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The Semantic Web provides a good data integration and knowledge 
representation framework enabling sophisticated applications to reason 
and infer new information. Controlled access to data is extremely 
important when such data is being shared among multiple users. In this 
paper, we describe a framework that provides selective access to RDF 
data by supporting strict views over the semantic store. We propose a 
view specification language that enables specification of access 
restrictions using domain semantics. The view specification is 
materialized as an RDF graph model representing a sub ontology of the 
base ontology by our view system. Standard SPARQL queries and other 
graph operations can be performed on this view model. Our view 
mechanism has been implemented over the popular semantic web 
software framework, Jena and Joseki. 
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Abstract  
The Semantic Web provides a good data 
integration and knowledge representation 
framework enabling sophisticated applications to 
reason and infer new information. Controlled 
access to data is extremely important when such 
data is being shared among multiple users. In this 
paper, we describe a framework that provides 
selective access to RDF data by supporting strict
views over the semantic store. We propose a view 
specification language that enables specification of 
access restrictions using domain semantics. The
view specification is materialized as an RDF graph 
model representing a sub ontology of the base 
ontology by our view system. Standard SPARQL 
queries and other graph operations can be 
performed on this view model. Our view 
mechanism has been implemented over the popular 
semantic web software framework, Jena and 
Joseki. 

1 Introduction
The Semantic Web [11] provides a common framework 
allowing data to be shared and reused across applications, 
enterprises, and communities. It is a collaborative effort led 
by the W3C with participation from a large number of 
researchers and industrial partners. Based on the Resource 
Description Framework (RDF) [13], the Semantic Web 
project intends to create a universal medium for exchange of 
data by providing semantics to information. It is particularly 
suited to model applications which involve distributed 
information problems such as integration of data from 
multiple sources, publication of shared vocabularies to 
enable interoperability, and development of resilient 
networks of systems which can cope with changes to the 
data models [1].  Restricted access to data in such an open 
framework is very important to ensure data privacy and to 
protect the system from malicious users.

Let us briefly look at the core elements of the Semantic Web 
framework. The principal technologies of the Semantic Web 
fit into a set of layered specifications. It is built over the 
foundation of URI’s, XML, and XML namespaces. The first 
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layer has the Resource Description Language, which is the 
primary data representation language specified as RDF 
Core. This flexible data representation does not require a 
pre-specified schema for structured data as it is based on a 
simple notion of RDF statements or triples consisting of 
subject, predicate and object for every assertion. The second 
layer is the Ontology Layer that includes the RDF Schema 
language [14] and the Web Ontology language (OWL) [16]. 
This enables specification of the domain semantics through 
concepts and known-relationships among them. Building on 
these core components is a standardized SQL-like query 
language called SPARQL [15] enabling RDF stores to be 
queried remotely.  

We propose a view system that enables controlled access to 
the RDF store using an ontology-based specification. Views 
are an established technology for relational and object 
databases. Views are typically, used for enabling 
customized presentation of data as needed by an application 
or a user. They provide the programmer a degree of 
abstraction from the physical structure and schema of the 
underlying database. Analogous to the relational databases, 
there have been some efforts in providing views over 
semantic information as well. However, at a gross level the 
aim of most of this prior research has been for 
personalization, integration, and versioning of information 
(see section 6 for details). Our work focuses on supporting 
multiple views over an RDF store purely from a security 
standpoint – to provide authorized access to different 
elements of a semantic store.  

The key contributions of this work are:  
• A View Generation and Querying Framework that enables 
differential access to an RDF store – enabling user specific 
authorized access to semantic store. 
• A View Mechanism that enables storing of the view 
specification in the same RDF store as the data; enabling 
administrative data, metadata and application data to be 
treated equally. 
• A View Specification Language for Semantic Web which 
is expressed using the Web Ontology Language (OWL). We 
also define a View Ontology for View Specification. 
• Implementation of the View Mechanism using the Jena 
Semantic Web Framework.  

This paper is structured as follows. Section 2 provides a 
description of the abstract notion of views over semantic 
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Figure 1: Example RDF graph for event scheduling
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web with a simple example. In Section 3, we articulate the 
requirements of a view mechanism over the Semantic Web. 
The design of our framework is described in section 5 where
we propose a view specification language and describe the 
different modules that processes it. More detailed 
implementation description is available in Section 6 which 
is followed by a section that narrates the related efforts for 
this problem of supporting views over semantic store.  

2 Views  
A view of a semantic store is a window to the base semantic
store. Two primary uses of views are to enhance usability of 
data (providing personalized access to data that is relevant 
to an application) and to enable controlled access to data 
(giving access to part of the data depending upon the roles 
of its users). When used for access control, views provide a 
mechanism for enabling data security. As per the Semantic 
Web architecture, every ontology is associated with a set of 
RDF triples. A view defines a subset of these RDF triples of 
the base ontology to be visible. A typical use case would be 

a security administrator defining a view through a view 
specification and setting permissions to different users to 
access to different views.  
Let us take an example. Consider the somewhat familiar 
activity of scheduling Video Conferences among selected 
invitees. Figure 1 has a sample RDF graph showing three 
Persons (Pat, Joe, Sue) invited to two conferencing events 
(meetings) scheduled in more than one room (among rooms 
Orion, Indus and Enigma). The graph represents a model in 
the iCalendar ontology [12] showing instances of the 
Vevent Class (representing the details of an event). Only a 
few properties and attributes of the Vevent class are shown 
here for simplicity, the complete event data would include 
other attributes of the attendees (email address), event 
schedule and so on.  

Clearly, there will be a major privacy concern if a single 
global calendar data store containing all the details of the 
events scheduled in all the rooms, were visible to everyone. 
This is especially so if the video conferencing service is 

Figure 2:  RDF graph seen by admin of Room Indus
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used by commercial organizations who do not want their 
competitors to know about their meetings and attendees. We 
would therefore like to restrict the view of the calendar data 
to a subset of the information that a person is allowed to see. 
For instance, the administrator of a conference room should 
be allowed to know when a particular room is needed and 
when it is free – so that he or she can schedule the 
maintenance activities in the free period and keep the room 
ready when needed. However, the attendee and event details 
are not needed for this function. So, administrators should 
see only scheduling details of all the events being held in the 
specific rooms that they administer. Similarly, the attendees 
of a particular event should be able to see all the details of 
the events but only for those that they are invited to.  

Figure 2 and 3 show the different RDF graphs that should
be seen by these two classes of users. The admin of Room 
Indus would only see the organizer name and time schedule 
of the events scheduled in Indus – all the remaining 
information is hidden. On the other hand, attendee Joe 
would see all the information about events – but only for 
those, he is invited for. As may be evident, simple removal 
of an attribute or a class is not sufficient to create these two 
nontrivial views. The two views need to be described using 
a semantic description. and our view mechanism intends to 
enable that. As we will see later, Figure 5 describes the view 
corresponding to Figure 2 using the proposed view 
specification language. We will use this simple calendaring 
example with the above two sample views in the rest of the 
document to explain the view mechanism.  

3 Definitions
Let us now look at a more formal definition of views. An 
ontology is a data model that represents a knowledge 
domain and is used to reason about the objects in that 
domain and the relations between them. It conceptually 
represents a perceived world through concepts (Classes), 
attributes (properties, features, characteristics, or parameters 
that objects can have and share), and relationships (ways 
that objects can be related to one another).  

The W3C standard for describing an ontology is using the 
Web Ontology Language (OWL). OWL contains a sequence 
of ontology elements, namely, annotations, axioms, and 
facts [18]. Class axioms and property axioms are used to 
define class and property identifiers, respectively. This 
definition could either be partial or complete specification 
of their characteristics. The axioms that define classes and 
properties can also be OWL restrictions that provide local 
constraints on properties of a class or OWL Class 
Descriptions that describe a class using Boolean 
combination of other classes. The second type ontology 
element, facts provide information about the individuals of a 
class. There can be two kinds of facts. The first kind states 
information about a particular individual, in the form of 
classes that the individual belongs to plus properties and 
values of that individual. The second kind of fact is used to 
state that two different resources identifiers refer to the same 
instance or different instances. Annotations can be used to 

record authorship and other information associated with the 
ontology.

On the other hand, to represent an ontology in Description 
Logics2, a distinction is drawn between the so-called 
"TBox" (terminological box) and the "ABox" (assertional 
box). In general, the TBox contains sentences describing 
concepts and properties (property axioms, class axioms, 
property Restrictions and class Descriptions defined above) 
while the ABox contains what are called "ground" sentences 
stating where in the hierarchy individuals belong (facts that 
define relations between individuals and concepts).  

In this paper, we borrow from Description Logic the above-
simplified representation of an ontology for a formal 
description of views and use the OWL terminology to 
describe more practical aspects. We write an ontology O as 
(OT, OA) where OT represents the TBox of O and OA 
represents the ABox of O. Also for any pair (OT,OA) to 
qualify as an ontology, the assertions in the ABox OA must 
have terms (concepts, attributes and relationships) only from 
the TBox OT. In other words, OT represents the set of 
classes and properties, class axioms and property axioms 
while OA represents the assertions of the instance data that 
includes class membership, attribute values and 
relationships between two instances. 

A view is basically, a sub-ontology of the base ontology
with simple additional extensions to enable personalization 
of data. We define a view, V over a base ontology B as a 
terminological extension of a sub-ontology of B, where:
• An ontology V= (VT, VA) is a sub-ontology of the base 

ontology B = (BT , BA ) if  VT ⊆ BT and VA ⊆ BA.  
• A terminological extension of an ontology (T, A) is an 

ontology (T∪ T’, A) where T’ introduces concepts with 
new names such that no new inferences are drawn in 
the extension regarding the base ontology. Specifically, 
if Statement S is valid in (T ∪ T’, A) and 
conceptNames(S) ⊆ T, then S is valid in (T, A) too. 
Here conceptNames(S) refers to classes referred in the 
statement.

In other words, T’ should not include additional axioms 
over concepts and properties of T; definition of new 
terminology that enables additional classification of data for 
personalization is however possible.  
The above definition of a view has two main benefits. 
Firstly, it ensures that a view is transparent to the 
application designed to interact with the base ontology. The 
concepts and property names that are valid in the base 
ontology are valid even through the view. 
For example, if several instances of Vevent are masked in a 
view, the class extension of Vevent in the view is accessed 
just as we would access from the base ontology (though it is 
a subset of the base ontology). This is unlike other 
approaches where the subset of the class extension of base 
concept is made available as either a new concept name or 
the same concept name in a different namespace. This is an 
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important feature and requirement of our design since we 
want to be able to use views for providing access control –
in a manner that can be transparent to the users. Queries 
from an application can now refer to base concept names in 
the namespace of the base ontology itself; while the result of 
the query may be different based on the view the application 
is allowed to see. Secondly, views can now be 
hierarchically constructed (views of views). This is a very 
powerful concept – enabling the view framework to limit all 
operations (such as queries, updates) to the RDF store only 
through defined views. The base ontology trivially, is also a 
view by this definition. 

Let us now see the ABox and TBox of the sample 
calendaring example whose base ontology is the RDF 

Calendar Ontology available at [12]. A part of that ontology 
that is relevant to the example under consideration3 is given 
in Table 1. This forms the TBox of the Base Ontology. The 
ABox corresponding to two event instances of the RDF 
graph of Figure 1 is given in Table 2. The ABox of a view 
on this would only include a subset of the base assertions. 
The assertions that are not visible in a view corresponding 
to Figure 2 (the view of the administrator of Room Indus) 
are depicted with a strikethrough them in Table 2. 

  
3 The range of the attribute cal:relatedTo as per original 

specification is String Literal.

4 Requirements on Views  
As mentioned earlier, our main focus of implementing the 
views framework was to enable access control to a common 
RDF store. In this section, we elaborate on the specific 
requirements of the views framework that we envisaged due 
to this.  
• This and Nothing Else: One of the first requirements 

of the semantics of the views that we wanted is to limit 
the visible window to a subset of the RDF store to the 
specification. Even though personalized terminology
(concept names) may be available to the user querying 
the view, the user should be stopped from performing a 
malicious query, using either the base or extended 
terminology. For example, the administrator of Room 
Indus should not be allowed to do a query to list the 
schedule of all events that have an attendee called Pat.
Even though the output of the query, a subset of events 
happening in Indus, may seem like something that the 
user is allowed to see, the scope of the query includes 
attendee information which the room administrator does 
not have access to. The query should be restricted to a 
viewable model alone in order to enforce the required 
security – through explicit specification of what is/is 
not visible. 

• Multiple Simultaneous Views on a base ontology: In 
order to support multiple user roles, we need to support 
existence of multiple simultaneous views with different 
view specifications – ensuring consistency of the views 
when the base ontology gets updated. 

• Queries through Views: One of the primary operations 
using views would be queries. Since the user sees the 
base ontology through a view, the query expressions 

from the user would have the vocabulary from the base 
ontology and hence queries through views should
support the same namespace and vocabulary of the base 
ontology, but restrict the query results as per the 
authorized view specification for the user. 

• View Specification in the RDF Store: We want to 
store the view specification in RDF; enabling the 
administrator to perform queries on the view 
specifications in the same way as one would do for 
data. 

• Construction of complex views from other views: We 
want to be able to compose new views through 
operations on earlier defined ones (merging of views, 

HP:Event1 rdf:type ical:Vevent 
; cal:attendee “Pat”
; cal:attendee “Joe”

: rdfs:label “Kick Off Meeting”
; cal:organizer “Pat”
; cal: location “Room Orion”

; cal:location “Room Indus”
;cal:dtstart “2006-04-25T04:30:00Z”

; cal:dtend  “2006-04-25T06:30:00Z”
 ; cal:relatedTo HP:Event2
.

HP:Event2 rdf:type ical:Vevent 
; cal:attendee “Joe”
; cal:attendee “Sue”

: rdfs:label “SRS Review Meeting”
; cal:organizer “Joe”
; cal: location “Room Enigma”

; cal:location “Room Indus”
; cal:dtstart “2006-05-20T04:30:00Z”

; cal:dtend  “2006-05-25T06:30:00Z”
; cal:relatedTo HP:Event1
.

Table 2:  The ABox corresponding to the two instances of Vevent of Figure 1. The elements that are 
stuck-off are not available in the view corresponding to Figure 2.
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intersection of views). We also want to be able to create 
views over views. For example, if B is the base 
ontology and V1 and V2 are views whose sub-ontology 
extraction rules are defined through a view 
specification language, we have V1 = ViewSpec1(B) 
and V2=ViewSpec2(B) . It should be possible to 
construct a new view V3 = foo(V1, V2) where foo is a 
graph operation4 such as union, intersection. The 
framework should also enable a new view to be defined 
over another hierarchically, V4 = ViewSpec3(V1).

• Updates through a View: We would like to be able to 
allow updates through a view. Since each view is a sub-
ontology of the base ontology, updates done through a 
view should be reflected in the base ontology as well 
(inverse of second point above). 

5 The View Framework  
The high-level architecture of our view mechanism is shown 
in Figure 4. Our approach is to create a new RDF model 
corresponding to every view and restrict query operations 
on the same. The view framework consists of a view 
generator which takes in a view specification and generates 
an appropriate View Model as a subset of the base model. A 
View Updater watches for updates to the base model to 
make the relevant view models consistent. In the rest of this 
section, we look at the details of the view specification 
language, the view generation and, the view update module.  

5.1 View Specification Language:
We propose a simple view specification language to
describe the concept names and properties of the base 
ontology that would be visible in a view along with a 
semantic description of the instance assertions that would be 
included in the view. We chose to use OWL as the syntax 
for the view specification language. This provides the 
following nice advantages:  
• Inconsistencies in the view specification can, in many 

cases, be detected early by reasoning over the ontology
• Existing semantic web tools can be used for parsing and 

analyzing the view specification. 
• The view specification itself can be stored along with 

application data and metadata in an RDF store. This 
enables queries on the view specification such as listing 
concept names that are viewable through a specific 
view.

Referring back to our calendaring example, the view that is 
visible to the administrator of Room Indus (Figure 2) is 
defined by the view specification of Figure 5. The user first 
defines an instance of the View class and selects the TBox 
and ABox elements that need to be included in the view 
independently, through SelectProp/SelectClass and 
SelectInd properties respectively. The view specification 
says that the Vevent class is visible with selected attributes 
only – namely, the organizer, start and end time of the 

  
4 The description of the complete semantics of the graph 

operations on view models is not in the scope of the current 
document.

event. To describe the allowed instances of the class Vevent, 
a new class called “IndusEvents” is defined and is made 
visible through SelectInd. It may be noted that the 
specification is intuitive to the user as it specifies the 
semantics of the filtering using terms from the TBox of the 

Base Ontology. The view administrator needs to give this 
view specification only once and this would hold for all the 
future RDF data (in this case, additional instances of 
Vevent). 
This specification language is our initial attempt towards 
representing access control restrictions on knowledge using 
semantics of the domain.  A more detailed description of the 
view specification language is provided in the rest of the 
section.

Namespace and vocabulary
As a part of the proposed view language, we have defined a 
view Namespace and Vocabulary using which the user can 
provide a semantic definition for a specific view. 
Terminological extensions to the base ontology can be made 
by defining new concept names and properties in the view 
specification using standard OWL syntax.  
We define a view namespace with a view ontology which 

<view:View rdf:ID=“RoomAdminView”>
<View:SelectClass rdf:about=”cal:VEvent”>
<View:SelectProp 

rdf:about=”cal:organizer”>
<View:SelectProp rdf:about=”cal:dtstart”>
<View:SelectProp rdf:about=”cal:dtend”>
<View:SelectInd rdf:about=”#IndusEvents”>

</view:View>

<owl:Class rdf:Id=”IndusEvents”>
<owl:intersectionOf rdf:type=”Collection”>

<owl:Class rdf:about=”cal:VEvent”>
<owl:Restriction>

<owl:onProperty 
rdf:resource="cal:location"/>

<owl:hasValue 
rdf:resource="#RoomIndus”/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Figure 5:  The View Specification for the administrators of 
Room Indus

Figure 4: A high-level overview of our View Framework
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defines a primary concept name called View at 
http://hpl.hp.com/research/sw/view. Every view 
specification would define an instance of this View class 
with properties specifying the visibility criterion for that 
view. These properties are mainly used to specify three 
kinds of information. First, to specify the classes and 
properties of the base model (TBox) that would be visible in 
the view. Second, specifying the semantics of selecting the 
instance data (ABox) and third: a new way of defining new 
classes using query strings, that would be used for selection 
of individuals. Table 3 at the end of this document gives a 
brief description of the semantics of the different keywords 
or Vocabulary of the view specification.

Positive and Negative views
To simplify the expression of semantics of the view, we
categorize view specifications as either Positive or 
Negative, based on the structure and elements used in the 
specification. A positive view specification states the 
concept names, properties and instances that are visible, 
while a negative view specification states those that are not 
visible. Within a given set of ontologies, every positive 
view has an equivalent negative view and vice versa. Our 
view specification language supports both negative and 
positive assertions and includes keywords that have either 
positive or negative semantics (view:SelectClass and 
view:RemoveClass for example) 

Use of negative specification when the end-user is allowed 
to access all but a few classes from the base ontology is 
likely to result in a shorter specification. In some cases, the 
view generation time may also be reduced due to the 
reduced number of RDF triples that need to be manipulated. 
More importantly, support for positive and negative views 
aids in creating view specifications that are in OWL-Lite 
instead of OWL-DL by eliminating the need for 
complementOf operator. While we believe that a language 
support for this dual mode of specification improves the 
ease of use of the view language, the proposed language has 
not yet been widely used for us to be convinced of this fact.

We employ a predefined prioritized handling of the view 
keywords in the view generation module to resolve conflicts 
and to avoid ambiguities in selection of instances.  For both 
TBox and ABox selections, the positive directives (Select*) 
are first processed and then negative directives (Remove*) 
are honored. This is over and above the semantics 
mentioned in the Table 3. In the rest of this section, we look 
at more details of this view specification.

Specifying the TBox of a View : 
As mentioned earlier, the user selects the TBox and ABox 
elements that need to be included in the view separately. To 
selectively include TBox elements into a view, we define a 
property called “Select” whose subject is the instance of the 
View class representing the view specification. The classes 
and properties of the base model that would be allowed in 
the view are specified as the objects of this Select property. 
Properties SelectClass and SelectProp are sub-properties of 
this class and can be used for better expressiveness. 
Analogous to these new properties for a positive 

specification, we have defined properties Remove, 
RemoveClass and RemoveProp to enable negative 
specification.  

In our calendaring example, the room administrator is 
allowed to see only the class Vevent and a few properties of 
the event instances. The positive view specification for that, 
corresponding to Figure 2, would be:  

Please note that the above specification is partial and defines 
only the visibility of the TBox. An equivalent negative 
specification (assuming a closed ontology) would be as 
follows:  

SelectAll includes all the concepts and properties of the base 
class into the view class and property definitions only, not 
instance data. We then list the properties of Vevent that 
cannot be viewed by the room administrator using the 
Remove directive. Please note that the negative 
specification may need to be changed every time there is an 
update to the TBox of the base ontology, since the default 
action for new concept names and properties is inclusion in 
the view, unlike the case in the positive specification.  

The TBox selection of the view specification for the second 
view (Figure 3), where an attendee Joe would see all the 
classes and properties but is limited only to a subset of 
events (the instance data), would be just one line as there are 
no restrictions to the TBox.  

<view:SelectAll/> 

Specifying the ABox of the View: 
Two properties in the view ontology are used for specifying 
the instance data to be included in the view specification 
semantically – SelectInd and SelectArc. SelectInd should be 
used to select individuals and SelectArc to select a subset of 
property arcs or edges. To select all individuals or resources 
of a particular class, the user specifies that class to be the 
object of property view:SelectInd. For providing 
restricted/partial access to instances of a class, user can 
define a new owl:Class describing the semantics for 
inclusion and specify that class to be an object of property 
view:SelectInd. Again, equivalent vocabularies for negative 
specification, namely RemoveInd, RemoveArc are also 
available in the language.  

In the example view specification for a room administrator 
shown in Figure 5, we define a new class called IndusEvents 
and makes that to be of type view:SelectInd – in effect, 
populating the view with those event instances that belong 

<View:SelectClass rdf:about=”cal:Vevent” />
<View:SelectProp rdf:about=”cal:organizer” />
<View:SelectProp rdf:about=”cal:dtstart” />
<View:SelectProp rdf:about=”cal:dtend” />

<View:SelectAll />
<View:RemoveClass rdf:about=”#Minutes” />
<View:RemoveProp rdf:about=”cal:attendee” />
<View:RemoveProp rdf:about=”cal:label” />
<View:RemoveProp rdf:about=”cal:relatedTo” />
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to the new class IndusEvents. For the attendee view of the 
calendaring example, where Joe would be able to see all the 
information about the events for which he was invited, the 
view specification is shown in Figure 6.  

Finally, as a special case, the complete base ontology can be 
made visible in a view using:  

Defining new classes
New classes may need to be defined in a view specification 
either for extending the view to include personalized 
vocabulary or for semantically expressing the selection of 
individuals or arcs (like class JoeEvents in Figure 6). There 
are two ways of defining new classes in our view 
specification. The method of using OWL syntax for defining 
new classes based on property restrictions was seen in 
Figure 5 and 6. Alternatively, we allow a new way of 
defining new classes through the use of a query string in our 
view specification. Using this mechanism, the class 
“JoeEvents” defined in the previous example can also be 
defined using a query as follows:  

This way of using queries to specify classes, basically 
provides an escape mechanism for some of the limitation of 
OWL syntax and increases the expressiveness of the view 
specification language. One such case would be need of 
numerical comparison; say, if we want to include all 
attendees, whose age is greater than 50. 

Defining new classes using a query sometimes simplifies 
the view specification too. The new classes defined this way 

can be used in both positive and negative specifications. 
However, it may be noted that any kind of implicit 
relationships among these defined classes are not implicitly 
derived. For example, if two classes are related through a 
subsumption relationship (say one query has a conjunction 
of one more triple than the other), that will not be 
automatically inferred unless it is explicitly specified.

5.2 View Generation Module:
The view generation module reads in the view specification 
file and generates a view model on which further queries 
can be processed. There are three main steps in creating a 
view model from the base model. First, the view generator 
loads the view specification and creates an RDF model for 
the specification conforming to our View Ontology. Next, 
based on the view specification, the generator derives the 
concept names and properties (TBox) of the base ontology 
that are allowed in the view being defined. The visible 
concept names may include new ones introduced in the view 
specification (terminological extensions). Finally, the 
concept names in the view have to be populated with the 
allowed instance assertions (ABox) of the base model. The 
view generator analyses the semantic assertions in the view 
specification and populates the concepts accordingly.  

As mentioned earlier, use of OWL for view specification 
greatly simplifies the parsing and analysis of the view 
specification. The view generator is in fact a semantic web 
application in itself! During loading of the view 
specification, the OWL loader detects syntax errors and 
inconsistencies in the specification too. Further, since the 
inclusion of instance assertions to a view is specified 
semantically (such as “make visible only events which use 
Room Indus”), the population of the classes with a subset of 
the instance assertions of the base model uses OWL 
inference again.  

5.3 View Update 
The View Update module ensures that the view mechanism 
maintains the view model consistent with the base model 
even while the base model gets modified. There are two 
modes in which the view generator can be invoked – the 
daemon mode and instance mode. In the daemon mode, the 
view generator materializes the view at its deployment time 
and serves all the queries directed to that view over this 
materialized view model. In the Instance Mode, every time a 
query on a view is made, the view model is materialized and 
query processed over it. As may be evident, when the view 
generator functions in the instance mode, the view model is 
consistent with the base model irrespective of the amount of 
changes and updates. While in the daemon mode, some 
additional effort is needed to ensure that the materialized 
view is consistent with the base model – and this is when 
the View Updater module comes in. The View Updater is 
event based; it watches for view changing events on the 
base model and updates the view model as needed.  

There are fundamentally two kinds of changes that can 
occur in the base model; namely, changes in the schema 
(TBox) and those in the instance data (ABox). Typically, as 

<view:View rdf:ID=”JoesView”>
 <view:SelectAll/>
 <view:SelectInd rdf:about=“#JoeEvents” />

</view:View>

<owl:Class rdf:ID=”JoeEvents”>
 <owl:intersectionOf rdf:type=”Collection”>

 <owl:Class rdf:about=”cal:VEvent”>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#attendee"/>
 <owl:hasValue rdf:resource="#Joe”/>

 </owl:Restriction>
 </owl:intersectionOf>

</owl:Class>

Figure 6: View Specification for Attendee Joe

<view:View rdf:ID=”Everything”>
<view:SelectAll />
<view:SelectIndAll />
<view:SelectArcAll />

</view:View>

<view:DefineClass 
 rdf:about=”JoeEvents” 
 view:query=

”SELECT ?x WHERE (?x cal:attendee “Joe”) ;” />
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also in the application where we plan to deploy the view 
mechanism, we expect instance data updates to be more 
common than the schema changes. We plan to use a 
combination of the two extreme approaches mentioned 
above for implementing consistent views. We would 
materialize the view after every TBox/Schema change and 
use the event-based view updates for instance data changes. 
We also have controlled way of adding new data to the 
semantic store in our system. The View Updater is invoked 
with the new update information periodically to ensure 
consistency of the materialized view. This mechanism was 
further simplified in our target application as the system 
does not allow deletion of data and updates to instance data 
are only in the form of addition of new data. The updater, 
therefore, just peeks at the data being added and pulls in the 
inserted triples to relevant views only.  

5.4 Query Rewriting
Let us briefly look at an alternate way of view generation 
that could potentially eliminate the need for view updates
using one of the well-known ways of providing controlled 
access to any data - through filters. Filters for semantic store 
can be either on the input query or on the query response. 
Filtering just the query response alone would not ensure 
complete security of data; the domain of the search should 
also be restricted. Therefore, that leaves filtering or 
rewriting the input query as a feasible way of implementing 
queries on multiple views. Clearly, modifying input queries 
would limit the supported operation to query on views only. 
It would require separate corresponding mechanisms for 
other operations on the RDF model. It does also not ensure 
that the model being queried is a valid sub-ontology of the 
base model to be able to infer additional information within 
the view. On the positive side, such an implementation is 
similar to a view generator running in an instant mode and 
hence would not require a separate updater module. Also, in 
cases where the base model is huge and the only operation 
to be performed on the view model is query, then query 
rewriting is a good scalable approach.  

6 Implementation and Results  
We have implemented a preliminary version of the view 
mechanism described in this paper using the Jena Semantic 
Web Framework. Jena is a Java framework for building
Semantic Web applications. It provides a programmatic 
environment for RDF, RDFS and OWL, and includes a 
framework to include custom rule-based inference engine as 
well. Our implementation was on a Debian GNU/Linux 
Server deployed over Xen Virtual Machine on 2600-MHz 
AMD Opteron (TM) 252 Processor.  
We support a two-phased approach to defining a view. First 
step is machine-guided view definition phase and second is 
the materialization of the view definition. We therefore have 
developed two Java modules using Jena-2.4; one for view 
generation and the other for machine-guided view 
specification. 

The view generator has been interfaced to Jena through the 
Jena Assembler enabling use of the generated view model in 

any application that uses Jena assemblers. Using this, we 
have been able to successfully deploy multiple Joseki 
SPARQL services each serving different views of a base 
model. Since every such Joseki service would be accessible 
with unique service URL, standard web server 
authentication mechanisms can be used to control user 
access to the service. The visibility of selective data is made 
possible through our view mechanism – thus providing an 
end-to-end access control of RDF data.  

We have developed a new Jena Model Assembler to 
generate view models. This enables any Jena application to 
create view models. In particular, to enable a query service 
on the view model, one could define a view model as a 
Joseki dataset. An example Joseki specification for 
providing a SPARQL service over a view model is given in 
Figure 7. A new model called ViewModel is defined with 
three properties viewSpec, origModel and viewName, 
which provide the model representing the view 
specification, the model representing the base model and the 
resource URI of the view instance, respectively. The dataset 
defined above can be used to define a Joseki service in a 
standard way and enables view generation on different types 
of base models – persistent, in-memory, inferred model and 
so on.  

We tested the View Generation with multiple ontologies 
namely employee database, temperature sensing, location 
sensing data and network topology data. We found that the 
proposed view language was very useful to extract a 
selective sub-graph of the RDF graph in all the cases. Our 
preliminary performance measurements showed In our 
current implementation, generating a view over a moderate 
dataset (50,000 triples) took 2 minutes.  This was acceptable 
for our particular application that performs updates every 10 
minutes, but is clearly too slow for many situations.  
Queries on that extracted model were also faster due to 
reduced number of triples that the queries targeted. We are 
exploring ways to improve the speed of view generation –
such as view specification compilation and optimizing the 

_:view1 rdf:type joseki:RDFDataSet ;
rdfs:label "view1" ;
joseki:defaultGraph
[
rdf:type _:ViewModel ;
ja:viewSpec

[ a ja:MemoryModel ;
ja:content [ja:externalContent 
<file:Data/viewSpec1.owl> ] ;
] ;

ja:origModel
[ a ja:MemoryModel ;
ja:content [ja:externalContent 
<file:Data/employee.n3> ] ;
] ;
]

view:viewName "myView";
.

Figure 7:  Joseki Configuration Snippet describing a 
dataset of type ViewModel
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custom query made by the generator. In the rest of this 
section, we describe some of the internal details of our 
current view generation module and the machine guided 
view specification.  

6.1 View Generation
The view generator (viewGen) takes in a view specification 
plus a reference to the data model for the Base Ontology and 
generates a view model. A single OWL file provides a 
single view definition. Additional attributes of the view 
such as whether it is a snapshot view or live view (with the 
periodicity of update) can also be specified at the time of 
view generation.  

Top Level Algorithm
As mentioned in section 4, the view generator has three 
major steps: parsing of the view specification, extracting the 
TBox information and then populating the instance elements 
(Abox) into the view model. The detailed algorithm for 
view generation follows.  

View Generation Using SPARQL query: 
We use a variant of query rewriting in our view generation 
to materialize the view. Instead of rewriting every query that 
is intended towards the view, we convert every view 
specification to a SPARQL CONSTRUCT query on the 
base ontology. The result of this query would be an RDF 
graph representing the materialized view model. The view 
generator ensures that the view model is a valid ontology by 
identifying and inserting the missing triples to make it 
semantically complete. Every view specification is 
converted to an equivalent query that extracts eligible triples 
out of the base model for performing the user-given query 
on it. A part of the query that provides the semantics of 
“SelectInd” keyword is listed in Table 4. The keyword 
VIEW is replaced by resource URI of the selected view 
instance at selection time.

This approach of implementing the semantics of a language 
using a query is unique to our approach and enables us to 
easily introduce new keywords with well-defined semantics. 
In addition, the example query fragment given above is 
generic and hence would remain same for all view 
specifications. Alternately, we could convert every view 
specification to an equivalent SPARQL query that extracts 

the subset of allowed triples from base model into the view 
model (query rewriting).  

In fact, this approach of generating a query for every view 
specification can be extended to work on relational 
databases as well – wherein a view specification is 
converted to a combination of multiple SQL queries on the 
relational database. This enables applications to function 
using a hybrid mode of data representation – relational 
database for its complete data and a RDF store of a subset of 
interesting data to perform reasoning on. The subset to be 
kept in RDF form is determined by the view specification 
language.  

6.2 Machine Guided View Specification: 
It is not always possible for the user to ensure that all the 
necessary concept names and properties are rightly included 
in a view. During the specification of the view definition, 
the tool viewSpec helps the user identify errors in the 
specification without the actual dataset of the base model 
being available. It also guides the user to include related 
concept names and properties in the view to make it a valid 
ontology. This module uses the Jena Rule Engine to 
determine dependencies between the concept names and 
properties of the Base Ontology and directs the user to 
“Select” new classes and properties as needed. It also 
determines the missing concept names and properties in a 
selection that are needed to make an ontological view. We 
define a rule set to infer the dependencies between concepts 
and properties of the base ontology, compute semantic 
completeness of the view model and use that to direct the 
user.  

Semantic Completeness
Let us look a little more closely on the exact information
that is imported from the base ontology for a view 
specification. As defined in an earlier section, an ontology 

Ø Load Model using OWL FileManager
Ø Convert specification to simplified form (uses Jena 

Rule Engine)
Ø Include Select’ed classes and properties into the 

view Model
Ø c å view:Select, include triple t = <y rdf:type, c> , if 

t å baseModel
Ø Compute the membership of all class c å

view:SelectInd using OWL inference
Ø Include above individuals into the View Model
Ø Compute the membership of all class r å

view:RemoveInd using OWL inference
Ø Remove above individuals from the View Model

CONSTRUCT { ?x ?y ?z } WHERE
{{ VIEW view:SelectInd ?c . VIEW view:Select ?z . 
?x rdf:type ?c . ?x rdf:type ?z .  ?x ?y ?z} ,
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c .  ?y rdf:type owl:DataTypeProperty .  
?x ?y ?z}
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y .
?x rdf:type ?c .  ?x ?y ?z .  FILTER isLiteral(?z) }
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y . 
?x rdf:type ?c .  ?x ?y ?z .  FILTER isURI(?z) } 
UNION
{VIEW view:SelectInd ?c . VIEW view:Select ?y . 
?x rdf:type ?c . VIEW view:SelectInd ?c2 . ?z 
rdf:type ?c2 . ?x ?y ?z}
}

Table 4: SPARQL query for SelectInd
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consists of mainly three elements: (a) Concept names and 
property names (b) Descriptions of concepts and properties 
(Concept axioms and Role axioms) (c) Instance data, the 
individuals of the defined concepts (Facts).  

We note that the view model created by the view generator 
would depend upon the type of information we import from 
the base model into the view model. The semantics 
mentioned in Table 3 and that implemented by us so far 
include only items (a) and (c) above. The role and concept 
axioms are not included by default. This limits the 
information seen through the view to the instance data that 
is populated – no additional data can be inferred in the view 
model.

In order to enable additional inference in the view model,
the role axioms and property axioms from the base model 
need to be included in the view model as well – which we 
call semantically complete view model. In our view 
framework, we chose to selectively include the axiom based 
on user inputs. We compute the class and property 
dependencies during the first phase of the view generation 
and guide the user towards specifying a semantically 
complete view. As a special case, the role axioms and 
property axioms of all classes can be included in the view if 
the RDFS classes and properties are explicitly made visible 
in the view specification.  

In our calendaring example, when the property cal:relatedTo
(if defined as a symmetric property) is selected, the property 
axiom, 'relatedTo rdf:type owl:SymmetricProperty' stating 
that relatedTo is a symmetric property would not be 
available in a view model. So, addition of a property 
assertion of the form “JournalX relatedTo EventY” on the 
view model would not infer “EventY relatedTo JournalX” if 
this update to the view model is independent of the base 
model.  However, if the property owl:symmetricProperty is 
selected in the specification, the role axiom is also part of 
the view model and hence additional data can be reasoned 
within the view model itself. On the contrary, if the update 
is propagated to the base model, the new triple will be 
inferred in the base model and made visible back through 
the view; this would be true whether or not the property 
axiom is itself visible via the view.

6.3 Storing view specification in RDF
As the view specification is expressed in RDF/OWL, we 
can store the view definition in the same RDF store as the 
base ontology model. The view generator creates an 
instance of the view Ontology for this new specification and 
stores it in the RDF store.  A section of the View Ontology 
is given in Figure 8 above.

7 Related Work  
Views are an established technology for relational and 
object databases. For example, database views allow 
transformation of the database schema and combining of 
multiple database tables to create a new virtual table. Some 
view implementations on databases also facilitate 

interoperability among the different components using 
mediators and wrappers [21]. However, in a classical 
approach to views on databases, one cannot provide a 
conceptual description of views and hence the semantics of 
the views remain unclear. By contrast, our views over 
semantic information can be described using an ontology 
and hence can be more expressive and meaningful. We can 
use automated reasoning engines to perform analysis and 
can catch some user errors.  

There have been some efforts in providing views over 
semantic web earlier, but the focus of most of the prior 
research has been personalization, integration, or versioning 
of information [3]. Our work differs from them by 
supporting multiple views over an RDF store purely from a 
security standpoint – to provide authorized access to 
different elements of a semantic store. In addition, since our 
view specification language is OWL, our framework 
supports semantic definition of views.  

Raphael Volz et al describes a view language and a system 
(called KAON) [6, 7] that provides semantic classification 
of views by defining views over classes and views over 
properties. They derive query expressions from the 
specification to populate the new class or property. One of 
the key differences of our work with respect theirs is that the 
new classes (views over classes) they define need to have a 
name different than the base classes. While this allows the 
view to easily introduce new terminology, it removes the 
transparency of terminology desired for access control 
mechanism.  

Maganaraki et al explain an approach to a view mechanism
called the RVL lens [8] which is a declarative view 
definition language for virtual RDF description bases and 
schemas that allows data restructuring as well as 
hierarchical view construction. Our view definition 
language based on OWL also allows hierarchical view 
construction and enables specification of additional 
semantics. So, inconsistencies in the specification can be 
identified using OWL reasoner. It does not also involve 
learning new syntax and paradigm for the specification.

Pavan Reddivari et al propose a security mechanism for the 
Semantic Web that specifies restrictions on creation, 
modification and browsing of the RDF stores [19]. The 

<owl:Class rdf:Id=”View”>
 <owl:DataTypeProperty rdf:Id=”#Select”/>
 <owl:DataTypeProperty rdf:Id=”#SelectInd”/>
 <owl:DataTypeProperty rdf:Id=”#Remove”/>
 <owl:DataTypeProperty rdf:Id=”#RemoveInd”/>
 <owl:DataTypeProperty rdf:Id=”#SelectAll”/>
<owl:ObjectProperty rdf:Id=”#generationMode” >

<rdfs:range rdf:Id=”#viewParameters”/>
</owl:ObjectProperty>
<owl:DataTypeProperty rdf:Id=”#viewName” />

</owl:Class>

Figure 8: View Ontology
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access control specifications in their framework are in RDF 
but are at triple level -requiring literally every triplet to be 
marked as either ‘use’ or ‘see’. Our view specification 
language can be used to specify the restrictions in a more 
semantic form – using the vocabulary of the ontology alone. 
Sebastian Dietzold et al use SWRL (Semantic Web Rule 
Language) to specify the rules of visibility in their recent 
effort for access control on a triple store [20]. Similar to our 
approach, they generate a view model (that they call as a 
virtual model) from the base model using the rules specified 
by the user.

Various optimizations have been used in literature to extract 
an optimal subOntology from a base Ontology for a given 
specification [2, 4, 10]. These optimizations ensure that the 
resultant subOntology provides some nice properties such as 
requirement consistency, well-formedness, semantic 
completeness and is represented in the extreme simplified 
form. Their work provides a good theoretical basis for our 
work. We employ a similar mechanism when we guide the 
user towards a semantically complete view specification 
during the interactive view specification phase. 

A fine grain role-based access control system has been used 
by Dave Banks et al in [22] for a personal knowledge base, 
ePerson Snippet Manager. The approach used by them is to 
define a set of roles, assign patterns (Query-By-Example 
patterns) that define what is visible for each role, and then 
assign roles to users. Role based access control is possible 
even with our system. We do allow query-based
specification of the visibility of data like them; in addition, 
we support specification of visibility through ontology.

The work by Edward Hung et al [23] supports a means of 
extracting interesting triples from an RDF store by extends 
the RDQL query language to include GROUPBY and 
aggregate operators. We perform a similar operation during 
view generation using standard query syntax.  They support 
an interesting subset of views by their approach.

8 Conclusion and Next Steps  
In summary, security of data and meta data stored in an 
RDF store is important for real-life applications that use 
semantic web technologies to integrate multiple data sources 
and perform reasoning on them. We describe the design and 
implementation of a view mechanism that aids in enabling 
controlled access to an RDF store. We propose a view 
specification language based on the Web Ontology 
Language (OWL) which enables semantic description of the 
access restrictions, storing of the access controls in the RDF 
store, and construction of complex views using other views. 
The materialized view model is a sub-ontology of the base 
ontology and hence is amenable for further RDF operations. 
When our View Generation framework was tested with 
multiple ontologies, we found that the proposed view 
language was very useful to extract a selective sub-graph of 
the RDF graph. While performance was acceptable for our 
particular application, it may not be sufficient for other 

situations.  We are exploring ways to improve the speed of 
view generation.

Our intention is to host different views of a base model as 
different Joseki services and direct user queries to the right 
service. In that regard, we are exploring use of named 
graphs to represent individual materialized views. We are 
also investigating use of other security techniques for 
enforcing authorized user access.  

We are also working on enhancing our view specification 
language to include mechanisms that help in describing 
views over integrated data sources. As a specific feature of 
the view language, we are exploring view keywords that 
refer to namespaces and hence specify visibility of classes 
and properties from a namespace. We believe this would 
improve the expressbility of the view language. Further, we 
plan to include a template based view specification system 
during the view definition stage to simplify specification of 
similar views. Support for view generation through the Jena 
API is one of the other usability features we would like to 
add in future.  
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TBox Selection
• <view:Select className> or <view:SelectClass className>

– Marks the class to be visible in the View
• <view:Select propertyName> or view:SelectProp 
propertyName>

– Marks the property to be visible in the view 
– Domain and Range Classes should be selected separately

• <view:SelectAll>
– Marks all properties and classes to be visible
– This would be useful when the view restriction is only for 
Abox elements or when used in conjunction with 
view:Remove

• <view:Remove className> or <view:RemoveClass className>
– Removes class from view and all arcs to and from it

• <view:Remove propertyName> or <view:RemoveProp 
propertyName>

– Removes all the arcs with propertyName from view
ABox Selection
• <view:SelectInd className>

– Includes individuals/resources of type className 
– Adds membership arcs from the above to marked classes 
if applicable.
– Adds marked data type property arcs from selected 
individuals 
– Adds marked object type property arcs among selected 
individuals  

• <view:SelectIndAll>
– Includes all individuals of marked classes with the same
semantics as SelectInd per class

• <view:SelectArc propName subjClass objClass>
– All triples <s, p, o>  are added if

• <s, p, o> å Base Ontology 
• s å subjClass and s å a marked class 
• o å objClass and o å a marked class
• p is a marked property

– If subjClass and objClass are not specified, all triples <s, p, 
o> from the base class are added for all selected individuals 
s and p.

• <view:SelectArcAll>
– Includes all arcs for marked Properties to and from 
selected individuals (default behavior)

• <view:RemoveInd className>
– Removes the individuals of type className
– Removes all arcs to or from the above individuals

• <view:RemoveArc propName subjClass objClass>
– Removes all triples <s, p, o> iff

• s å subjClass 
• o å objClass  
• p = propName

• <view:defineClass className queryString>
– A new owl class consisting of the resources from the query 
response is created

• Query should have a single unbound variable
• This class can be further used in Abox selections

Table 3 : Semantics of  our View Vocabulary




