

Keyword(s):

Abstract:

©

PaperDiff: A Script Independent Automatic Method for Finding The Text
Differences Between Two Document Images
Sitaram Ramachandrula, Joshi Gopal Datt, Noushath. S, Pulkit Parikh, Vishal Gupta

HP Laboratories
HPL-2008-130

paperDiff, document segmentation, skew detection, text line extraction, dynamic programming, image
matching, correction

In this paper, we introduce a novel concept called PaperDiff and propose an algorithm to implement it. The
aim of PaperDiff is to compare two printed (paper) documents using their images and determine the
differences in terms of text inserted, deleted and substituted between them. This lets an end-user compare
two documents which are already printed or even if one of which is printed (the other could be in electronic
form such as MS-word *.doc file). The algorithm we have proposed for realizing PaperDiff is based on
word image comparison and is even suitable for symbol strings and for any script/language (including
multiple scripts) in the documents, where even mature optical character recognition (OCR) technology has
had very little success. PaperDiff enables end-users like lawyers, novelists, etc, in comparing new
document versions with older versions of them. Our proposed method is suitable even when the formatting
of content is different between the two input documents, where the structures of the document images are
different (for e.g., differing page widths, page structure etc). An experiment of PaperDiff on single column
text documents yielded 99.2% accuracy while detecting 135 induced differences in 10 pairs of documents.

External Posting Date: October 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2008 [Fulltext]

Submitted to the Eighth IAPR International Workshop on Document Analysis and Systems (DAS 208) September 17-19, 2008

Copyright the Eighth IAPR International Workshop on Document Analysis and Systems (DAS 208)

PaperDiff: A Script Independent Automatic Method for Finding The Text
Differences Between Two Document Images

Sitaram Ramachandrula, Gopal Datt Joshi∗, Noushath.S, Pulkit Parikh and Vishal Gupta†

Hewlett-Packard Labs India
Bangalore, India

{sitaram, noushath.s, pulkit.parikh}@hp.com

Abstract

In this paper, we introduce a novel concept called Pa-
perDiff and propose an algorithm to implement it. The aim
of PaperDiff is to compare two printed (paper) documents
using their images and determine the differences in terms
of text inserted, deleted and substituted between them. This
lets an end-user compare two documents which are already
printed or even if one of which is printed (the other could
be in electronic form such as MS-word *.doc file). The al-
gorithm we have proposed for realizing PaperDiff is based
on word image comparison and is even suitable for sym-
bol strings and for any script/language (including multiple
scripts) in the documents, where even mature optical char-
acter recognition (OCR) technology has had very little suc-
cess. PaperDiff enables end-users like lawyers, novelists,
etc, in comparing new document versions with older ver-
sions of them. Our proposed method is suitable even when
the formatting of content is different between the two input
documents, where the structures of the document images are
different (for e.g., differing page widths, page structure etc).
An experiment of PaperDiff on single column text docu-
ments yielded 99.2% accuracy while detecting 135 induced
differences in 10 pairs of documents.

1 Introduction

There are several occasions when we compare: (a) two
printed versions of a document or (b) a printed docu-
ment and an electronic version of it to identify any differ-
ences/modifications. A good example of this is while com-
paring two versions of a legal agreement. In the legal agree-
ment process, the text content of the agreement is normally
exchanged first (e.g., by email/print, etc) between all the

∗Email: gopal@research.iiit.ac.in
†Email: vishal.gupta@gmail.com

(Formerly with HP Labs India)

parties involved, and finally the agreed content is printed
(sometimes on a legal stamp paper) and all the parties sign
it. In this scenario the parties who are signing the agree-
ment printed by others have to quickly check/verify whether
the text in the printout is exactly the same as in the agreed
version or were there any subsequent changes carried out.
Some of the legal agreements run into many pages, mak-
ing this verification process tedious and error-prone if done
manually.
An obvious automatic method of solving this problem is us-
ing optical character recognition (OCR) technology, where
the images of documents are converted into text (e.g.,
ASCII) and using string matching algorithms exact textual
differences between them could be determined. The limita-
tions of this approach are: a) for many of the scripts in the
world OCR engines are not available, b) OCR engines even
where available are not 100% accurate, c) for documents
with multiple language scripts or symbols, the text conver-
sion module using OCR technology is even more complex
and is still a research problem.
In this paper, we propose an automatic method of finding
differences between two document images without using an
OCR. In our method the fundamental processing block is
comparing/matching two small images. The small images
we are referring to are typically the individual word images
extracted from the input document. In this work we refer
these images as DBUs. By intelligently applying this image
matching iteratively using well known dynamic program-
ming of optimization technique, it is possible to find all the
textual differences between the document images. As our
method is independent of OCR it is suitable for any scripts,
symbol strings, etc.
We are not aware of any earlier work of document com-
parison with an intention to determine the exact text differ-
ences. However, there has been considerable work in dupli-
cate document detection [8] and document image retrieval
areas [9] which use similar algorithms. There the intention
is to absorb small differences in text and yet retrieve doc-
uments or detect the duplicates. In our problem, the main

intention is to finely detect all these text changes. In Spitz
approach [8] where character shape codes (CSC) are used
to represent text, two different words can have same CSC
and may go undetected. In Hull’s method of using num-
ber of character in each word [9] as an intermediate rep-
resentation, two different or consecutive words may be of
same character lengths thus may get misaligned. These al-
gorithms cannot be directly applied for document compar-
ison application as these algorithms have been designed to
absorb these variation/changes and yet achieve their respec-
tive goals. One important difference in our method is we
use a distance metric between two DBU images as a funda-
mental processing block.
Rest of the paper is organized as follows: The problem
that we are addressing and the proposed solution are ex-
plained in section-2 and section-3 respectively. Section-4
gives some experimental results and concluding remarks are
drawn in section-5.

2 Problem Statement

In general the problem being addressed can be stated
as follows: Given a printed document, Document-1 in
any script and another printed or electronic version of it,
Document-2. The need is to find the textual differences be-
tween Document-1 and Document-2 and render those dif-
ferences to the user either through an appropriate user inter-
face or on paper. The method should also work when there
are formatting differences between the two documents (e.g.,
differing page width, differing layout, etc).

3 Proposed solution

The proposed solution relies on the properties common
to many scripts and does not use properties specific to any
particular script. Many of the scripts are written in (i)
straight lines (either vertically/horizontally), (ii) line after
line, (iii) paragraph after paragraph and (iv) in specific or-
der (i.e., left-to-right or right-to-left or top-to-bottom). The
proposed methodology is explained here for scripts written
from left to right. For scripts written in a different order, the
same method could be applied with suitable alterations. For
mixed script documents, with different write orders, for eg.,
English (left to right) mixed with Japanese (top to bottom),
the proposed algorithm does not work automatically.
Our solution to tackle document comparison is depicted in
Figure 1. It relies on existing techniques of document lay-
out analysis [1, 2, 7] and read order determination in the
Stage-I (see figure 1) for extracting sequences of document
basic units (DBUs). The DBUs being referred here are
images of one word (refer Figure 2). The stage-I trans-
forms the two input document images into two ordered

Figure 1. Complete work-flow of PaperDiff

Figure 2. An example paragraph image (top)
and its DBU sequences (bottom)

sequences of DBU image segments A = A1, A2, · · · , Am

and B = B1, B2, · · · , Bn, where Ai and Bj are individual
DBU images as illustrated in Figure 2. More details of this
stage are given in section 3.1 and 3.2.

Once the sequences of DBUs are extracted from both the in-
put documents, the Stage-II compares these two sequences
(strings) using well known dynamic programming tech-
nique. This step determines the DBUs that are inserted,
deleted or substituted between the two documents after
force aligning them. The details of this are given in sec-
tion 3.3. This stage also needs previously mentioned fun-
damental processing block of matching two DBU images.
This matching computes the distance scores (similarity) be-
tween all pairs of DBU images, each taken from two input
sequences. This process is explained in detail in section 3.4.

In subsequent subsections, aforementioned steps are
elaborated.

3.1 Removal of Figures

In our current work, we have assumed that the two input
document images are free of graphics etc., and only tex-
tual content is present. Since the PaperDiff is mainly in-
tended for the applications which predominantly includes
text content, this is a safe assumption to start testing the
concept with only textual content. However, in real world
applications it is not always possible to enforce text only
documents. In the legal agreement example we gave, many
times there is a presence of figures, typically of legal stamp
apart from the text content in the documents. To automati-
cally remove figures or to retain only the textual regions in
the given document there exist several methods in literature
[3, 5]. One could potentially apply these methods to extract
the textual regions in the document.

3.2 DBU Sequence Extraction

A textual document image can be divided into an or-
dered sequence of image segments of DBUs (as in Figure
2) using page segmentation techniques such as X-Y cut [7],
Docstrum [1] etc. There are many different approaches in
literature for this stage [2, 3, 4]. The next stage of PaperDiff
needs the DBU sequences arranged in right order (which de-
pends on the class of scripts). At this stage we assume prior
knowledge of class of scripts on document, i.e. whether the
read order is horizontal (left-to-right/right-to-left) or verti-
cal (top-to-bottom). It may be possible to automatically de-
tect the class of scripts on the document, i.e. horizontal or
vertical. In our implementations, we have also assumed that
the document is of single column format and reading order
is from left to right. However, the proposed solution can be
easily altered for any reading order.

3.3 DBU (Word) Alignment Using Dy-
namic Programming

This sub-section explains the main theory in achieving
the goal of this paper. Let A = {A1, A2, · · · , AN} and
B = {B1, B2, · · · , BN} are the DBU sequences extracted
from two inputs documents. The main problem is to find
differences between the two sequences A and B. We pro-
pose to achieve this by force aligning two DBU sequences
which ideally should pair similar or identical DBU images
occurring in both the input sequences. Then detecting any
differences like DBU insertions and deletions when there is
a misalignment i.e., a blank paired to a DBU. The differ-
ences between sequences of DBU (word) images A and B
may be computed optimally (in time proportional to m×n,
where m is the length of the first sequence and n is the
length of the second sequence) by using Dynamic Program-
ming (DP) for this force alignment. DP here needs a def-
inition of local distance, i.e., distance between any pair of

DBUs and also cost for pairing a DBU with a blank, which
is equivalent to deletion or insertion of DBUs.
The problem here is to find the optimal alignment path (best
path in a trellis) which has a minimal sum of distances be-
tween all the paired DBUs including the costs of possible
skipping the pairing i.e., insertion or deletion costs along
the given path. This can be implemented iteratively by ex-
tending the best partial path at each iterative step given in
the algorithm (Box-1) which in the end minimizes the to-
tal distance between the two sequences and finds the best
alignment.
Let Dij be the cost/distance of the best aligned partial path
between sequences A and B (see figure 3), until DBUs Ai

and Bj from the beginning; and let w(Ai, Bj) be the lo-
cal distance (weight) between two word image units Ai and
Bj . For similar DBU images, weight is smaller and larger
for dissimilar DBUs (refer figure 4). The complete steps
involved in this dynamic programming algorithm are ex-
plained in Box-1.
For each execution step in Eq.2, depending on which of the
three quantities is minimum, we assign a status to the cur-
rent (i,j) pair - Insertion, Deletion or No-change. These sta-
tus labels, stored in a 2-D table Si,j , allow us to backtrack
the best path. This is done using path variable Pi,j , as de-
tailed in the third step of Box-1.
Here w(Ai, Φ) is the cost associated with the insertion of Ai

in A (or deletion of unit Ai in B) and w(Φ, Bj) is the cost
of the insertion of Bj in sequence B (these are fixed values
where Φ indicates absence of DBU). And w(Ai, Bj) is the
local distance between image segments Ai and Bj (this also
works as the cost for substitution of Ai with Bj if both are
different words). Finally, the total dissimilarity score be-
tween two sequences becomes the minimal possible sum of
local distances between all DBUs paired including possible
insertions and deletions from beginning to end. This repre-
sents an optimal alignment of sequences A and B (Figure
3). Consequently, the locations of differences after align-
ment can be identified in the backtracking step whenever a
DBU got paired with a blank i.e., Φ.
In the aligned sequences, a few partially similar DBUs get
paired due to a smaller local distance. In order to iden-
tify these smaller differences between word images, a fine
distance analysis based on a length normalized threshold
is performed on all paired DBUs after alignment (e.g., com-
plete changed to incomplete or horse to horses, etc is treated
as a substitution). Thus, the differences in the two docu-
ments are reported in the form of insertions, deletions and
substitutions

3.4 Local Distance: Image Matching

The essence of local distance w(x, y) we have used be-
tween two DBU images in our implementation of the pro-

Figure 3. An example of optimal alignment of
word sequences

posed dynamic programming algorithm, is illustrated in fig-
ure 4. Let IA and IB be two DBU segments of length m1

and m2. Then the image distance we have used is defined
as

w(IA, IB) =
∑

i(fi(IA)− fi(IB)
max(m1, m2)

(1)

∀i = 1, 2, · · · , max(m1, m2).
Here, fi is the number of black pixels in the ith column
(columns are depicted in figure 4) of a DBU (word) image.
This is the coarse similarity measure we mentioned in Fig.1.
This does not give accurate local distance as many times
DBUs of different lengths are matched. But this is com-
putationally simple and good enough for force alignment.
We have used various distance measures at a higher reso-
lution to identify finer differences in the coarsely aligned
pairs of DBU (word) images, e.g. 2D correlation of DBU
images, dynamic time warping of each DBU pairs using
their fi(I) sequences. As the DBUs are matched by treat-
ing them as images (irrespective of their script information),
this method works for any script, hence we call our method
as script independent.

4 Experimental Evaluation

In this section, we report the preliminary experimenta-
tion results that we obtained using simple X-Y cut page
segmentation algorithm [7].
In our experiment, first the document is de-skewed using
well known skew correction technique [6] and then individ-
ual text line images are segmented using horizontal projec-
tion profile of the image. Next, vertical projection profile
of each of the segmented line image is computed and the

Figure 4. Illustration of local distance metric
used between two word images

DBU image segments are extracted. The alignment of two
sequences of DBU segments is achieved using the proposed
algorithm along with the local distance discussed earlier.

In a database of 10 single column documents each of one
page length, with 12 pt text font size, having 135 induced
differences the algorithm detected 99.2 % of differences
(the only 1 error we got is due to DBU segmentation er-
ror). However, these are very few false alarms due to page
segmentation issues. The documents we tested include text
contents in different scripts like English, Kannada, Tamil,
Telugu, Hindi etc. These languages form an important sub-
set of Asian languages. We also included multi-script doc-
uments containing text from all these languages. Though
the alterations needed to our technique for different classes
of scripts is minimal, we would like to emphasize the fact
that the proposed solution to realize PaperDiff is basically
script independent. As our method is independent of OCR
it is suitable for multi script documents and thus it behaves
like a script independent approach as long as the reading
orders of different scripts in a the document are same. Of
course, the approach may not work when the document con-
tains scripts of mixed reading orders.

While comparing an electronic document with a printed
document, the electronic document is first converted to an
image file (i.e. synthetic image) using MS Word printer
options and then the same method is used. The figure 5
shows an example of two simple documents with induced
differences (deletion/insertion of some words) and their re-
sults. The differences found between two input documents
are shown with black patches at corresponding positions.

We plan to use more advanced page segmentation tech-
niques like Docstrum [1], area Voronoi method [2] etc to
work on complex documents such as the one with multi
columns, graphics, varying font size etc.

Figure 5. An example of two documents (top
and middle) with induced differences and
their results (bottom). Black blocks indicate
the points of difference

5 Conclusions and Discussions

We have proposed a novel concept/problem of compar-
ing two documents to find text differences in them. Also
our proposed algorithm for this is achieving encouraging
results. It is possible to extend this to more complex docu-
ments by applying suitable page segmentation techniques.
It is not possible to use well known image registration tech-
nology for this problem as that is only suitable when the
structure of input images do not differ much. In our solu-
tion, the structure can drastically change by even inserting
a paragraph, changing page width, etc, and this affects all
subsequent pages because of text re-flow.
We have also got a user-friendly interface that provides a
rendering of both images side-by-side, allowing a user to
quickly navigate between the two documents. A PC screen
shot of the final alignment result of our method on two
mixed script documents is shown in figure 6, where the
highlighted words indicate insertions or deletions between
the two documents. In future, we are aiming to handle doc-
uments with more complex layout - graphics, handwritten
annotations, single/double columns etc, using suitable page
segmentation techniques. Also we are working at very fast
alignment algorithms for large documents.

References

[1] Lawrence O’ Gorman, The Document Spectrum for
Page Layout Analysis, IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol.15, No.11,
November 1993, pp.1162-1173.

Figure 6. A PC screen shot of PaperDiff UI.
The colored words indicate the points of dif-
ference

[2] Koichi Kise, Aknori Sato and Motoi Iwata, Segmenta-
tion of Page Images Using the Area Voronoi Diagram,
Computer Vision and Image Understanding, Vol.70,
No.3, June 1998, pp. 370-382.

[3] S. Basu, C. Chaudhuri, M. Kundu, M. Nasipuri and
D. K. Basu, Text Line Extraction From Multi-Skewed
Handwritten Documents, Pattern Recognition, Vol.40,
2007, pp.1825-1839.

[4] Debashish Niyogi, A Knowledge Based Approach to
Deriving Logical Structure From Document Images,
Ph.D thesis, State University of New York at Buffalo,
1994.

[5] Farshad Nourbakhsh, Peeta Basa Pati and A. G. Ra-
makrishnan, Text Localization and Extraction from
Complex Gray Images, ICVGIP 2006, pp.776-785.

[6] C. -H. Chou, S. -Y. Chu, and F. Chang, Estimation of
Skew Angles for Scanned Documents Based on Piece-
wise Covering By Parallelograms,Pattern Recognition,
Vol.40, 2007, pp.443-455.

[7] G. Nagy, S. Seth and M. Vishwanathan, A Prototype
Document Image-Analysis System for Technical Jour-
nals, Computer, Vol.25, 1992, pp. 10-22.

[8] A. Lawrence Spitz, Duplicate Document Detection,
Document Recognition IV. Proc. SPIE 3027, 1997, pp.
8894

[9] J. J. Hull, Document Image Matching and Retrieval
with Multiple Distortion-Invariant Descriptors, in Doc-
ument Analysis Systems, A.L.Spits and A.Dengel, eds.,
World Scientific, Singapore, 1995, pp.379-396.

Box-1
Algorithm:DBU sequence alignment using dynamic programming
Input: Two sequences of DBU (word) images of two documents.
Output: Aligned set of DBUs (words).
Steps:

1. Initialization Step:

Di,0 = Di−1,0 + w(Ai, Φ) 1 ≤ i ≤ m

D0,j = D0,j−1 + w(Φ, Bj) 1 ≤ j ≤ n

D0,0 = 0

Where Dij is the cost/distance of the best aligned partial path between sequences A and B.

2. Recursion Step:

Dij = min


Di−1,j + w(Ai, Φ)
Di−1,j−1 + w(Ai, Bj)
Di,j−1 + w(Φ, Bj)

(2)

Si,j =


I, if Di,j = Di−1,j + w(Ai, Φ)
N, if Di,j = Di−1,j−1 + w(Ai, Bj)
D, if Di,j = Di,j−1 + w(Φ, Bj)

(3)

Where 1 ≤ i ≤ m 1 ≤ j ≤ n

3. Backtracking Step:
Let Pi,j be the path of DBU pairs ending at (i, j).
Start: i = m, j = n, P0,0 = Φ

Pi,j =


Pi−1,j−1 + [Ai, Bj] , if Si,j = N
Pi−1,j + [Ai, Φ] , if Si,j = I
Pi,j−1 + [Φ, Bj] , if Si,j = D

(4)

