

Keyword(s):

Abstract:

©

Predicting Application Resource Requirements in Virtual Environments

Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, Prashant Shenoy

HP Laboratories
HPL-2008-122

virtualization, application resource usage, benchmarking, modeling, automation, performance models,
regression-based approach

Next Generation Data Centers (NGDC) are transforming labor-intensive, hard-coded, siloed systems into
shared, virtualized, automated, and fully managed adaptive infrastructures. Virtualization technologies
promise great opportunities for reducing energy and hardware costs through server consolidation.
Moreover, virtualization can optimize resource sharing among applications hosted in different virtual
machines to better meet their resource needs. However, to safely transition an application running natively
on real hardware to a virtualized environment, one needs to estimate the additional resource requirements
incurred by virtualization overheads. In this work, we design a general approach for estimating the resource
requirements of applications when they are transferred to a virtual environment. Our approach has two key
components: a set of microbenchmarks to profile the different types of virtualization overhead on a given
platform, and a regression-based model that maps the native system usage profile into a virtualized one.
This derived model can be used for estimating resource requirements of any application to be virtualized on
a given platform. Our approach aims to eliminate error-prone manual processes and presents a fully
automated solution. We illustrate the effectiveness of our methodology using Xen virtual machine monitor.
Our evaluation shows that our automated model generation procedure effectively characterizes the different
virtualization overheads of two diverse hardware platforms and that the models have median prediction
error of less than 5% for both the RUBiS and TPC-W benchmarks.

External Posting Date: October 6, 2008 [Fulltext] Approved for External Publication
Internal Posting Date: October 6, 2008 [Fulltext]

To be published in Proceedings of the ACM/IFIP/USENIX 9th International Middleware Conference (Middleware'2008), Leuven,
Belgium, December 1-5, 2008

Copyright ACM/IFIP/USENIX 9th International Middleware Conference (Middleware'2008)

Predicting Application Resource Requirements in
Virtual Environments�

Timothy Wood1, Ludmila Cherkasova2, Kivanc Ozonat2, and Prashant Shenoy1

1 University of Massachusetts, Amherst, {twood,shenoy}@cs.umass.edu
2 HP Labs, Palo Alto, {lucy.cherkasova,kivanc.ozonat}@hp.com

Abstract

Next Generation Data Centers (NGDC) are transforming labor-intensive, hard-coded, siloed sys-
tems into shared, virtualized, automated, and fully managed adaptive infrastructures. Virtualiza-
tion technologies promise great opportunities for reducing energy and hardware costs through
server consolidation. Moreover, virtualization can optimize resource sharing among applications
hosted in different virtual machines to better meet their resource needs. However, to safely tran-
sition an application running natively on real hardware to a virtualized environment, one needs to
estimate the additional resource requirements incurred by virtualization overheads.

In this work, we design a general approach for estimating the resource requirements of ap-
plications when they are transferred to a virtual environment. Our approach has two key compo-
nents: a set of microbenchmarks to profile the different types of virtualization overhead on a given
platform, and a regression-based model that maps the native system usage profile into a virtual-
ized one. This derived model can be used for estimating resource requirements of any application
to be virtualized on a given platform. Our approach aims to eliminate error-prone manual pro-
cesses and presents a fully automated solution. We illustrate the effectiveness of our methodology
using Xen virtual machine monitor. Our evaluation shows that our automated model generation
procedure effectively characterizes the different virtualization overheads of two diverse hardware
platforms and that the models have median prediction error of less than 5% for both the RUBiS
and TPC-W benchmarks.

1 Introduction

Virtualization and automation are key capabilities of Next Generation Data Centers
(NGDC). The primary motivation for enterprises to adopt virtualization technologies is
the promise of creating a more agile and dynamic IT infrastructure. Virtualization sep-
arates the hardware owner from the application owner – allowing system configuration,
monitoring, and management to be homogenized and automated across the data center.
While masking the details of server resources from users, virtualization can optimize
resource sharing among applications hosted in different virtual machines via the ability
to quickly repurpose server capacity on demand, and hence better meet the needs of
applications and respond more effectively to changing business conditions.

In NGDC, where server virtualization provides the ability to slice larger, underuti-
lized physical servers into smaller, virtual ones, fast and accurate performance models
become instrumental for enabling applications to be consolidated, optimally placed and

� This work was largely completed in the summer of 2007 when Tim Wood did an internship at
HPLabs. A shorter version of this paper will appear in Middleware’2008.

provided with the necessary resources. In order to evaluate which workloads can be
consolidated to which servers, some capacity planning and workload analysis must be
done. In the simple naive case, the service provider may estimate the peak resource
requirements of each workload and then evaluate the combined resource requirements
of a group of workload by using the sum of their peak demands. However, such an
approach can lead to significant resource over-provisioning since it does not take into
account the benefits of resource sharing to accommodate the complementary workload
patterns. A more promising and accurate approach for the design of workload placement
services employs a trace-based approach that assesses permutations and combinations
of workload patterns in order to determine the optimal stacking functions [27, 29, 10].
Under this approach, the application resource usage traces are routinely collected over
some time period (typically 3-6 months) to get a representative application resource
usage profile. Then these traces are used for capacity planning and workload place-
ment in workload consolidation exercises (see existing commercial tools [14, 33, 37]).
The general idea behind trace-based methods is that the historic traces that capture past
application demands are representative of the future application behavior.

However, capacity planning when transitioning to a virtual environment poses ad-
ditional challenges due to overheads caused by the virtualization layer. These virtual-
ization overheads depend on the type and implementation specifics of the virtualization
solution [31, 40, 18, 5]. Often, the “amount” of CPU overhead is directly proportional
to the “amount” of performed I/O processing [7, 11]. Current trace-based capacity plan-
ning and management solutions have the capability to scale workload traces by a spec-
ified CPU-multiplier to account for hardware changes between platforms, but this form
of scaling may not be effective when moving to a virtualized platform which can exhibit
very different levels of overhead depending on the rate and type of I/O being performed
by an application.

In this work, we design a general approach for estimating the CPU requirements of
applications when they are transferred to a virtual environment. While the application’s
requirements for network and disk traffic do not change, the amount and type of I/O
might impact the amount of CPU required by the application.

Our approach has the following key components:

– A selected set of microbenchmarks to profile the different types of virtualization
overhead on a given platform. This microbenchmark suite is executed on the native
hardware and in a virtualized environment to create two resource usage profiles: i)
native and ii) virtualized;

– Using a regression-based approach we create a model that maps the native sys-
tem usage profile into the virtualized one. This model helps to predict the resource
requirements of any application to be virtualized on a given platform.

The correct execution phase of the microbenchmark suite is a prerequisite for building
an accurate model between native and virtualized platforms. If some microbenchmarks
have malfunctioned or collected data were corrupted then it can inevitably impact the
model outcome. To evaluate the quality of experimental data and automate the over-
all process, we perform an additional analysis to filter out microbenchmark data with
high error against the obtained regression-based model. Then, a more accurate model

is created by using the reduced data set. We also can rerun identified “failed” or “mal-
functioned” microbenchmarks and repeat the analysis phase. Such an approach aims to
eliminate error-prone manual processes in order to support a fully automated solution.

We illustrate the effectiveness of our methodology using Xen virtual machine mon-
itor [5, 41]. The evaluation shows that our automated model generation procedure ef-
fectively characterizes the different virtualization overheads of two diverse hardware
platforms and that the models have a median prediction error of less than 5% for both
the RUBiS [3] and TPC-W [34] benchmarks.

The rest of this paper is organized as follows. Section 2 provides the problem defi-
nition. Section 3 presents the suite of microbenchmarks used for platform profiling and
explains our objectives for their selection. Section 4 introduces our regression-based
model for predicting application resource requirements in virtual environments. Sec-
tion 5 evaluate the effectiveness of our models for several realistic applications and dif-
ferent systems. Section 6 discuss challenges and directions for future work. Section 7
presents related work. Finally, a summary and conclusions are given in Section 8.

2 Problem Definition

Server consolidation is an approach to reduce the total number of servers in response to
the problem of server sprawl, a situation in which multiple, under-utilized servers take
up more space and consume more resources than can be justified by their workloads.
Virtual Machine Monitors (VMMs) enable diverse applications to run in isolated envi-
ronments on a shared hardware platform, and provide a degree of fault and performance
isolation between the applications.

A typical approach for evaluating which workloads can be efficiently consolidated
together is based on multi-dimensional “binpacking” of resource usage traces. Under
such an approach, each application is characterized by its CPU, I/0 and memory us-
age over time. Then a binpacking algorithm finds a combination of workloads with
resource requirements which do not exceed the available server resources. After the
initial workload placement, specialized workload management tools are used[15, 13] to
dynamically adjust system resources to support the required application performance.

In our work, we are concerned with the initial workload placement phase that re-
quires as an input the application resource usage traces in virtual environment. Resource
requirements (in particular, CPU requirements) can increase due to virtualization over-
heads. It is important to know what an application’s resource needs are going to be prior
to transitioning it to the virtual environment. If these overheads are not accounted for
during initial planning, an application could be deployed to a server with insufficient
resources, resulting in unacceptable application performance.

Xen and VMware ESX server demonstrate the two popular I/O models for VMs.
In ESX (and Xen in its original design [5]), the hypervisor itself contains device driver
code and provides safe, shared access for I/O hardware (see Figure 1 a). Later, the Xen
team proposed a new architecture [9] that allows unmodified device drivers to be hosted
and executed in isolated “driver domains” (see Figure 1 b).

In Xen, the management domain Dom-0 hosts unmodified Linux device drivers and
plays the role of the driver domain. This I/O model results in a more complex CPU

Virtual
Machine

Hypervisor

NIC Disk

Net Driver Disk Driver

(a) VMware I/O Model

Virtual
Machine

Hypervisor

NIC Disk

Domain-0

Net Driver

Disk Driver

(b) Xen I/O Model

Fig. 1. Two popular I/O models for VMs.

usage model. For I/O intensive applications, CPU usage has two components: CPU
consumed by the guest virtual machine (VM) and CPU consumed by Dom-0 which
performs I/O processing on behalf of the guest domain.

In this work, without loss of generality, we demonstrate our approach using Xen
running paravirtualized VMs. We believe that our approach can be applied to other
virtualization platforms such as VMware ESX Server, but focus on Xen in this work
because it presents the additional challenge of modeling both the virtualized application
and the driver domain (Dom-0) separately.

Given resource utilization traces of an application running natively, we aim to es-
timate what its resource requirements would be if the application were transitioned to
a virtual environment on a given hardware platform. For example, let a collection of
application resource usage profiles (over time) in native system be provided as shown
in Figure 2 (top): i) CPU utilization, ii) transferred and received networking packets,
iii) read and written disk blocks.

Time

C
P

U

Time

N
et

Time

D
is

k

Time

V
M

 C
P

U

Time

D
om

0
C

P
U

Native App Traces

Virtual App Traces

Fig. 2. Using native application traces to predict resource needs in virtual environments.

The goal is to estimate the CPU requirements of the following two components as
shown in Figure 2 (bottom):

– virtual machine (VM) where the application is going to reside and execute;
– Dom-0 which performs I/O processing on behalf of the guest virtual machine.

Intuitively, we expect that CPU utilization of VM is highly correlated and proportional
to the native CPU usage profile of the application, while Dom-0 CPU utilization is
mostly determined by a combination of I/O profiles (both network and disk).

We focus on estimating only CPU utilization since other metrics (such as disk and
network request rates) are not directly impacted by the virtualization layer–running
an application in a virtualizated environment will not cause more packets to be sent
over the network or more disk requests to be generated. Instead, the virtualization layer
incurs additional processing overheads when I/O is performed; it is these overheads
which our models seek to capture. 3

Our Approach: We present an automated model generation system which deter-
mines the relationship between the native and virtual platforms being used. The over-
head of the virtual platform is characterized by running a series of microbenchmarks
on both platforms and building a model that relates the resource requirements on one
platform to the other. Although it is created using data from synthetic benchmarks, the
result is a general model which can be applied to traces from any other application in
order to predict what its resource requirements will be on the virtual platform.

3 Platform Profiling

In this section, we describe the collection of microbenchmarks that are selected for
profiling different types of virtualization overhead on a given platform. In order to de-
termine a general relationship between the application resource usage in native and
virtual platforms, we first accumulate the samples of such usage profiles by executing a
specially selected set of microbenchmarks in both native and virtualized environments.

3.1 Microbenchmark Requirements

The microbenchmark selection for our suite is driven by the following objectives:
• Microbenchmarks must be capable of applying a range of workload intensities.

There are a large number of benchmarks available which allow you to stress test a
system to see how it performs under maximum load. However, a typical enterprise
application exhibits variable workloads. A benchmark which simply reports the maxi-
mum number of web requests or disk accesses that a system can perform per second is
not useful for us since it only provides information about the maximum capacity and
corresponding resource usage, not about the utilization under different workloads. In
consolidation scenarios, the considered applications are likely to operate at a light or
medium load. Therefore, we concentrate on creating a suite of microbenchmarks that
can be configured to generate workloads of different intensities, i.e., capable of gener-
ating different networking/disk access rates as well as consume different CPU amounts.

• The same microbenchmark should run nearly-identical in both native and virtual
environments.
This requirement is very important for our approach. The application behavior is rep-
resented via different resource usage traces over time. When a workload performs a
combination of CPU and I/O activities at time interval T on a native system, we corre-
late it with the CPU usage profile (both VM and Dom-0) observed at time interval T

3 Virtualization also incurs a memory overhead. Both Xen and ESX Server require a base allo-
cation for Dom-0 or the Service Console, plus a variable amount per VM.

in the virtualized environment for the same workload in order to build the model (re-
lationship) between the native and virtualized systems. Thus, the requirement for our
microbenchmarks is that the workloads must be nearly-identical in both the native and
virtual environments we test. While our benchmarks allow some non-determinism in
the workload traffic patterns, we carefully design our microbenchmarks to always exe-
cute the same set of activities over the same period of time. We avoid benchmarks with
a strong feedback loop since virtualization overheads may increase latency and distort
the resource usage over time. 4

3.2 Microbenchmark Workloads

The selected microbenchmarks have to create a set of workloads that utilize different
system resources and have a different range of workload intensities.

We use a client-server style setup in our benchmarks. In general, a client machine is-
sues a set of requests to the benchmark server running on the system being profiled. The
clients adjust the rate and type of requests to control the amount of CPU computation
and I/O activities performed on the test system.

At a high level, our microbenchmarks are comprised of three basic workload pat-
terns that either cause the system to perform CPU intensive computation, send and
receive network packets, or read and write to disk.

– Our computation intensive workload calculates Fibonacci series when it receives a
request. The number of terms in the series can be varied to adjust the computation
time.

– The network intensive workload has two modes depending on the type of request.
In transmit mode, each incoming request results in a large file being sent from
the system being tested to the client. In receive mode, the clients upload files to
the benchmark application. The size of transferred files and the rate of requests is
varied to adjust the network utilization rate.

– The disk intensive workload has read and write modes. In both cases, a random
file is either read from or written to a multilevel directory structure. File size and
request rate can be adjusted to control the disk I/O rate.

Each workload is created by adjusting the request type sent to the server from the
client machines. We split each of the basic benchmark types, CPU-, network-, and
disk-intensive, into five different intensities ranging from 10% load to 90% load. The
maximum load that a server can handle is determined by increasing the throughput of
benchmark requests until either the virtual machine or Dom-0 CPU becomes saturated
during testing. It is important that a range of intensities be measured for each bench-
mark type in order to ensure we can build an accurate model for the full working range
of the virtual server.

To create more complex and realistic scenarios, we use a combination workload that
exercises all three of the above components. The combination workload simultaneously
sends requests of all types to the benchmarked server. The relative intensity of each

4 Section 6 provides a more detailed discussion on the issue of “applications with a feedback
loop”.

request type is varied in order to provide more realistic training data which does not
focus exclusively on a single form of I/O.

The microbenchmarks are implemented as a set of PHP scripts running on an Apache
web server at the benchmarked server side. Basing the microbenchmarks on Apache
and PHP has the benefit that they can be easily deployed and executed on a wide range
of hardware platforms within a software environment which data center administrators
are already familiar with. The developed microbenchmark suite allows us to generate a
diverse set of simple and more complex workloads that exercise different system com-
ponents. The full set of PHP scripts, as well as the scripts to create the file structure
used in the disk tests, comprise only a few hundred lines of code.

The client workloads are generated using httperf [23] and Apache JMeter [4]. These
tools provide flexible facilities for generating variable and fixed rate HTTP workloads.
The workloads can then be easily “replayed” in different environments. Both tools can
emulate an arbitrary number of clients accessing files on a webserver; we use JMeter
primarily because it supports uploading files as part of the client interactions.

3.3 Platform Resource Usage Profiles

We generate platform profiles by running a set of microbenchmarks on the systems
being tested. While each microbenchmark is running, we gather resource utilization
traces to define the platform profile used as the training data for the model. Within the
native system, we currently gather information about eleven different resource metrics
related to CPU utilization, network activity, and disk I/O. The full list of metrics is
shown in Table 1. These statistics can all be gathered easily in Linux with the sysstat
monitoring package [32]. We focus on this set of resource measurements since they can
easily be gathered with low overhead. Since these traces must also be gathered from
the live application being transitioned to the virtual environment, it is crucial that a
lightweight monitoring system can be used to gather data.

CPU Network Disk
User Space % Rx packets/sec Read req/sec
Kernel % Tx packets/sec Write req/sec
IO Wait % Rx bytes/sec Read blocks/sec

TX bytes/sec Write blocks/sec
Table 1. Resource Utilization Metrics

A time series of measurements for each of these metrics is gathered as the bench-
mark set runs. Each microbenchmark is executed for 10 min. Table 2 shows a fragment
of a collected resource usage trace of the executed benchmarking set.

The time and workload type of each measurement are stored to simplify data pro-
cessing and allow for the possibility of targeted benchmark reruns.

We monitor three CPU related metrics since different types of activities may have
different virtualization overheads. For example, user space processing such as simple
arithmetic operations performed by an application are unlikely to have much overhead

Time Benchmark User Kernel IO Wait Received Sent Received Read Write CPU CPU
Interval ID CPU % CPU % CPU % Packs/s Packs/s Bytes/s Blocks/s Blocks/s VM % Dom0 %

M1 M2 M3 M4 M5 M6 ... M10 M11

1 1 22 8 0.5 500 335 210000 ... 80 120 24 8
2 1
...

Table 2. A Fragment of a Collected Resource Usage Profile

in current virtualization platforms. In contrast, tasks which occur in kernel space, such
as context switches, memory management, and I/O processing, are likely to have a
higher level of overhead since they can require traps to the hypervisor.

We measure both the packet rates and byte rates of the network interfaces since
different platforms may handle I/O virtualization in different ways. For example, prior
to Xen version 3.0.3, incoming network packets were passed between Dom-0 and the
guest domain by flipping ownership of memory pages, thus the overhead associated
with receiving each packet was independent of its size [11]. Newer versions of Xen
directly copy packets from Dom-0 to the guest domain rather than using page flipping,
thus the overhead is also related to the number of bytes received per second, not just the
number of packets. We differentiate between sending and receiving since these paths
may have different optimizations.

We split disk measurements into four categories based on similar reasoning.
Table 2 shows a fragment of a collected resource usage trace of the executed bench-

marking set. The last two columns in the profile report CPU utilization of the guest
VM and Dom-0 in the virtualized environment, while the previous columns indicate the
measured values for the same time interval and benchmark when executed on the native
system.

4 Model Generation

This section describes how to create models which characterize the relationship be-
tween a set of resource utilization metrics gathered from an application running na-
tively on real hardware and the CPU requirements of the application if it were run on
a virtual platform. Two models are created: one which predicts the CPU requirement
of the virtual machine running the application, and one which predicts the Dom 0 CPU
requirements when it performs I/O processing on behalf of the guest domain.

The model creation employs the following three key components:

– A robust linear regression algorithm that is used to lessen the impact of outlier data
points.

– A stepwise regression approach that is employed to include only the most statisti-
cally significant metrics in the final model.

– A model refinement algorithm that is used for post-processing the training data
to eliminate or rerun erroneous benchmarks and to rebuild a more accurate, final
model.

4.1 Model Creation

To find the relationship between the application resource usage in native and virtualized
systems we use the resource usage profile gathered from a set of microbenchmarks run
in both the virtual and native platforms of interest (see Table 2.)

Using values from the collected profile, we form a set of equations which calculate
the Dom-0 CPU utilization as a linear combination of the different metrics:

U1
dom0= c0 + c1 ∗ M1

1 + c2 ∗ M1
2 + ... + c11 ∗ M1

11

U2
dom0= c0 + c1 ∗ M2

1 + c2 ∗ M2
2 + ... + c11 ∗ M2

11 (1)

....

where

– M j
i is a value of metric Mi collected during the time interval j for a benchmark

executed in the native environment;
– U j

dom0 is a measured CPU utilization for a benchmark executed in virtualized en-
vironment with the corresponding time interval j.

Let cdom0
0 , cdom0

1 , ..., cdom0
11 denote the approximated solution for the equation set (1).

Then, an approximated utilization Û j
dom0 can be calculated as

Û j
dom0 = cdom0

0 +

11∑
i=1

M j
i · cdom0

i (2)

To solve for cdom0
i (0 ≤ i ≤ 11), one can choose a regression method from a variety of

known methods in the literature. A popular method for solving such a set of equations
is Least Squares Regression that minimizes the error:

e =

√∑
j

(Û j
dom0 − U j

dom0)
2
j

The set of coefficients cdom0
0 , cdom0

1 , ..., cdom0
n is the model that describes the relation-

ship between the application resource usage in the native system and application CPU
usage in Dom-0.

We form a set of equations similar to Eq. 1 which characterize the CPU utilization
of the virtual machine by replacing U i

dom0 with U i
vm. The solution cvm

0 , cvm
1 , ..., cvm

n

defines the model that relates the application resource usage in the native system and
application CPU usage in the virtual machine running the application.

To deal with outliers and erroneous benchmark executions in collected data and to
improve the overall model accuracy, we apply a more advanced variant of this regres-
sion technique described in the next sections.

Robust Linear Regression Our training data is gathered by an automated benchmark
system which must run identical workloads on both the native hardware system and the
virtual platform. Slight benchmark timing errors or anomalous background processes
can skew the measurements, leading to incorrect data points. With ordinary least squares

regression, even a few bad outliers can significantly impact the model accuracy, because
it is based on minimizing the overall absolute error across multiple equations in the set.

To decrease the impact of occasional bad measurements, we employ iteratively
reweighted least squares [12]. This technique is from the Robust Regression family
of methods designed to lessen the impact of outliers.

−5 0 5
0

10

20

30

40

Error

W
ei

gh
t

(a) Least Squares

−5 0 5
0

2

4

6

8

10

Error

W
ei

gh
t

(b) Bisquare

Fig. 3. Comparison of regression weighting functions.

Ordinary least squares regression works by creating an initial linear fit for a set of
data points and then refining that fit based on the error between each data point and
the line. Points pull the line towards them based on their weight, which is equal to
the square of the distance from the data point to the line. Thus the weight of a point
increases quadratically with its error as shown in Figure 3(a). This can lead to a few
bad data points having more sway over the regression line than they should. In contrast,
our robust regression technique uses a bisquare weighting function which is initially
quadratic, but then levels off, lessening the weight of data points with high error as
illustrated in Figure 3(b).

Stepwise Regression A direct (naive) linear regression approach would attempt to
set non-zero values to all the model coefficients in order to produce the minimal error
when the model is applied to the training set. However, this may lead to poor prediction
accuracy when the model is later applied to other data sets, as the model may have
become too finely tuned to the training set alone. In statistical terms, the model may
“overfit” the data if it sets values to some coefficients to minimize the random noise
in the training data rather than to correlate with the actual CPU utilization. In order to
create a model which utilizes only the statistically significant metrics, we use stepwise
linear regression to determine which set of input metrics are the best predictors for the
output variable [8].

The algorithm initializes with an “empty” model which includes none of the eleven
possible metrics. At each following iteration, a new metric is considered for inclusion
in the model. The best metric is chosen by adding the metric which results in the low-
est mean squared error when it is included. Before the new metric is included in the
model, it must pass an F-test which determines if including the extra metric results in
a statistically significant improvement in the model’s accuracy. If the F-test fails, then
the algorithm terminates since including any further metrics cannot provide a signifi-
cant benefit. The coefficients, for the selected metrics are calculated using the robust

regression technique described previously. The coefficient for each metric not included
in the model is set to zero. We have found this procedure to be effective at selecting a
subset of the metrics for an accurate model without requiring more advanced statistical
techniques [1]. Stepwise regression is useful to identify the subset of essential metrics
in order to reduce the amount of collected data for application usage profiles. While we
could have limited traces to only gathering the metrics particularly important for Xen,
we choose to initially gather a larger set of metrics and then pare it down using stepwise
regression since different virtualization platforms may require different metrics.

Model Refinement Our use of robust linear regression techniques helps lessen the
impact of occasional bad data points, but it may not be effective if all measurements
within a microbenchmark are corrupt (this can happen due to unexpected background
processes on the server, timing errors at the client, or network issues). The correct ex-
ecution phase of the microbenchmark suite is a prerequisite for building an accurate
model between native and virtualized platforms. If some microbenchmarks have failed
or collected data were corrupted then it can inevitably impact the model outcome.

In order to automate the model generation process and eliminate the need for manual
analysis of these bad data points, we must automatically detect erroneous microbench-
marks and either rerun them or remove their data points from the training set. At run-
time, it can be very difficult to determine whether a benchmark is executed correctly,
since the resource utilization cannot be known ahead of time, particularly on the virtual
platform which may have unpredictable overheads. Instead, we wait until all bench-
marks have been run and an initial model has been created to post process the training
set and determine if some benchmarks have anomalous behavior.

First, we compute the mean squared error (MSE) for all data points (i.e., all mi-
crobenchmarks): let us call it emean, as well as the standard deviation of the squared
errors: let us call it estd. Then the model created from the full benchmark set is applied
back to each microbenchmark i individually to calculate the mean squared error for
that benchmark: let us call it ei. Microbenchmarks with high error values can then be
easily separated so that they can either be rerun or removed from the training set. If for
microbenchmark i the following conditions is valid:

ei > emean + 2 × estd

then microbenchmark i is considered to have abnormally high error, and it is eliminated
from the set. Each microbenchmark contains approximately 20 data points. Assuming
the errors of the microbenchmarks are independent and identically distributed, it follows
from the central limit theorem that the probability of the mean of the squared errors from
a microbenchmark of 20 data points to fall over two standard deviations (e std) away
from the benchmark mean (emean) is approximately only 10−18. We note, however,
that this result is only approximate since anomalous data points affect the mean (e mean)
and standard deviation computations (estd).

4.2 Model Application

Once a model has been created, it can then be applied to resource utilization traces of
other applications in order to predict what their CPU requirements would be if trans-

ferred to the virtual environment. Resource usage traces of the application are obtained
by monitoring the application in its native environment over time. The traces must con-
tain the same resource metrics as presented in Table 2, except that CPU utilizations of
VM and Dom-0 are unknown and need to be predicted. Applying the model coefficients
cdom0
0 , cdom0

1 , ..., cdom0
11 and cvm

0 , cvm
1 , ..., cvm

n to the application usage traces in native
environment (using Equation 1), we obtain two new CPU usage traces that estimate the
application CPU requirements in Dom-0 and the virtual machine.

4.3 Model Scaling

Within similar hardware platforms, we would like to reuse models so that we do not
need to repeatedly run the microbenchmark set on every pair of systems in a data center.
For native systems within the same processor family, a single model can be created,
and then traces from other systems can be “scaled to match” the model’s expected input
units.

The microbenchmark suite is run on one of the native systems and on the destination
virtual system to create an initial model. To apply this model to an application running
on a different native system, the CPU coefficients in the model must be scaled based
on the difference between the CPU speeds of each system. For example, if the initial
model was created on a native system running at 2.6GHz, it can be scaled to be used
for a 1GHz native system by multiplying each of the CPU coefficients included in the
model by 1.0

2.6 = 0.625. This is equivalent to multiplying the CPU measurements from
the 1.0Ghz trace by the same ratio, effectively scaling them down to what the CPU
utilization would have been if the system was running at 2.6GHz. Only the CPU based
coefficients need to be scaled since the I/O based metrics should be identical regardless
of the CPU speed.

This technique assumes a linear relationship between CPU utilization of processors
at different speeds. 5 While such a scaling technique provides a conservative estimate
of required CPU resources for an application that is executed at processors with higher
speeds within the same family and with similar cache layouts, it is not the case for
processors from different architectures.

5 Experimental Evaluation

In this section, we first try to justify a set of our choices presented in earlier Sections 3
and 4: why these metrics? why these microbenchmarks? why this model creation pro-
cess? After that, we evaluate the effectiveness of our models under several realistic web
application workloads on two different hardware platforms.

5 Clearly, we do not assume a linear relationship in application performance on the processors at
different speeds. This technique allows a pessimistic, conservative estimate of the application
CPU demands on the processors with higher speeds. In reality, the application CPU demands
might be lower (due to memory accesses and I/O operations).

5.1 Implementation Details

Our implementation and evaluation has centered on the Xen virtualization platform. In
our evaluation, both the native systems and virtual machines run the Red Hat Enterprise
Linux 5 operating system with Linux kernel 2.6.18-8. We use Xen version 3.0.3-rc5.

Monitoring resource utilization in the native environment is done with the sysstat
package [32] commonly used in Linux environments. The virtual CPU utilizations are
measured using xentop and xenmon, standard resource monitoring tools included with
the xen distribution. Statistics are gathered for 30 second monitoring windows in both
environments. We have experimented with both finer grain and longer intervals and
found similar results. The system is configured in such a way that Dom-0 resides on a
separate CPU.

We evaluate our approach using two realistic web applications:

– RUBiS [3] is an auction site prototype modeled after eBay.com. A client workload
generator emulates the behavior of users browsing and bidding on items. We use
the Apache/PHP implementation of RUBiS version 1.4.3 with a MySQL database.

– TPC-W [34] represents an e-commerce website (modeled after Amazon.com) im-
plemented with Java servlets running on Tomcat with a MySQL backend database.

Both applications have an application and a database tier. We profile and predict the re-
source requirements of the application server tier; the databases are hosted on a separate
server which is sufficiently provisioned so that it will not become a bottleneck.

We have tested our approach on two different hardware platforms with the following
details:

– HP ProLiant DL385, 2 processors: AMD Opteron model 252 2.6GHz with 1MB L2
single-core, 64-bit; 2 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

– HP ProLiant DL580 G2, 4 processors: Intel Xeon 1.6 GHz with 1MB L2 processor,
32-bit; 3 x 2GB memory; 2 x 1 Gbit/s NICs, 72 GB 15K U320 Disk.

5.2 Importance of Modeling I/O

Our system generates models based on up to eleven different resource utilization met-
rics, here we evaluate whether such complexity is warranted, or if a simple model based
solely on scaling CPU requirements is a viable approach. In the simplified approach, a
model is created using the same model generation techniques as described in Section 4,
except that instead of using all eleven metrics, only a single Total CPU metric is used
to predict the virtual machine CPU needs. We produce a model using each technique to
predict the CPU requirements of the guest domain, since, intuitively, it is more likely
that the simplified model will perform better when predicting VM CPU needs than
when predicting Dom-0 since the latter is scheduled almost exclusively for handling
I/O.

Since our models are created with stepwise regression, not all of the eleven possi-
ble metrics are included in the final model. The Dom-0 model uses five metrics: Ker-
nel CPU, I/O Wait, Rx Packets/sec, Tx Packets/sec, and Disk Write Req/sec. Dom-0’s
CPU utilization is dominated by I/O costs, so a large number of I/O related metrics

are important for an accurate model. In contrast the virtual machine model uses only
three metrics: User Space CPU, Kernel CPU, and RX Packets. We compare this multi-
resource VM model to the CPU-Scaling based model which uses only the Total CPU
metric (equal to the sum of User Space and Kernel CPU).

We evaluate the performance of these two models by training them on our mi-
crobenchmark set and then comparing the error when the models are applied back to
the training data. Figure 4 shows the error CDF for each model, showing the probability
that our predictions were within a certain degree of accuracy for the virtual machine.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

CPU Scaling Only
Multi−resource

Fig. 4. Using CPU as the only prediction metric leads to high error.

Our multiple resource model performs significantly better than the CPU scaling ap-
proach; the 90th error percentile using our approach is 5% while the scaling approach
is 65%. Without information about I/O activities, the simple model cannot effectively
distinguish between the different types of benchmarks, each of which has different lev-
els of overhead. Even though the VM model only includes one I/O metric, splitting
CPU into User and Kernel time acts as a surrogate for detecting high levels of I/O. Our
results suggest that I/O activity can cause significant changes in the CPU requirements
of both Dom-0 and the guest domain: Dom-0 since it must process the I/O requests,
and the guest because of the increased number of hypercalls required for I/O intensive
applications.

100 150 200 250 300
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(a) CPU Intensive

200 300 400
0

50

100

Request Rate

C
P

U
 U

til
iz

at
io

n

Native
Dom−0
VM

(b) Network Intensive

Fig. 5. I/O intensive applications exhibit higher virtualization overheads.

Figure 5 presents profiles of some of our CPU and network intensive microbench-
marks. The CPU intensive application exhibits only a small virtualization overhead oc-

curring for the VM CPU requirements and Dom-0 also has relatively low CPU needs.
In contrast, the network intensive application has a significantly higher requirement in
Dom-0 as well as a much larger increase in VM CPU requirements relative to the na-
tive CPU utilization. This further demonstrates why creating a model using only the
native CPU metric is incapable of capturing the differences in overhead caused by I/O
requests.

5.3 Benchmark Coverage

In this experiment we examine how the three different benchmark types each add useful
information and examine the training set error of our model. Table 3 illustrates how
using only a single type of microbenchmark to build a model can produce very high
error rates when applied to applications with different workload characteristics.

Test Set Median Error %
CPU Net Disk

CPU 0.36 670 13
Training Net 11 3.4 16

Set Disk 7.1 1798 1.2
All 0.66 1.1 2.1

Table 3. Using a subset of benchmarks leads to poor accuracy model when applied to data sets
with different type of I/O.

For example, training the model solely with the CPU intensive microbenchmarks
provides accuracy within 1% when applied back to the same kind of CPU intensive
workloads, but the median error rises to 670% when applied to the network intensive
data. This happens because the CPU benchmark includes only very low network rates.
When a model based solely on that data tries to predict the CPU needs of the network
intensive applications, it must extrapolate well beyond the range of data it was trained
with, resulting in wildly inaccurate numbers. The bottom row in the table corresponds
to using all of the benchmark data to create a model. This provides a high degree of
accuracy in all cases – while a specialized model may provide higher accuracy on data
sets very similar to it, we seek to build a general model which will be effective on
workloads with a range of characteristics.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

Fig. 6. CDF error of the training set on the Intel 4 -CPU machine.

Figure 6 shows the error CDF when all of our benchmark data is used to create a
model and then the model is validated by applying back to the training set. The error
is quite low, with 90% of the predictions being within 3% for Dom-0 and 7% for the
virtual machine. This confirms our hypothesis that a single linear model can effectively
model the full range of training data.

5.4 Benchmark Error Detection

Our profiling system runs a series of microbenchmarks with identical workloads on
both the native and virtual platforms. This experiment tests our anomalous benchmark
detection algorithm. To be effective, it should be able to detect which benchmarks did
not run correctly so that they can be either rerun or eliminated from the training set. If
the detection scheme is too rigorous, it may eliminate too many data points, reducing
the effectiveness of the model.

We first gather a set of training data where 10 percent of the benchmarks are cor-
rupted with additional background processes. Figure 7 shows the change in model ac-
curacy after the error detection algorithm eliminates the malfunctioning microbench-
marks. We then gather a second training set with no failed benchmarks and run the
error detection algorithm on this clean data set. We find that the model performance
before and after the error detection algorithm is identical since very few data points are
eliminated.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

All Benchmarks
Reduced Set

Fig. 7. Automatic benchmark elimination can increase model accuracy.

While it is possible for these errors to be manually detected and corrected, our goal
is to automate the model creation procedure as much as possible. The error detection
algorithm reduces the human interaction required to train and generate high quality
models.

5.5 Model Accuracy

To test the accuracy of a model, we use it to predict the CPU requirements of a test
application based on a trace of the application running natively. We then run the test
application within the virtual environment to determine the prediction error. In this
section we evaluate our models on both the RUBiS and TPC-W web applications. These
experiments were run on the Intel system described previously.

We create a variable rate workload for RUBiS by incrementally spawning clients
over a thirty minute period. The system is loaded by between 150 and 700 simultaneous

0 20 40 60 80 100 120
0

20

40

60

80

100

Time (30 second intervals)

%
 C

P
U

 U
til

iz
at

io
n

Predicted
Actual

(a) Dom-0

0 20 40 60 80 100 120
0

50

100

150

200

Time (30 second intervals)

%
 C

P
U

 U
til

iz
at

io
n

Predicted
Actual

(b) VM

Fig. 8. Prediction accuracy of the RUBiS web application.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) RUBiS

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(b) TPC-W

Fig. 9. Error rates on the Intel platform.

clients. This workload is repeated twice to evaluate the amount of random variation
between experiments. We record measurements and make predictions for 30 second
intervals. Figure 8 compares the actual CPU utilization of the RUBiS application to
the amount predicted by the model. Note that the virtual machine running RUBiS is
allocated two virtual CPUs, so the percent utilization is out of 200.

Figure 9(a) shows a CDF of the models’ prediction error. We find that 90% of our
predictions for Dom-0 are within 4% accuracy, and within 11% for predicting the virtual
machine’s CPU utilization. Some of this error is due to model inaccuracy, but it can
also be due to irregularities in the data used as input to the model. For example, there
is a spike in the predicted CPU requirements of both Dom-0 and the VM around time
interval 10. This spike was caused by a background process running for a short period
when RUBiS was run in the native environment. Since the predicted values are based
on these native measurements, they mistakenly predict the virtual CPU requirements to
spike in the same way.

We have also validated our model on the TPC-W application. We create a changing
workload by adjusting the number of emulated clients from 250 to 1100 in a random
(but repeatable) pattern. Figure 9(b) presents the error distribution for TPC-W. The error
for this application is almost identical to RUBiS, with 90th percentile error rates of 5%
and 10% for Dom-0 and the virtual machine respectively.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a)

Dom−0
VM

 0

 5

 10

 15

 20

AMD>Intel Intel>AMD

90
th

 E
rr

or
 P

er
ce

nt
ile

(b)

Fig. 10. (a) Using a single model for different architectures is ineffective, (b) but cross platform
models are feasible.

0 10 20 30 40 50 60 70
0

50

100

150

200

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

Native
Virtual

(a) Intel

0 10 20 30 40 50
0

20

40

60

80

100

Time (30 second intervals)

C
P

U
 U

til
iz

at
io

n

Native
Virtual

(b) AMD

Fig. 11. Comparison of CPU overhead on different hardware platforms.

5.6 Cross Platform Modeling

In many server consolidation scenarios, the transition from a native to a virtual platform
is accompanied by a change in the underlying hardware. However, using a single model
for multiple hardware platforms may be ineffective if they have different overhead costs.
Attempting to apply the model for the Intel system to the AMD system results in high
error rates as shown in Figure 10(a). To investigate why these two platforms exhibit
such a large difference, we compare the CPU required by the RUBiS application in
the native and virtual environments on both platforms in Figure 11. Not including the
Dom-0 requirements, the Intel system requires approximately 1.7 times as much CPU
in the virtual case as it does natively. On the AMD system, the increase is only about
1.4 times. The different scaling between the native and virtual traces in each platform
suggest that a single model cannot be used for both platforms.

We test our modeling approach’s ability to determine the relationship between na-
tive and virtual systems running on different hardware platforms by executing an iden-
tical set of microbenchmarks on the Intel and AMD platforms in both the native and
virtual environments. Using this data, we create two models, one which relates a native
usage profile of the Intel platform to a virtual usage profile of the AMD system and one
which relates the native AMD system to the virtualized Intel system.

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(a) RUBiS

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Prediction Error

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Domain0
VM

(b) tpc-W

Fig. 12. Model accuracy on the AMD platform with scaled CPU speeds.

Figure 10(b) presents the 90th error percentiles when these cross platform models
are used to predict the CPU needs of both the TPC-W and RUBiS workloads. The cross
platform models are very effective at predicting Dom-0 CPU needs, however the VM
prediction error is higher, particularly for the AMD to Intel model. We propose two
factors which may cause this jump in error. First, the AMD system has a significantly
faster CPU than the Intel system, so translating the CPU component from one platform
to the other requires a significant scale up factor. As a result, small variations in the
CPU needs of the AMD system can result in larger fluctuations in the predicted CPU
for the Intel system, leading to higher absolute error values. Secondly, cross platform
models for predicting virtual machine CPU are typically more difficult than Dom-0
models. This is because Dom-0 models are predominantly based on I/O metrics such as
packet reception rates and disk operations, which have similar costs on both platforms.
In contrast, the VM model is primarily based on the CPU related metrics which may not
have a linear relationship between the two platforms due to differences in the processor
and cache architectures. However, it should be noted that in many cases, the AMD to
Intel model performs better than the 90 th error percentile indicates; the median error is
only 5%, and all of the points with high error occur at the peaks of the RUBiS workload
where the virtual CPU consumption exceeds 160%.

5.7 Model Scaling within CPU Families

Within similar hardware platforms, we would like to reuse models so that we do not
need to repeatedly run the microbenchmark set between the different pairs of systems
within the same processor family. In this experiment, we take advantage of the CPU
frequency scaling capabilities of our AMD system to examine i) whether we can create
an accurate model between the systems with different processor frequencies and ii) how
sensitive the models are to changes in CPU speed.

By adjusting the Linux boot options and the CPU power management states, we
setup our native AMD platform to run at 1.8Ghz and restrict it to using only a single
CPU. For the virtual platform, we utilize both CPUs (one assigned to the virtual ma-
chine and one for Dom-0) and set the clockrate at the full 2.6GHz. The microbenchmark

Dom−0
VM

 0

 2

 4

 6

 8

 10

 12

 14

 16

1.8 2.0 2.2 2.4 2.6

90
th

 E
rr

or
 P

er
ce

nt
ile

CPU Speed (Model@2.6GHz)

Fig. 13. A model can be scaled to apply to similar hardware platforms.

workloads are configured so that CPU utilization on the native system will not become
saturated despite its lowered clock rate. To evaluate model accuracy, we use the RUBiS
and TPC-W workloads described previously. Figure 12 presents the prediction error
rates for each application; we find that the model is even more accurate than our initial
tests on the Intel system, with 90th error percentiles of 3% and 6% for Dom-0 and the
virtual machine respectively.

We next evaluate whether new models are required for each possible pair of CPU
frequencies or if a single model can be scaled to work across a range of processor
speeds.

An initial model is created relating the 2.6GHz native and virtual platforms (let us
call it 2.6 native-to-2.6 virtual model) Then, given a collection of RUBiS usage traces
in native AMD systems with different CPU speed ranging from 1.8 to 2.4GHz we aim
to predict the RUBiS CPU requirements on the virtualized AMD system with a 2.6GHz
processor.

First, the RUBiS CPU traces are scaled to match the model’s 2.6GHz original input,
i.e., for the trace collected at 1.8GHz we use a scaling factor of 1.8

2.6 = 0.69 to project
its CPU usage onto the 2.6GHz processor. Then the 2.6 native-to-2.6 virtual model is
applied to predict RUBiS CPU requirements on the virtualized 2.6GHz AMD processor.

Figure 13 illustrates the 90th error percentile for each scenario. The error rate for
the virtual machine starts at 7% for the 2.6 native-to-2.6 virtual model and increases to
about 11% when applied to a trace running at 1.8GHz. The accuracy of predictions for
Dom-0 is less influenced by the scaling factor since the CPU metrics play only a minor
role in the model’s parameters.

Our modeling approach is insensitive to differences in the relative CPU speeds of the
native and virtual platforms. Within similar processor families, a model can be scaled
so that it can be applied to a range of CPU speeds while still maintaining reasonable
accuracy, this reduces the number of models which must be created when transitioning
between multiple hardware platforms.

6 Discussion

In this section, we discuss the impact of the application behavior on the accuracy of the
prediction results and difficulties in understanding application performance, as well as
challenges introduced by dynamic frequency scaling.

• Impact of application behavior on resource use.
The application behavior in the native system is represented via different resource us-
age traces over time. We use them to project the application CPU requirements in a
virtual system. The intuition is that for different portions of these native traces there
is a different scaling factor (resulting in CPU overhead) defined by system activities
and operations performed by the application. By applying regression models to native
platform application traces, we produce estimated CPU usage traces for for the same
workload in the VM and Dom-0.

However, the timing for the application’s operations in the native and virtualized
environments may be slightly different if the application has a strong “feedback loop”
behavior.

a

b

a

R
eq

ue
st

s

b

Time

No Feedback

With Feedback

Original

Fig. 14. Resource requirements in different environments is influenced by the amount of feedback
in an application’s workload.

Figure14 illustrates the difference between an application with and without feed-
back. In the original application trace, a series of requests arrive, with their processing
time indicated by the width of the rectangles. The value of a represents the time from
the start of one request until the start of the next, while b is the time from the end of
one request to the start of the next. When the same application is run on a different
platform, the time to process a request may increase due to virtualization overhead. The
two figures on the right represent how the trace would appear if the application does or
does not exhibit feedback. Without a feedback loop, the time between the start of each
request will remain a, even if the request processing time increases. This would occur
if the requests are being submitted by a client on another machine sending at a regular
rate. For an application with feedback, requests are processed then a constant delay,
b, occurs before the next request is processed. The figure illustrates that when request
processing times increase, applications with feedback may process fewer requests in
a given time interval (due to a slowdown), i.e., its CPU overhead is “spread” across a
longer time period, resulting in lower average CPU utilization.

It is impossible to tell if an application’s workload has a feedback loop just by look-
ing at resource utilization traces of the original application. So the estimated resource
utilization produced by our model for the application with a “feedback loop” might be
higher than in reality since such an application might consume CPU resources in vir-
tualized environment “slower” than in native one due to the increased latency on the
application’s critical path.

• Understanding Application Performance.
While our models can accurately predict the changes in resource requirements for a
virtualized application, they cannot directly model how application performance (ie.
response time) will change. Unfortunately, this is a difficult challenge, akin to making
performance predictions under different hardware platforms. Our approach tells sys-
tem administrators the minimum amount of resources which must be allocated to a
VM in order to prevent significantly reduced performance due to resource starvation.
The application may still see some performance penalty due to the longer code path
as requests go through the virtualization layer. To accurately predict this performance
change would necessitate carefully tailored, application specific models.

Our approach helps in estimating the resource requirements that are necessary fo r
the initial application placement in a virtualized environment. After the ini tial work-
load placement, specialized workload management tools may be used [15, 13] to dy-
namically adjust system resources to support the required application performance.

• Challenges caused by dynamic frequency scaling.
The latest server processors from Intel and AMD have power state hardware registers
that enable control of performance and power consumption of the processor. These ca-
pabilities are implemented through Intel’s Enhanced SpeedStep Technology and demand-
based switching and through AMD’s PowerNow with Optimized Power Management
(OPM). With the appropriate ROM firmware or operating system interface, program-
mers can use the exposed hardware registers to dynamically modify the frequency and
voltage of each processor based on the processor workload. Thus the processor oper-
ates in a high power state (at a maximum processor frequency) only when needed, thus
reducing the overall system power usage. However, current OS-based monitoring tools
report CPU utilization without taking into account the processor frequency information.
Therefore, collected CPU utilization measurements might incorrectly represent appli-
cation resource requirements when they are obtained from the system with a dynamic
frequency scaling policy. In order to get correct (actual) usage traces, one needs to be
aware of the power saving policy employed by the system and scale/normalize the CPU
utilization traces by dynamically changing processor frequency.

7 Related Work

Virtualization Overheads: Virtualization is gaining popularity in enterprise envi-
ronments as a software-based solution for building shared hardware infrastructures.
VMware and IBM have released their benchmarks (VMmark and Grand Slam) for
quantifying the performance of virtualized environments. These benchmarks aim to
provide some basis for comparison of different hardware and virtualization platforms

in server consolidation exercises. However, they both are lacking the ability to charac-
terize virtualization overhead compared to a native platform.

Application performance and resource consumption in virtualized environments can
be quite different from its performance and usage profile on native hardware because
of additional virtualization overheads (typically caused by I/O processing) and interac-
tions with the underlying virtual machine monitor (VMM). Several earlier papers which
describe various VMM implementations include performance results that measure the
impact of virtualization overhead on microbenchmark or macrobenchmark performance
(e.g., [5, 20, 38, 31, 2, 40, 18, 31, 7, 25]). The reported virtualization overhead greatly
depends on the hardware platform that is used in such experiments. For example, pre-
viously published papers [5, 9] evaluating Xen’s performance have used networking
benchmarks in systems with limited network bandwidth and high CPU capacity. How-
ever, there are cases where throughput degrades because CPU processing is the bottle-
neck instead of the network [22, 11]. In many virtualization platforms, the “amount” of
CPU overhead is directly proportional to the “amount” of performed I/O processing [7,
11]. For example, it has been shown that networking packet rates are highly correlated
with the measured CPU overhead [11]. Recent work attempts to reduce the performance
penalty of network I/O by bypassing parts of the virtualization layer [19, 39] or opti-
mizing it [26]. However, since these optimizations typically target only one source of
virtualization overhead (network I/O), our modeling system can still be employed to
provide useful information about the level of overhead incurred by a wider range of
activities.

This extensive body of previous work has motivated us to select a set of microbench-
marks that “probe” system resource usage at different I/O traffic rates (both networking
and disk) and then employ these usage profiles for predicting variable CPU overhead of
virtualized environments.

Trace-based Approaches: In our work, we chose to represent application behav-
ior via resource usage traces. Many research groups have used a similar approach to
characterize application behavior and applied trace-based methods to support what-if
analysis in the assignment of workloads to consolidated servers [35, 27, 29, 10]. There
are a few commercial tools [14, 33, 37, 16] that employ trace-based methods to support
server consolidation exercises, load balancing, ongoing capacity planning, and simulat-
ing placement of application workloads to help IT administrators improve server utiliza-
tion. Since many virtualization platforms introduce additional virtualization overhead,
the trace-based capacity planning and management solutions provide a capability to
scale the resource usage traces of original workloads by a specified CPU-multiplier.
For some applications it might be a reasonable approach, however, in general, addi-
tional CPU overhead highly depends on system activities and operations performed by
the application. Simplistic trace-scaling may results in significant modeling error and
resource over-provisioning.

System Profiling: Finally, there is another body of work [21, 30, 6, 28] that is
closely related to our thinking and the approach presented in the paper. This body of
works goes back to 1995, when L. McVoy and C. Staelin have introduced the lmbench
– a suite of operating system microbenchmarks that provides a set of portable programs
for use in cross-platform comparisons. Each microbenchmark was purposely created to

capture some unique performance problem present in one or more important applica-
tions. Although such microbenchmarks can be useful in understanding the end-to-end
behavior of a system, the results of these microbenchmarks provide little information
to indicate how well a particular application will perform on a particular system. In [6,
28], the authors argue for an application-specific approach to benchmarking. The au-
thors suggest a vector-based approach for characterizing an underlying system by a
set of microbenchmarks (e.g., lmbench) that describe the behavior of the fundamental
primitives of the system. The results of these microbenchmarks constitute the system
vector. Then they suggest to construct an application vector that quantifies the way that
the application makes use of the various primitives supported by the system. The prod-
uct of these two vectors yields a relevant performance metric. There is a similar logic
in our design: we use a set of microbenchmarks to characterize underlying system and
virtualization solution. Then we apply the derived model (analogy to a system vector)
to the application usage traces (analogy to the application vector) and use it for pre-
dicting the resource requirements of applications when they are transferred to a virtual
environment.

8 Conclusions

Our work is motivated by the need for improved estimates of application resource re-
quirements when they are consolidated to virtual environments. To this end, we de-
signed an automated approach for profiling different types of virtualization overhead
on a given platform and a regression-based model that maps the native system profile
into a virtualized one. This model can then be used to accurately assess the required
resources and make workload placement decisions in virtualized environments.

Although such a model is created using data from synthetic benchmarks, the result
is a general model which can be applied to traces from any other application in order
to predict what its resource requirements will be on the virtual platform. We profile
each platform using open source tools that can be easily deployed and executed on a
wide range of hardware platforms within traditional or next generation data centers.
We envision that each system in a NGDC will be augmented with a model that reflects
the relationship between the native and virtualized system usage profiles. To enhance
the usage of such a model we provide a model scaling approach for systems within the
same processor family.

Our evaluation has shown that our automated model generation procedure effec-
tively characterizes the different virtualization overheads of two diverse hardware plat-
forms and that the models have median prediction error of less than 5% for both RU-
BiS and TPC-W. In future work we plan to experiment with more diverse application
types and different virtualization platforms. We are also interested in how these mod-
eling techniques can be used to predict the aggregate resource requirements of virtual
machines collocated on a single host and to determine when an application’s resource
requirements are likely to exceed the virtual system’s capacity.

References

1. C. Agostinelli. Robust Stepwise Regression. In Journal of Applied Statistics, Volume 29,
Number 6, 2002.

2. I. Ahmad, J. Anderson, A. Holler, R. Kambo, and V. Makhija. An Analysis of Disk Perfor-
mance in VMware ESX Server Virtual Machines. Proc. of the Sixth Workshop on Workload
Characterization (WWC’03), October 2003.

3. C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. Gil, J. Marguerite, K. Rajamani,
and W. Zwaenepoel. Specification and implementation of dynamic Web site benchmarks.
Proc. of WWC-5: IEEE 5th Annual Workshop on Workload Characterization, October 2002.

4. Apache JMeter. http://jakarta.apache.org/jmeter/.
5. P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and

A. Warfield. Xen and the art of virtualization. In Proceedings of the 19th ACM SOSP, 2003.
6. A. Brown, M. Seltzer. Operating System Benchmarking in the Wake of Lmbench Case Study

of the Performance of NetBSD on the Intel Architecture. In Proc. of the 1997 Sigmetrics
Conference, Seattle, WA, June 1997.

7. L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O processing in the Xen
virtual machine monitor. Proc. of USENIX Annual Technical Conference, Apr 2005.

8. N. R. Draper and H. Smith. Applied Regression Analysis. John Wiley & Sons, 1998.
9. K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield, and M. Williamson. Reconstructing

I/O. Technical report, 2004.
10. D. Gmach, J. Rolia, L. Cherkasova, and A. Kemper: Capacity Management and Demand

Prediction for Next Generation Data Centers. Proc. of the International IEEE Conference on
Web Services (ICWS’2007), Salt Lake City, Utah, USA, 2007.

11. D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat: Enforcing Performance Isolation
Across Virtual Machines in Xen. Proc. of the ACM/IFIP/USENIX 7th Intl Middleware Conf.
(Middleware), Melbourne, Australia, 2006.

12. P. W. Holland and R. E. Welsch. Robust regression using iteratively reweighted least-squares.
In Communications in Statistics - Theory and Methods 6.9. 06 Oct. 2007.

13. HP-UX Workload Manager. http://www.hp.com/products1/unix/
operating/wlm/.

14. HP Integrity Essentials Capacity Advisor. http://h71036.www7.hp.com/
enterprise/cache/262379-0-0-0-121.html

15. IBM Enterprise Workload Manager. http://www.ibm.com/developerworks/
autonomic/ewlm/.

16. IBM Tivoli Performance Analyzer. http://www.ibm.com/software/tivoli/
products/performance-analyzer/

17. IBM eServer i5 Virtualization Grand Slam Benchmark: Executive Summary. www.ibm.
com/servers/uk/eserver/iseries/literature/

18. S. King, G. Dunlap, P. Chen. Operating system support for virtual machines. Proc. of the
USENIX Annual Technical Conference, San Antonio, Texas, 2003.
www.hpl/hp.com/news/2006/apr-jun/technology.html

19. J. Liu, W. Huang, B. Abali, D. Panda. High Performance VMM-Bypass I/O in Virtual Ma-
chines. Proc of Usenix AT 2006.

20. D. Magenheimer and T. Christian. vBlades: Optimized paravirtualization for the Itanium
processor family. Proc. of USENIX Virtual Machine Research and Technology Symposium,
May 2004.

21. L. McVoy and C. Staelin. lmbench: Portable tools for performance analysis. Proc. of the
1996 Winter USENIX, San Diego, CA, Jan. 1996.

22. A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwaenepoel. Diagnos-
ing performance overheads in the Xen virtual machine environment. Proc. of the First
ACM/USENIX Intl. Conf. on Virtual Execution Environments (VEE), June 2005.

23. D. Mosberger, T. Jin. Httperf—A Tool for Measuring Web Server Performance. Proc. of
Workshop on Internet Server Performance, 1998.

24. Oprofile. http://oprofile.sourceforge.net
25. P. Padala, X. Zhu, Z. Wang, S. Singhal, K. Shin. Performance Evaluation of Virtualization

Technologies for Server Consolidation. HP Labs Technical Report HPL-2007-59, 2007.
26. Jose Renato Santos, Yoshio Turner, and G. (John) Janakiraman, Ian Pratt: Bridging the Gap

between Software and Hardware Techniques for I/O Virtualization. Proc of Usenix 2008.
27. J. Rolia, L. Cherkasova, M. Arlitt, A. Andrzejak. A Capacity Management Service for Re-

source Pools. Proc. of the 5th Intl. Workshop on Software and Performance (WOSP), Palma,
Spain, 2005.

28. M. Seltzer, D. Krinsky, K. Smith, X. Zhang. The Case for Appliction-Specific Benchmark-
ing. Proc. of the 1999 Workshop on Hot Topics in Operating Systems (HotOS VII), Rio Rico,
AZ, March, 1999.

29. S. Seltzsam, D. Gmach, S. Krompass, A. Kemper. AutoGlobe: An Automatic Administration
Concept for Service-Oriented Database Applications. Proc. of the 22nd Intl. Conf. on Data
Engineering (ICDE), 2006.

30. C. Staelin and L. McVoy. mhz: Anatomy of a microbenchmark. Proc. of the USENIX Annual
Technical Conference, New Orleans, LA, June 1998.

31. J. Sugerman, G. Venkitachalam, B.-H. Lim. Virtualizing I/O Devices on VMware Worksta-
tion’s Hosted Virtual Machine Monitor. Proc. of the USENIX Annual Technical Conference,
Boston, Massachusetts, 2001.

32. Sysstat-7.0.4. http://perso.orange.fr/sebastien.godard/
33. TeamQuest: http://www.teamQuest.com
34. TPC-W Benchmark. http://www.tpc.org
35. B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource overbooking and application profiling in

shared hosting platforms. Proc. of Operating Systems Design and Implementation (OSDI),
Dec 2002.

36. VMmark: A Scalable Benchmark for Virtualized Systems. www.vmware.com/pdf/
vmmark_intro.pdf

37. VMware Capacity Planner. www.vmware.com/products/capacity_planner/
38. C. Waldspurger. Memory resource management in VMware ESX server. In Operating Sys-

tems Design and Implementation. Proc. of Operating Systems Design and Implementation
(OSDI), Dec 2002.

39. J. Wang, K. Wright, and K. Gopalan, XenLoop : A Transparent High Performance Inter-
VM Network Loopback, Proc. of International Symposium on High Performance Distributed
Computing (HPDC), Boston, MA, June 2008.

40. A. Whitaker, M. Shaw, and S. Gribble. Scale and Performance in the Denali isolation kernel.
Proc. of Operating Systems Design and Implementation (OSDI), Dec 2002.

41. XenSource: http://www.xensource.com/

