, attendee Joe
would see all the information about events – but only for
those, he is invited for. As may be evident, simple removal
of an attribute or a class is not sufficient to create these two
nontrivial views. The two views need to be described using
a semantic description. and our view mechanism intends to
enable that. As we will see later, Figure 5 describes the view
corresponding to Figure 2 using the proposed view
specification language. We will use this simple calendaring
example with the above two sample views in the rest of the
document to explain the view mechanism.

3 Definitions
Let us now look at a more formal definition of views. An
ontology is a data model that represents a knowledge
domain and is used to reason about the objects in that
domain and the relations between them. It conceptually
represents a perceived world through concepts (Classes),
attributes (properties, features, characteristics, or parameters
that objects can have and share), and relationships (ways
that objects can be related to one another).

The W3C standard for describing an ontology is using the
Web Ontology Language (OWL). OWL contains a sequence
of ontology elements, namely, annotations, axioms, and
facts [18]. Class axioms and property axioms are used to
define class and property identifiers, respectively. This
definition could either be partial or complete specification
of their characteristics. The axioms that define classes and
properties can also be OWL restrictions that provide local
constraints on properties of a class or OWL Class
Descriptions that describe a class using Boolean
combination of other classes. The second type ontology
element, facts provide information about the individuals of a
class. There can be two kinds of facts. The first kind states
information about a particular individual, in the form of
classes that the individual belongs to plus properties and
values of that individual. The second kind of fact is used to
state that two different resources identifiers refer to the same
instance or different instances. Annotations can be used to

record authorship and other information associated with the
ontology.

On the other hand, to represent an ontology in Description
Logics2, a distinction is drawn between the so-called
"TBox" (terminological box) and the "ABox" (assertional
box). In general, the TBox contains sentences describing
concepts and properties (property axioms, class axioms,
property Restrictions and class Descriptions defined above)
while the ABox contains what are called "ground" sentences
stating where in the hierarchy individuals belong (facts that
define relations between individuals and concepts).

In this paper, we borrow from Description Logic the above-
simplified representation of an ontology for a formal
description of views and use the OWL terminology to
describe more practical aspects. We write an ontology O as
(OT, OA) where OT represents the TBox of O and OA
represents the ABox of O. Also for any pair (OT,OA) to
qualify as an ontology, the assertions in the ABox OA must
have terms (concepts, attributes and relationships) only from
the TBox OT. In other words, OT represents the set of
classes and properties, class axioms and property axioms
while OA represents the assertions of the instance data that
includes class membership, attribute values and
relationships between two instances.

A view is basically, a sub-ontology of the base ontology
with simple additional extensions to enable personalization
of data. We define a view, V over a base ontology B as a
terminological extension of a sub-ontology of B, where:
• An ontology V= (VT, VA) is a sub-ontology of the base

ontology B = (BT , BA) if VT ⊆ BT and VA ⊆ BA.
• A terminological extension of an ontology (T, A) is an

ontology (T∪ T’, A) where T’ introduces concepts with
new names such that no new inferences are drawn in
the extension regarding the base ontology. Specifically,
if Statement S is valid in (T ∪ T’, A) and
conceptNames(S) ⊆ T, then S is valid in (T, A) too.
Here conceptNames(S) refers to classes referred in the
statement.

In other words, T’ should not include additional axioms
over concepts and properties of T; definition of new
terminology that enables additional classification of data for
personalization is however possible.
The above definition of a view has two main benefits.
Firstly, it ensures that a view is transparent to the
application designed to interact with the base ontology. The
concepts and property names that are valid in the base
ontology are valid even through the view.
For example, if several instances of Vevent are masked in a
view, the class extension of Vevent in the view is accessed
just as we would access from the base ontology (though it is
a subset of the base ontology). This is unlike other
approaches where the subset of the class extension of base
concept is made available as either a new concept name or
the same concept name in a different namespace. This is an

2 A family of knowledge representation languages that provide

logic-based semantics to ontologies.

- 4 -

important feature and requirement of our design since we
want to be able to use views for providing access control –
in a manner that can be transparent to the users. Queries
from an application can now refer to base concept names in
the namespace of the base ontology itself; while the result of
the query may be different based on the view the application
is allowed to see. Secondly, views can now be
hierarchically constructed (views of views). This is a very
powerful concept – enabling the view framework to limit all
operations (such as queries, updates) to the RDF store only
through defined views. The base ontology trivially, is also a
view by this definition.

Let us now see the ABox and TBox of the sample
calendaring example whose base ontology is the RDF

Calendar Ontology available at [12]. A part of that ontology
that is relevant to the example under consideration3 is given
in Table 1. This forms the TBox of the Base Ontology. The
ABox corresponding to two event instances of the RDF
graph of Figure 1 is given in Table 2. The ABox of a view
on this would only include a subset of the base assertions.
The assertions that are not visible in a view corresponding
to Figure 2 (the view of the administrator of Room Indus)
are depicted with a strikethrough them in Table 2.

3 The range of the attribute cal:relatedTo as per original

specification is String Literal.

4 Requirements on Views
As mentioned earlier, our main focus of implementing the
views framework was to enable access control to a common
RDF store. In this section, we elaborate on the specific
requirements of the views framework that we envisaged due
to this.
• This and Nothing Else: One of the first requirements

of the semantics of the views that we wanted is to limit
the visible window to a subset of the RDF store to the
specification. Even though personalized terminology
(concept names) may be available to the user querying
the view, the user should be stopped from performing a
malicious query, using either the base or extended
terminology. For example, the administrator of Room
Indus should not be allowed to do a query to list the
schedule of all events that have an attendee called Pat.
Even though the output of the query, a subset of events
happening in Indus, may seem like something that the
user is allowed to see, the scope of the query includes
attendee information which the room administrator does
not have access to. The query should be restricted to a
viewable model alone in order to enforce the required
security – through explicit specification of what is/is
not visible.

• Multiple Simultaneous Views on a base ontology: In
order to support multiple user roles, we need to support
existence of multiple simultaneous views with different
view specifications – ensuring consistency of the views
when the base ontology gets updated.

• Queries through Views: One of the primary operations
using views would be queries. Since the user sees the
base ontology through a view, the query expressions

from the user would have the vocabulary from the base
ontology and hence queries through views should
support the same namespace and vocabulary of the base
ontology, but restrict the query results as per the
authorized view specification for the user.

• View Specification in the RDF Store: We want to
store the view specification in RDF; enabling the
administrator to perform queries on the view
specifications in the same way as one would do for
data.

• Construction of complex views from other views: We
want to be able to compose new views through
operations on earlier defined ones (merging of views,

HP:Event1 rdf:type ical:Vevent
; cal:attendee “Pat”
; cal:attendee “Joe”

: rdfs:label “Kick Off Meeting”
; cal:organizer “Pat”
; cal: location “Room Orion”

; cal:location “Room Indus”
;cal:dtstart “2006-04-25T04:30:00Z”

; cal:dtend “2006-04-25T06:30:00Z”
 ; cal:relatedTo HP:Event2
.

HP:Event2 rdf:type ical:Vevent
; cal:attendee “Joe”
; cal:attendee “Sue”

: rdfs:label “SRS Review Meeting”
; cal:organizer “Joe”
; cal: location “Room Enigma”

; cal:location “Room Indus”
; cal:dtstart “2006-05-20T04:30:00Z”

; cal:dtend “2006-05-25T06:30:00Z”
; cal:relatedTo HP:Event1
.

Table 2: The ABox corresponding to the two instances of Vevent of Figure 1. The elements that are
stuck-off are not available in the view corresponding to Figure 2.

- 5 -

intersection of views). We also want to be able to create
views over views. For example, if B is the base
ontology and V1 and V2 are views whose sub-ontology
extraction rules are defined through a view
specification language, we have V1 = ViewSpec1(B)
and V2=ViewSpec2(B) . It should be possible to
construct a new view V3 = foo(V1, V2) where foo is a
graph operation4 such as union, intersection. The
framework should also enable a new view to be defined
over another hierarchically, V4 = ViewSpec3(V1).

• Updates through a View: We would like to be able to
allow updates through a view. Since each view is a sub-
ontology of the base ontology, updates done through a
view should be reflected in the base ontology as well
(inverse of second point above).

5 The View Framework
The high-level architecture of our view mechanism is shown
in Figure 4. Our approach is to create a new RDF model
corresponding to every view and restrict query operations
on the same. The view framework consists of a view
generator which takes in a view specification and generates
an appropriate View Model as a subset of the base model. A
View Updater watches for updates to the base model to
make the relevant view models consistent. In the rest of this
section, we look at the details of the view specification
language, the view generation and, the view update module.

5.1 View Specification Language:
We propose a simple view specification language to
describe the concept names and properties of the base
ontology that would be visible in a view along with a
semantic description of the instance assertions that would be
included in the view. We chose to use OWL as the syntax
for the view specification language. This provides the
following nice advantages:
• Inconsistencies in the view specification can, in many

cases, be detected early by reasoning over the ontology
• Existing semantic web tools can be used for parsing and

analyzing the view specification.
• The view specification itself can be stored along with

application data and metadata in an RDF store. This
enables queries on the view specification such as listing
concept names that are viewable through a specific
view.

Referring back to our calendaring example, the view that is
visible to the administrator of Room Indus (Figure 2) is
defined by the view specification of Figure 5. The user first
defines an instance of the View class and selects the TBox
and ABox elements that need to be included in the view
independently, through SelectProp/SelectClass and
SelectInd properties respectively. The view specification
says that the Vevent class is visible with selected attributes
only – namely, the organizer, start and end time of the

4 The description of the complete semantics of the graph

operations on view models is not in the scope of the current
document.

event. To describe the allowed instances of the class Vevent,
a new class called “IndusEvents” is defined and is made
visible through SelectInd. It may be noted that the
specification is intuitive to the user as it specifies the
semantics of the filtering using terms from the TBox of the

Base Ontology. The view administrator needs to give this
view specification only once and this would hold for all the
future RDF data (in this case, additional instances of
Vevent).
This specification language is our initial attempt towards
representing access control restrictions on knowledge using
semantics of the domain. A more detailed description of the
view specification language is provided in the rest of the
section.

Namespace and vocabulary
As a part of the proposed view language, we have defined a
view Namespace and Vocabulary using which the user can
provide a semantic definition for a specific view.
Terminological extensions to the base ontology can be made
by defining new concept names and properties in the view
specification using standard OWL syntax.
We define a view namespace with a view ontology which

<view:View rdf:ID=“RoomAdminView”>
<View:SelectClass rdf:about=”cal:VEvent”>
<View:SelectProp

rdf:about=”cal:organizer”>
<View:SelectProp rdf:about=”cal:dtstart”>
<View:SelectProp rdf:about=”cal:dtend”>
<View:SelectInd rdf:about=”#IndusEvents”>

</view:View>

<owl:Class rdf:Id=”IndusEvents”>
<owl:intersectionOf rdf:type=”Collection”>

<owl:Class rdf:about=”cal:VEvent”>
<owl:Restriction>

<owl:onProperty
rdf:resource="cal:location"/>

<owl:hasValue
rdf:resource="#RoomIndus”/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Figure 5: The View Specification for the administrators of
Room Indus

Figure 4: A high-level overview of our View Framework

- 6 -

defines a primary concept name called View at
http://hpl.hp.com/research/sw/view. Every view
specification would define an instance of this View class
with properties specifying the visibility criterion for that
view. These properties are mainly used to specify three
kinds of information. First, to specify the classes and
properties of the base model (TBox) that would be visible in
the view. Second, specifying the semantics of selecting the
instance data (ABox) and third: a new way of defining new
classes using query strings, that would be used for selection
of individuals. Table 3 at the end of this document gives a
brief description of the semantics of the different keywords
or Vocabulary of the view specification.

Positive and Negative views
To simplify the expression of semantics of the view, we
categorize view specifications as either Positive or
Negative, based on the structure and elements used in the
specification. A positive view specification states the
concept names, properties and instances that are visible,
while a negative view specification states those that are not
visible. Within a given set of ontologies, every positive
view has an equivalent negative view and vice versa. Our
view specification language supports both negative and
positive assertions and includes keywords that have either
positive or negative semantics (view:SelectClass and
view:RemoveClass for example)

Use of negative specification when the end-user is allowed
to access all but a few classes from the base ontology is
likely to result in a shorter specification. In some cases, the
view generation time may also be reduced due to the
reduced number of RDF triples that need to be manipulated.
More importantly, support for positive and negative views
aids in creating view specifications that are in OWL-Lite
instead of OWL-DL by eliminating the need for
complementOf operator. While we believe that a language
support for this dual mode of specification improves the
ease of use of the view language, the proposed language has
not yet been widely used for us to be convinced of this fact.

We employ a predefined prioritized handling of the view
keywords in the view generation module to resolve conflicts
and to avoid ambiguities in selection of instances. For both
TBox and ABox selections, the positive directives (Select*)
are first processed and then negative directives (Remove*)
are honored. This is over and above the semantics
mentioned in the Table 3. In the rest of this section, we look
at more details of this view specification.

Specifying the TBox of a View :
As mentioned earlier, the user selects the TBox and ABox
elements that need to be included in the view separately. To
selectively include TBox elements into a view, we define a
property called “Select” whose subject is the instance of the
View class representing the view specification. The classes
and properties of the base model that would be allowed in
the view are specified as the objects of this Select property.
Properties SelectClass and SelectProp are sub-properties of
this class and can be used for better expressiveness.
Analogous to these new properties for a positive

specification, we have defined properties Remove,
RemoveClass and RemoveProp to enable negative
specification.

In our calendaring example, the room administrator is
allowed to see only the class Vevent and a few properties of
the event instances. The positive view specification for that,
corresponding to Figure 2, would be:

Please note that the above specification is partial and defines
only the visibility of the TBox. An equivalent negative
specification (assuming a closed ontology) would be as
follows:

SelectAll includes all the concepts and properties of the base
class into the view class and property definitions only, not
instance data. We then list the properties of Vevent that
cannot be viewed by the room administrator using the
Remove directive. Please note that the negative
specification may need to be changed every time there is an
update to the TBox of the base ontology, since the default
action for new concept names and properties is inclusion in
the view, unlike the case in the positive specification.

The TBox selection of the view specification for the second
view (Figure 3), where an attendee Joe would see all the
classes and properties but is limited only to a subset of
events (the instance data), would be just one line as there are
no restrictions to the TBox.

<view:SelectAll/>

Specifying the ABox of the View:
Two properties in the view ontology are used for specifying
the instance data to be included in the view specification
semantically – SelectInd and SelectArc. SelectInd should be
used to select individuals and SelectArc to select a subset of
property arcs or edges. To select all individuals or resources
of a particular class, the user specifies that class to be the
object of property view:SelectInd. For providing
restricted/partial access to instances of a class, user can
define a new owl:Class describing the semantics for
inclusion and specify that class to be an object of property
view:SelectInd. Again, equivalent vocabularies for negative
specification, namely RemoveInd, RemoveArc are also
available in the language.

In the example view specification for a room administrator
shown in Figure 5, we define a new class called IndusEvents
and makes that to be of type view:SelectInd – in effect,
populating the view with those event instances that belong

<View:SelectClass rdf:about=”cal:Vevent” />
<View:SelectProp rdf:about=”cal:organizer” />
<View:SelectProp rdf:about=”cal:dtstart” />
<View:SelectProp rdf:about=”cal:dtend” />

<View:SelectAll />
<View:RemoveClass rdf:about=”#Minutes” />
<View:RemoveProp rdf:about=”cal:attendee” />
<View:RemoveProp rdf:about=”cal:label” />
<View:RemoveProp rdf:about=”cal:relatedTo” />

- 7 -

to the new class IndusEvents. For the attendee view of the
calendaring example, where Joe would be able to see all the
information about the events for which he was invited, the
view specification is shown in Figure 6.

Finally, as a special case, the complete base ontology can be
made visible in a view using:

Defining new classes
New classes may need to be defined in a view specification
either for extending the view to include personalized
vocabulary or for semantically expressing the selection of
individuals or arcs (like class JoeEvents in Figure 6). There
are two ways of defining new classes in our view
specification. The method of using OWL syntax for defining
new classes based on property restrictions was seen in
Figure 5 and 6. Alternatively, we allow a new way of
defining new classes through the use of a query string in our
view specification. Using this mechanism, the class
“JoeEvents” defined in the previous example can also be
defined using a query as follows:

This way of using queries to specify classes, basically
provides an escape mechanism for some of the limitation of
OWL syntax and increases the expressiveness of the view
specification language. One such case would be need of
numerical comparison; say, if we want to include all
attendees, whose age is greater than 50.

Defining new classes using a query sometimes simplifies
the view specification too. The new classes defined this way

can be used in both positive and negative specifications.
However, it may be noted that any kind of implicit
relationships among these defined classes are not implicitly
derived. For example, if two classes are related through a
subsumption relationship (say one query has a conjunction
of one more triple than the other), that will not be
automatically inferred unless it is explicitly specified.

5.2 View Generation Module:
The view generation module reads in the view specification
file and generates a view model on which further queries
can be processed. There are three main steps in creating a
view model from the base model. First, the view generator
loads the view specification and creates an RDF model for
the specification conforming to our View Ontology. Next,
based on the view specification, the generator derives the
concept names and properties (TBox) of the base ontology
that are allowed in the view being defined. The visible
concept names may include new ones introduced in the view
specification (terminological extensions). Finally, the
concept names in the view have to be populated with the
allowed instance assertions (ABox) of the base model. The
view generator analyses the semantic assertions in the view
specification and populates the concepts accordingly.

As mentioned earlier, use of OWL for view specification
greatly simplifies the parsing and analysis of the view
specification. The view generator is in fact a semantic web
application in itself! During loading of the view
specification, the OWL loader detects syntax errors and
inconsistencies in the specification too. Further, since the
inclusion of instance assertions to a view is specified
semantically (such as “make visible only events which use
Room Indus”), the population of the classes with a subset of
the instance assertions of the base model uses OWL
inference again.

5.3 View Update
The View Update module ensures that the view mechanism
maintains the view model consistent with the base model
even while the base model gets modified. There are two
modes in which the view generator can be invoked – the
daemon mode and instance mode. In the daemon mode, the
view generator materializes the view at its deployment time
and serves all the queries directed to that view over this
materialized view model. In the Instance Mode, every time a
query on a view is made, the view model is materialized and
query processed over it. As may be evident, when the view
generator functions in the instance mode, the view model is
consistent with the base model irrespective of the amount of
changes and updates. While in the daemon mode, some
additional effort is needed to ensure that the materialized
view is consistent with the base model – and this is when
the View Updater module comes in. The View Updater is
event based; it watches for view changing events on the
base model and updates the view model as needed.

There are fundamentally two kinds of changes that can
occur in the base model; namely, changes in the schema
(TBox) and those in the instance data (ABox). Typically, as

<view:View rdf:ID=”JoesView”>
 <view:SelectAll/>
 <view:SelectInd rdf:about=“#JoeEvents” />

</view:View>

<owl:Class rdf:ID=”JoeEvents”>
 <owl:intersectionOf rdf:type=”Collection”>

 <owl:Class rdf:about=”cal:VEvent”>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#attendee"/>
 <owl:hasValue rdf:resource="#Joe”/>

 </owl:Restriction>
 </owl:intersectionOf>

</owl:Class>

Figure 6: View Specification for Attendee Joe

<view:View rdf:ID=”Everything”>
<view:SelectAll />
<view:SelectIndAll />
<view:SelectArcAll />

</view:View>

<view:DefineClass
 rdf:about=”JoeEvents”
 view:query=

”SELECT ?x WHERE (?x cal:attendee “Joe”) ;” />

- 8 -

also in the application where we plan to deploy the view
mechanism, we expect instance data updates to be more
common than the schema changes. We plan to use a
combination of the two extreme approaches mentioned
above for implementing consistent views. We would
materialize the view after every TBox/Schema change and
use the event-based view updates for instance data changes.
We also have controlled way of adding new data to the
semantic store in our system. The View Updater is invoked
with the new update information periodically to ensure
consistency of the materialized view. This mechanism was
further simplified in our target application as the system
does not allow deletion of data and updates to instance data
are only in the form of addition of new data. The updater,
therefore, just peeks at the data being added and pulls in the
inserted triples to relevant views only.

5.4 Query Rewriting
Let us briefly look at an alternate way of view generation
that could potentially eliminate the need for view updates
using one of the well-known ways of providing controlled
access to any data - through filters. Filters for semantic store
can be either on the input query or on the query response.
Filtering just the query response alone would not ensure
complete security of data; the domain of the search should
also be restricted. Therefore, that leaves filtering or
rewriting the input query as a feasible way of implementing
queries on multiple views. Clearly, modifying input queries
would limit the supported operation to query on views only.
It would require separate corresponding mechanisms for
other operations on the RDF model. It does also not ensure
that the model being queried is a valid sub-ontology of the
base model to be able to infer additional information within
the view. On the positive side, such an implementation is
similar to a view generator running in an instant mode and
hence would not require a separate updater module. Also, in
cases where the base model is huge and the only operation
to be performed on the view model is query, then query
rewriting is a good scalable approach.

6 Implementation and Results
We have implemented a preliminary version of the view
mechanism described in this paper using the Jena Semantic
Web Framework. Jena is a Java framework for building
Semantic Web applications. It provides a programmatic
environment for RDF, RDFS and OWL, and includes a
framework to include custom rule-based inference engine as
well. Our implementation was on a Debian GNU/Linux
Server deployed over Xen Virtual Machine on 2600-MHz
AMD Opteron (TM) 252 Processor.
We support a two-phased approach to defining a view. First
step is machine-guided view definition phase and second is
the materialization of the view definition. We therefore have
developed two Java modules using Jena-2.4; one for view
generation and the other for machine-guided view
specification.

The view generator has been interfaced to Jena through the
Jena Assembler enabling use of the generated view model in

any application that uses Jena assemblers. Using this, we
have been able to successfully deploy multiple Joseki
SPARQL services each serving different views of a base
model. Since every such Joseki service would be accessible
with unique service URL, standard web server
authentication mechanisms can be used to control user
access to the service. The visibility of selective data is made
possible through our view mechanism – thus providing an
end-to-end access control of RDF data.

We have developed a new Jena Model Assembler to
generate view models. This enables any Jena application to
create view models. In particular, to enable a query service
on the view model, one could define a view model as a
Joseki dataset. An example Joseki specification for
providing a SPARQL service over a view model is given in
Figure 7. A new model called ViewModel is defined with
three properties viewSpec, origModel and viewName,
which provide the model representing the view
specification, the model representing the base model and the
resource URI of the view instance, respectively. The dataset
defined above can be used to define a Joseki service in a
standard way and enables view generation on different types
of base models – persistent, in-memory, inferred model and
so on.

We tested the View Generation with multiple ontologies
namely employee database, temperature sensing, location
sensing data and network topology data. We found that the
proposed view language was very useful to extract a
selective sub-graph of the RDF graph in all the cases. Our
preliminary performance measurements showed In our
current implementation, generating a view over a moderate
dataset (50,000 triples) took 2 minutes. This was acceptable
for our particular application that performs updates every 10
minutes, but is clearly too slow for many situations.
Queries on that extracted model were also faster due to
reduced number of triples that the queries targeted. We are
exploring ways to improve the speed of view generation –
such as view specification compilation and optimizing the

_:view1 rdf:type joseki:RDFDataSet ;
rdfs:label "view1" ;
joseki:defaultGraph
[
rdf:type _:ViewModel ;
ja:viewSpec

[a ja:MemoryModel ;
ja:content [ja:externalContent
<file:Data/viewSpec1.owl>] ;
] ;

ja:origModel
[a ja:MemoryModel ;
ja:content [ja:externalContent
<file:Data/employee.n3>] ;
] ;
]

view:viewName "myView";
.

Figure 7: Joseki Configuration Snippet describing a
dataset of type ViewModel

- 9 -

custom query made by the generator. In the rest of this
section, we describe some of the internal details of our
current view generation module and the machine guided
view specification.

6.1 View Generation
The view generator (viewGen) takes in a view specification
plus a reference to the data model for the Base Ontology and
generates a view model. A single OWL file provides a
single view definition. Additional attributes of the view
such as whether it is a snapshot view or live view (with the
periodicity of update) can also be specified at the time of
view generation.

Top Level Algorithm
As mentioned in section 4, the view generator has three
major steps: parsing of the view specification, extracting the
TBox information and then populating the instance elements
(Abox) into the view model. The detailed algorithm for
view generation follows.

View Generation Using SPARQL query:
We use a variant of query rewriting in our view generation
to materialize the view. Instead of rewriting every query that
is intended towards the view, we convert every view
specification to a SPARQL CONSTRUCT query on the
base ontology. The result of this query would be an RDF
graph representing the materialized view model. The view
generator ensures that the view model is a valid ontology by
identifying and inserting the missing triples to make it
semantically complete. Every view specification is
converted to an equivalent query that extracts eligible triples
out of the base model for performing the user-given query
on it. A part of the query that provides the semantics of
“SelectInd” keyword is listed in Table 4. The keyword
VIEW is replaced by resource URI of the selected view
instance at selection time.

This approach of implementing the semantics of a language
using a query is unique to our approach and enables us to
easily introduce new keywords with well-defined semantics.
In addition, the example query fragment given above is
generic and hence would remain same for all view
specifications. Alternately, we could convert every view
specification to an equivalent SPARQL query that extracts

the subset of allowed triples from base model into the view
model (query rewriting).

In fact, this approach of generating a query for every view
specification can be extended to work on relational
databases as well – wherein a view specification is
converted to a combination of multiple SQL queries on the
relational database. This enables applications to function
using a hybrid mode of data representation – relational
database for its complete data and a RDF store of a subset of
interesting data to perform reasoning on. The subset to be
kept in RDF form is determined by the view specification
language.

6.2 Machine Guided View Specification:
It is not always possible for the user to ensure that all the
necessary concept names and properties are rightly included
in a view. During the specification of the view definition,
the tool viewSpec helps the user identify errors in the
specification without the actual dataset of the base model
being available. It also guides the user to include related
concept names and properties in the view to make it a valid
ontology. This module uses the Jena Rule Engine to
determine dependencies between the concept names and
properties of the Base Ontology and directs the user to
“Select” new classes and properties as needed. It also
determines the missing concept names and properties in a
selection that are needed to make an ontological view. We
define a rule set to infer the dependencies between concepts
and properties of the base ontology, compute semantic
completeness of the view model and use that to direct the
user.

Semantic Completeness
Let us look a little more closely on the exact information
that is imported from the base ontology for a view
specification. As defined in an earlier section, an ontology

Ø Load Model using OWL FileManager
Ø Convert specification to simplified form (uses Jena

Rule Engine)
Ø Include Select’ed classes and properties into the

view Model
Ø c å view:Select, include triple t = <y rdf:type, c> , if

t å baseModel
Ø Compute the membership of all class c å

view:SelectInd using OWL inference
Ø Include above individuals into the View Model
Ø Compute the membership of all class r å

view:RemoveInd using OWL inference
Ø Remove above individuals from the View Model

CONSTRUCT { ?x ?y ?z } WHERE
{{ VIEW view:SelectInd ?c . VIEW view:Select ?z .
?x rdf:type ?c . ?x rdf:type ?z . ?x ?y ?z} ,
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c . ?y rdf:type owl:DataTypeProperty .
?x ?y ?z}
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c . ?x ?y ?z . FILTER isLiteral(?z) }
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c . ?x ?y ?z . FILTER isURI(?z) }
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c . VIEW view:SelectInd ?c2 . ?z
rdf:type ?c2 . ?x ?y ?z}
}

Table 4: SPARQL query for SelectInd

- 10 -

consists of mainly three elements: (a) Concept names and
property names (b) Descriptions of concepts and properties
(Concept axioms and Role axioms) (c) Instance data, the
individuals of the defined concepts (Facts).

We note that the view model created by the view generator
would depend upon the type of information we import from
the base model into the view model. The semantics
mentioned in Table 3 and that implemented by us so far
include only items (a) and (c) above. The role and concept
axioms are not included by default. This limits the
information seen through the view to the instance data that
is populated – no additional data can be inferred in the view
model.

In order to enable additional inference in the view model,
the role axioms and property axioms from the base model
need to be included in the view model as well – which we
call semantically complete view model. In our view
framework, we chose to selectively include the axiom based
on user inputs. We compute the class and property
dependencies during the first phase of the view generation
and guide the user towards specifying a semantically
complete view. As a special case, the role axioms and
property axioms of all classes can be included in the view if
the RDFS classes and properties are explicitly made visible
in the view specification.

In our calendaring example, when the property cal:relatedTo
(if defined as a symmetric property) is selected, the property
axiom, 'relatedTo rdf:type owl:SymmetricProperty' stating
that relatedTo is a symmetric property would not be
available in a view model. So, addition of a property
assertion of the form “JournalX relatedTo EventY” on the
view model would not infer “EventY relatedTo JournalX” if
this update to the view model is independent of the base
model. However, if the property owl:symmetricProperty is
selected in the specification, the role axiom is also part of
the view model and hence additional data can be reasoned
within the view model itself. On the contrary, if the update
is propagated to the base model, the new triple will be
inferred in the base model and made visible back through
the view; this would be true whether or not the property
axiom is itself visible via the view.

6.3 Storing view specification in RDF
As the view specification is expressed in RDF/OWL, we
can store the view definition in the same RDF store as the
base ontology model. The view generator creates an
instance of the view Ontology for this new specification and
stores it in the RDF store. A section of the View Ontology
is given in Figure 8 above.

7 Related Work
Views are an established technology for relational and
object databases. For example, database views allow
transformation of the database schema and combining of
multiple database tables to create a new virtual table. Some
view implementations on databases also facilitate

interoperability among the different components using
mediators and wrappers [21]. However, in a classical
approach to views on databases, one cannot provide a
conceptual description of views and hence the semantics of
the views remain unclear. By contrast, our views over
semantic information can be described using an ontology
and hence can be more expressive and meaningful. We can
use automated reasoning engines to perform analysis and
can catch some user errors.

There have been some efforts in providing views over
semantic web earlier, but the focus of most of the prior
research has been personalization, integration, or versioning
of information [3]. Our work differs from them by
supporting multiple views over an RDF store purely from a
security standpoint – to provide authorized access to
different elements of a semantic store. In addition, since our
view specification language is OWL, our framework
supports semantic definition of views.

Raphael Volz et al describes a view language and a system
(called KAON) [6, 7] that provides semantic classification
of views by defining views over classes and views over
properties. They derive query expressions from the
specification to populate the new class or property. One of
the key differences of our work with respect theirs is that the
new classes (views over classes) they define need to have a
name different than the base classes. While this allows the
view to easily introduce new terminology, it removes the
transparency of terminology desired for access control
mechanism.

Maganaraki et al explain an approach to a view mechanism
called the RVL lens [8] which is a declarative view
definition language for virtual RDF description bases and
schemas that allows data restructuring as well as
hierarchical view construction. Our view definition
language based on OWL also allows hierarchical view
construction and enables specification of additional
semantics. So, inconsistencies in the specification can be
identified using OWL reasoner. It does not also involve
learning new syntax and paradigm for the specification.

Pavan Reddivari et al propose a security mechanism for the
Semantic Web that specifies restrictions on creation,
modification and browsing of the RDF stores [19]. The

<owl:Class rdf:Id=”View”>
 <owl:DataTypeProperty rdf:Id=”#Select”/>
 <owl:DataTypeProperty rdf:Id=”#SelectInd”/>
 <owl:DataTypeProperty rdf:Id=”#Remove”/>
 <owl:DataTypeProperty rdf:Id=”#RemoveInd”/>
 <owl:DataTypeProperty rdf:Id=”#SelectAll”/>
<owl:ObjectProperty rdf:Id=”#generationMode” >

<rdfs:range rdf:Id=”#viewParameters”/>
</owl:ObjectProperty>
<owl:DataTypeProperty rdf:Id=”#viewName” />

</owl:Class>

Figure 8: View Ontology

- 11 -

access control specifications in their framework are in RDF
but are at triple level -requiring literally every triplet to be
marked as either ‘use’ or ‘see’. Our view specification
language can be used to specify the restrictions in a more
semantic form – using the vocabulary of the ontology alone.
Sebastian Dietzold et al use SWRL (Semantic Web Rule
Language) to specify the rules of visibility in their recent
effort for access control on a triple store [20]. Similar to our
approach, they generate a view model (that they call as a
virtual model) from the base model using the rules specified
by the user.

Various optimizations have been used in literature to extract
an optimal subOntology from a base Ontology for a given
specification [2, 4, 10]. These optimizations ensure that the
resultant subOntology provides some nice properties such as
requirement consistency, well-formedness, semantic
completeness and is represented in the extreme simplified
form. Their work provides a good theoretical basis for our
work. We employ a similar mechanism when we guide the
user towards a semantically complete view specification
during the interactive view specification phase.

A fine grain role-based access control system has been used
by Dave Banks et al in [22] for a personal knowledge base,
ePerson Snippet Manager. The approach used by them is to
define a set of roles, assign patterns (Query-By-Example
patterns) that define what is visible for each role, and then
assign roles to users. Role based access control is possible
even with our system. We do allow query-based
specification of the visibility of data like them; in addition,
we support specification of visibility through ontology.

The work by Edward Hung et al [23] supports a means of
extracting interesting triples from an RDF store by extends
the RDQL query language to include GROUPBY and
aggregate operators. We perform a similar operation during
view generation using standard query syntax. They support
an interesting subset of views by their approach.

8 Conclusion and Next Steps
In summary, security of data and meta data stored in an
RDF store is important for real-life applications that use
semantic web technologies to integrate multiple data sources
and perform reasoning on them. We describe the design and
implementation of a view mechanism that aids in enabling
controlled access to an RDF store. We propose a view
specification language based on the Web Ontology
Language (OWL) which enables semantic description of the
access restrictions, storing of the access controls in the RDF
store, and construction of complex views using other views.
The materialized view model is a sub-ontology of the base
ontology and hence is amenable for further RDF operations.
When our View Generation framework was tested with
multiple ontologies, we found that the proposed view
language was very useful to extract a selective sub-graph of
the RDF graph. While performance was acceptable for our
particular application, it may not be sufficient for other

situations. We are exploring ways to improve the speed of
view generation.

Our intention is to host different views of a base model as
different Joseki services and direct user queries to the right
service. In that regard, we are exploring use of named
graphs to represent individual materialized views. We are
also investigating use of other security techniques for
enforcing authorized user access.

We are also working on enhancing our view specification
language to include mechanisms that help in describing
views over integrated data sources. As a specific feature of
the view language, we are exploring view keywords that
refer to namespaces and hence specify visibility of classes
and properties from a namespace. We believe this would
improve the expressbility of the view language. Further, we
plan to include a template based view specification system
during the view definition stage to simplify specification of
similar views. Support for view generation through the Jena
API is one of the other usability features we would like to
add in future.

Acknowledgements
We are thankful to the Jena Development Team from HP
Labs Bristol, for providing the Jena API which simplified
the implementation of our framework. We are grateful to
Kevin Wilkinson for reviewing our work and providing us
the knowledge on the Jena Database Backend. We are
thankful to our colleagues Nic Lyons and Tyler Close for
their comments and feedback on this work.

References
1. An assessment of RDF/OWL modeling, Dave Reynolds,

Carol Thompson, Jishnu Mukerji, Derek Coleman,
Digital Media Systems Laboratory, HP Laboratories
Bristol, HPL-2005-189, October 28, 2005

2. Semantic Completeness in Sub-ontology Extraction
Using Distributed Methods, Mehul Bhatt, Carlo
Wouters, Andrew Flahive, Wenny Rahayu, and David
Taniar, ICCSA 2004, LNCS 3045, pp. 508–517, 2004.
©Springer-Verlag Berlin Heidelberg 2004

3. Ontology versioning on the Semantic Web, Michel
Klein and Dieter Fensel, Vrije Universiteit Amsterdam

4. A practical walkthrough of the ontology derivation
rules, Wouters, C., Dillon, T., Rahayu, W., et. al:.
DEXA2002 (2002) 259-268

5. A practical approach to the derivation of materialized
ontology view, Wouters, C., Dillon, T., Rahayu, W., et.
al:. In: Web Information Systems. Idea Group
Publishing (2004)

6. Views for light-weight web ontologies, Raphael Volz,
Daniel Oberle, Rudi Studer, SAC2003

7. Implementing Views for light-weight Web Ontologies,
Raphael Volz, Daniel Oberle, Rudi Studer, IDEAS2003

- 12 -

8. Viewing the Semantic Web through RVL Lenses,
Aimilia Maganaraki, Val Tannen, Vassilis
Christophides, Dimitris Plexousakis, ISWC03

9. XML Views, Rajagopal Rajugan1, Elizabeth Chang,
Tharam S Dillon, and Ling Feng

10. SEKT, Semantically Enabled Knowledge Technologies,
http://www.sektproject.com

11. Semantic Web, http://www.w3.org/2001/sw/,
www.semanticweb.org/

12. iCalendar RDF/XML Schema, the OWL ontology
corresponding to RFC 2445
http://www.w3.org/2002/12/cal/icaltzd

13. Resource Description Framework, RDF,
http://www.w3.org/RDF

14. RDFS, Resource Description Framework, (RDF)
Schema Specification 1.0, W3C Candidate
Recommendation 27 March 2000,
http://www.w3.org/TR/2000/CR-rdfschema-
20000327/

15. SPARQL Query Language for RDF,
http://www.w3.org/TR/rdf-sparql-query/

16. OWL Web Ontology Language Overview,
http://www.w3.org/TR/owl-features/

17. Web-calculus, http://www.waterken.com/dev/Web/
18. OWL Web Ontology Language, Semantics and Abstract

Syntax, http://www.w3.org/TR/owl-semantics/
19. Policy based access control for an RDF store, Pavan

Reddivari, Tim Finin, Anupam Joshi, University of
Maryland.

20. Access Control on RDF Triple Stores from a Semantik
Wiki Perspective, Sebastian Dietzold and S¨oren Auer,
University of Pennsylvania. 2nd Workshop on Scripting
for the Semantic Web, June 2006

21. Intelligent Integration of Information, Wiederhold
Kluwer Academic Publishers, 1993

22. The ePerson Snippet Manager: a Semantic Web
Application, Dave Banks, Steve Cayzer, Ian Dickinson,
Dave Reynolds, HP Laboratories Bristol, HPL-2002-
328, November 2002

23. RDF Aggregate Queries and Views, Edward Hung, Yu
Deng, V.S. Subrahmanian, ICDE 2005

24. Implementing Views for Controlled Access to the
Semantic Web, Geetha Manjunath, Craig Sayers, Dave
Reynolds, Venugopal KS, Swarup Kumar Mohalik,
John Ludd Recker, Malena Mesarina, International
Workshop on Semantic Web for Collaborative
Knowledge Management, SWeCKa, Jan 2007

TBox Selection
• <view:Select className> or <view:SelectClass className>

– Marks the class to be visible in the View
• <view:Select propertyName> or view:SelectProp
propertyName>

– Marks the property to be visible in the view
– Domain and Range Classes should be selected separately

• <view:SelectAll>
– Marks all properties and classes to be visible
– This would be useful when the view restriction is only for
Abox elements or when used in conjunction with
view:Remove

• <view:Remove className> or <view:RemoveClass className>
– Removes class from view and all arcs to and from it

• <view:Remove propertyName> or <view:RemoveProp
propertyName>

– Removes all the arcs with propertyName from view
ABox Selection
• <view:SelectInd className>

– Includes individuals/resources of type className
– Adds membership arcs from the above to marked classes
if applicable.
– Adds marked data type property arcs from selected
individuals
– Adds marked object type property arcs among selected
individuals

• <view:SelectIndAll>
– Includes all individuals of marked classes with the same
semantics as SelectInd per class

• <view:SelectArc propName subjClass objClass>
– All triples <s, p, o> are added if

• <s, p, o> å Base Ontology
• s å subjClass and s å a marked class
• o å objClass and o å a marked class
• p is a marked property

– If subjClass and objClass are not specified, all triples <s, p,
o> from the base class are added for all selected individuals
s and p.

• <view:SelectArcAll>
– Includes all arcs for marked Properties to and from
selected individuals (default behavior)

• <view:RemoveInd className>
– Removes the individuals of type className
– Removes all arcs to or from the above individuals

• <view:RemoveArc propName subjClass objClass>
– Removes all triples <s, p, o> iff

• s å subjClass
• o å objClass
• p = propName

• <view:defineClass className queryString>
– A new owl class consisting of the resources from the query
response is created

• Query should have a single unbound variable
• This class can be further used in Abox selections

Table 3 : Semantics of our View Vocabulary

