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ABSTRACT

Recent years have witnessed an increased interest in trans-
fer learning. Despite the vast amount of research performed
in this field, there are remaining challenges in applying the
knowledge learnt from multiple source domains to a target
domain. First, data from multiple source domains can be se-
mantically related, but have different distributions. It is not
clear how to exploit the distribution differences among mul-
tiple source domains to boost the learning performance in
a target domain. Second, many real-world applications de-
mand this transfer learning to be performed in a distributed
manner. To meet these challenges, we propose a consensus
regularization framework for transfer learning from multi-
ple source domains to a target domain. In this framework,
a local classifier is trained by considering both local data
available in a source domain and the prediction consensus
with the classifiers from other source domains. In addition,
the training algorithm can be implemented in a distributed
manner, in which all the source-domains are treated as slave
nodes and the target domain is used as the master node. To
combine the training results from multiple source domains,
it only needs share some statistical data rather than the full
contents of their labeled data. This can modestly relieve the
privacy concerns and avoid the need to upload all data to a
central location. Finally, our experimental results show the
effectiveness of our consensus regularization learning.
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1. INTRODUCTION

Classification plays an important role in many real-world
applications, such as Web-page classification and video con-
cept detection. Traditional classification techniques have the
assumption that training and test data are drawn from the
same distribution, and thus fail to deal with the situation
when the new unlabeled data are obtained from fast evolv-
ing, related but different information sources. This leads to
the new learning problem about how to build the classifier
when the distributions of training and test data are different.

Previous works in this area deal with the knowledge trans-
fer from only one source-domain Ds to a target-domain Ds [1,
2, 3]. The Source-domain D, owns labeled data, while the
target-domain D; contains plenty of unlabeled data. In
this paper, we investigate the problem of transfer learning
from multiple source-domains to a target domain. More
precisely, we have m source-domains as D:,--- ,DT and
a target-domain D; (Note that DL,--. D™ and D, also
represent their corresponding data sets throughout this pa-
per). The labeled source-domains and the unlabeled target-
domain may be geographically distributed. We assume that
the class labels in Di,---, D™ and the labels to be pre-
dicted in D; are drawn from the same class-label set C. Fur-
thermore, while these source-domains and the target-domain
have different distributions, we assume that they are seman-
tically related to each other in the sense that similar features
would describe similar categories. Under this assumption,
we aim to adapt the knowledge learnt from these m source-
domains for classifying the data in the target domain.

Motivating Examples. We provide the following two
application scenarios to motivate the above problem formu-
lation. In the first example, assuming we have downloaded
all the Web pages of a university, and we want to use text
classification to find the course main pages. To do this,
we create training data by manually labeling a collection of
training course pages from different universities. However,
different universities usually use different course page tem-
plates, in which the terms used can also be different. For
example, the terms indicating the reading materials may in-
clude “Required Reading List”, “Textbooks”, “Reference”
and so on. Thus, the data distribution of the main course
Web pages from different universities are likely to be differ-
ent. If we consider a university as a domain, the manually
labeled Web pages come from multiple domains. Now, the
goal is to find new course Web pages in a target university.
This is a transfer learning problem discussed in this paper.



In the second example, let us consider the problem of
video concept detection, which aims to generalize models
built for detecting semantic concepts from multiple-source
video data to other domains. Here, a domain is a TV chan-
nel, such as CCTV, CBS, CNN, and NBC. For instance,
the TRECVID collection [4] is such a multi-domain video
corpus which has news video from different TV channels.
Due to the large data variance and the “semantic gap” be-
tween visual features and the semantic content, the problem
of mismatch among the distributions of the multiple train-
ing domains and the test domain is particularly severe in
multimedia area [5]. As shown in Figure 1, video shots of
easily recognizable anchors from four different famous TV
channels exhibit dissimilar visual features. As a result, con-
cept classifiers trained from only one source-domain might
perform poorly on the target domain.

Figure 1: Anchor Shots from Major Media including
CCTV, CBS, CNN and NBC

The common ground of the above two applications is that
the training data are from multiple related but different
source domains. One can argue that, if we merge the mul-
tiple source-domains into one source-domain, this problem
can be solved by existing transfer learning algorithms. How-
ever, the important information, such as the distribution dif-
ferences among the source-domains, is lost during the merg-
ing process. This information is the key to understand the
common nature of these source-domains. In addition, the
training data from different source-domains might be dis-
tributed geographically, and it is difficult to put them into
a central location due to the network bandwidth, central
disk space, and data copyright considerations. Under this
circumstance, the learning algorithm must be performed in
a distributed and modest privacy-preserving manner.

In our formulation, given m source-domains: D}, --- , DT,
each of which is drawn from a distribution that might be
different from the distribution of the target domain D;, a
classifier h' (I = 1,---,m) can be trained locally on each
of these data sets D!, since DL,--- , D™ are fully labeled.
However, to classify D;, simply applying one h' may not
achieve good performance due to the mismatched distribu-
tion. Moreover, any classifier A’ trained on the limited data
DL may suffer from the high variance problem, and give dif-
ferent predictions on the data set D,. Since each instance in
the target-domain represents a unique piece of ground truth,
this disagreement of predictions on the target domain in-
spires a direction for optimization. That is, to achieve better
prediction performance, one should leverage both the knowl-
edge in the labeled data from the multiple source-domains
and the unlabeled data in the target-domain.

In this paper we develop a consensus reqularization frame-
work that aims to transfer the knowledge from multiple
source-domains to a target domain. This regularization frame-
work is applied into the model of Logistic Regression. Note
that it also can be implemented into other classification
models. To the end, the following two challenges have been
addressed.

1. How to make good use of the distribution differences
among multiple source-domains to promote the pre-
diction performance on the target-domain?

2. How to extend this consensus regularization based al-
gorithm to a distributed algorithm while only sharing
some statistical data of all source domains instead of
revealing all full contents of labeled data?

For the first challenge, we propose the mazimum con-
sensus regularization method, which incorporates the un-
labeled data from the target-domain into the learning pro-
cess. For each source-domain, this consensus optimization
framework will output one classifier, which is trained by
considering both the local data and the prediction consen-
sus with the other classifiers on the unlabeled target-domain
data. In this mutually-affected manner, the resultant classi-
fiers not only maintain the individuality of the corresponding
source-domains, but also reveal the common nature of all the
source-domains and the target-domain. For the second chal-
lenge, when multiple source-domains and the target-domain
are distributed geographically, the learning algorithm is run-
ning in a distributed manner. This distributed system has
a master-slave architecture, with the node for the target-
domain being the master and the node for the source do-
mains being the slaves. To achieve the same learning per-
formance as a corresponding non-distributed algorithm, the
training process takes multiple rounds to complete. In each
round, only some statistical data (not full contents of labeled
data) are shared between the slave nodes and the master
node, and they cooperate in a synchronized fashion. There-
fore, it is a distributed algorithm, which also addresses a
modest degree of privacy concerns.

Finally, in the context of text classification, we validate
the proposed method using real-world text data sets. The
experimental results show that the consensus regularization
learning method can effectively improve the learning perfor-
mance in the target domain even if the source-domain data
are geographically distributed.

2. PRELIMINARIES

In this section, we first introduce the notations used through-

out this paper, and then present some preliminary concepts
about logistic regression and consensus measuring.

2.1 Notations

In this paper, we use bold letters, such as p and a, to
represent vectors. Also, P indicates the i-th element of
p- Random variables are written in upper case, such as
X and Y. Therefore, Bold upper case letters, such as X
and Y, represent vectors of random variables. Calligraphic
letters, such as A and D, represent sets. Finally, we use R
to denote the set of real numbers and Ry to denote the set
of nonnegative real numbers.



2.2 Logistic Regression

Logistic regression [6] is an approach to learning functions
of P(Y|X) in the case where Y is discrete-valued, and X is
any vector containing discrete or continuous random vari-
ables. Logistic regression assumes a parametric form for the
distribution P(Y'|X), then directly estimates its parameters
from the training data. The parametric model assumed by
logistic regression in the case where Y is Boolean is

1

Py = +1|x; = Ty = — -
(v = £l w) = oyw™) = T,

(1)
where w is the parameter of the model. Under the principle
of Mazimum A-Posteriori (MAP), w is estimated under the
Laplacian prior. Given a data set D = {(x,4:)}i—1, we want
to find the parameter w which maximizes:

N
Z log
i=1

This criterion is a concave function of w, so that the global
solution can be obtained by methods of the non-linear nu-
merical optimization. After w is estimated, Equation (1)
can be used to compute the probabilities of an instance be-
longing to the positive and negative class.

1 AT
_—  — — —wW W. (2)
1+ exp(—y;wTx;) 2

2.3 Consensus Measuring

In the subsection, we first give the definition of Shannon
entropy in a probability distribution vector, and then show
how to measure the degree of consensus on the predictions
that are made by a group of classifiers for an instance.

DEFINITION 1 (PROBABILITY DISTRIBUTION VECTOR).
J S ]Ri is a probability distribution vector if and only if
Zle Py = 1. Ea'ch‘ entry p;y of this vector .represents the
probability that this instance belongs to class i.

DEFINITION 2 (SHANNON ENTROPY). Assuming p € R%
is a probability distribution vector, then the Shannon entropy
in p is defined as

1
P

d
E(p) = Z P(;) log (3)

Given a group of m classifiers H = {h'}/~;, each of which
outputs a probability distribution vector p' for an instance
X, the average probability distribution vector can be com-
puted as:

Z 1";1 pl )

m

P=

4

Then, using the Shannon entropy, we can measure the degree
of consensus in these prediction results as shown in the ex-
amples of Table 1. For 3-class classification problem, Table 1
records the probability distribution vectors of x;, x2 and x3
predicted by the classifiers h', h? and h® respectively, and
their corresponding average probability distribution vectors.
For the first instance x1, all the classifiers reach a perfect
consensus that it belongs to class 1 with 100% probability.
Therefore, the degree of consensus on these results reaches
its maximum, while the entropy E(1,0,0) of the average
distribution vector reaches its minimum for any 3-entry dis-
tribution vectors. On the other hand, for the third instance
X3, the three classifiers predict that it belongs to class 1, 2
and 3 respectively with 100% probability. Thus, these pre-
diction results totally disagree with each other, and their

degree of consensus reaches its minimum. However, the en-
tropy E(3, 1, 1) of the average distribution vector reaches
its maximum. Therefore, the negative of the entropy in the
average probability distribution vector can be the consensus
measure for the different prediction results. Formally, the

definition of the entropy based consensus measure is:

DEFINITION 3 (ENTROPY BASED CONSENSUS MEASURE).
Given m probability distribution vectors p*,--- , p™, the con-
sensus measure for these vectors is defined as

Ce(p', - ,p™) = —E(®), (5)

where B is the Shannon entropy in Definition 2 and P is the
average of these vectors defined by (4).

Since we only consider the relative magnitude of two con-
sensus measures, it is acceptable that the value of this con-
sensus measure is negative. Thus, by this definition, the
consensus degree for the prediction results of the second in-
stance x3 is —E(0.7,0.2,0.1).

Due to the computing complexity in the entropy, for 2-
entry probability distribution vectors, this consensus mea-
sure can be simplified as:

C.(p*, - ,p™) = Py —ﬁ(z))Q

(6)
=(Pu) — (1 =Pw))* = @pu), — D™

It is clear that, when comparing the relative magnitude of
two degrees of consensus, C. and C; are equivalent for 2-
entry probability distribution vectors in the sense that they
always give the same answer.

3. PROBLEM FORMULATION AND
CONSENSUS REGULARIZATION

In this section, we first formulate the problem of transfer
learning from multiple domains and then describe the prin-
ciple of consensus regularization. Next, we analyze why and
when this consensus regularization works for this problem
formulation. Finally, we show how to adapt this principle
into the model of logistic regression.

3.1 Problem Formulation and Principle of
Consensus Regularization

Let DE,--- , D™ be m (m > 1) source-domains of labeled
data , and the labeled data set from the I-th source-domain
is represented by D! = {(x!, yf)}|§il, where ! is the label of
x! and n! is the number of data in this domain®. The unla-
beled target-domain is denoted by D: = {(x;)}|i=1, where n
is the number of data objects in the target-domain. Under
the assumption that the distributions of D}, --- , D™, D, are
different but closely related, we aim to train the classifica-
tion models on these labeled source-domains to accurately
classify the unlabeled data in the target-domain.

If we train m classifiers h',--- , A™ locally, each of which
is based only on the data from one source-domain data, the
ideal situation is that these m classifiers make a perfect con-
sensus that they predict an instance from the target-domain
to be its ground truth with 100% confidence. However, since
the distributions of D!, .-, D™, D, are different, these ini-
tial m classifiers usually disagree with each other to some

'In the following, the upper index of a letter denotes the
index of source-domain, while the lower index of a letter, if
existing, denotes the index of the data in the data set.



Table 1: The Entropy and Consensus of Probability Distribution Vectors

2

instance pl by hl p2 by h p> by h* B Entropy Consensus
1 (1,0,0) (1,0,0) (1,0,0) (1,0,0) 0 0
x9 (0.7,0.25,0.05)  (0.8,0.1,0.1)  (0.6,0.25,0.15)  (0.7,0.2,0.1) (%10;;1—70 +%log5+ﬁlog10) 7(%1019,1—70 +%1035+ ll—olog 10)
x3 (1,0,0) (0,1,0) (0,0,1) (%%é) log 3 “log 3

degree on the prediction results of a certain instance. Thus,
there is room to further maximize the consensus of these
models on the prediction results of the data in the target-
domain. Therefore, we can incorporate this consensus mea-
sure into the standard framework of supervised learning as
follows. This adapted supervised learning framework with
consensus regularization will output m models ht,--- , h™,
which maximize the following equation:

Z P(h'|DL) + 6 - Consensus(h',--- ,h™|Dy), (7)
=1

where P(h'|DL) is the probability of the hypotheses h' given
the observed data set D%, and Consensus(h',--- ,h™|D;) is
the consensus measure of these m models h',--- ,h"™ on the
prediction results of the data in the target-domain D;.

In the first term of (7), each model h' is applied to its
local source-domain, while the second term in (7) is used
as a bridge to link all these models, and realizes a mutual
coupling optimization. In this way, each of these resultant
models not only keeps the individuality of the corresponding
local source-domain, but also reveals the common nature
of the target-domain. Thus, this regularization framework
maximizes not only the posteriori in each source-domain,
but also the consensus degree of these models.

Given a source-domain data set D! = {(xi,yf)}ﬂil of
independent and identically-distributed (IID) observations,
the maximization of P(h!|D.) in the first term of (7) can be
expanded further as follows:

P(Di|h")P(h')

P('DL) =
max P(h'|Dy) = max P(DL)

= max P(D.|n ) P(h")

1

n

’ILl
= max P(h') - H P(y;|xi; h') = max(log P(h') + Z log P(yi\xi; rY).
i=1

i=1

(®)

As to Consensus(h',--- ,h™|Dy), it is defined as the sum
of the consensus measures of these m models on all the data
in D; and is shown as follows:

n
Consensus(hl,»-» LR |Dy) :Z Ce(pi,-»- ,p:")7 9)
i=1

where C, is the consensus measure in Definition 3, and p!
is the probability distribution vector predicted by the I-th
model A! for the i-th instance in the target-domain D;. Ac-
tually, this consensus measure has two sides of effect. One is
to promote the degree of agreement on all the models. The
other is to minimize the entropy of the prediction results on
unlabeled data.

3.2 Why Consensus Regularization

In this subsection we will theoretically show that maximiz-
ing agreement between any two individual classifiers could
lead to the performance improvement of the individual clas-
sifiers.

In this study we focus on binary classification problems
with the labels 1 and —1. We can train m models k', --- | A
for m source-domains. Let Y be the target label, and the
disagreement of any two individual models be P(h* # h?)

(4,7 € {1,--- ,m},i # j). In the following the number of the
individual models is set to 3 for convenience. Note that the
results in this subsection can be extended to any number of
individual models similarly. We also have the following two
definitions.

DEFINITION 4  (NON-TRIVIAL CLASSIFIER). If a classifier
h satisfies the condition

P(h=ulY =u) > P(h=1ulY =u),
where uw € {—1,1} and @ is the complement of w. Then we

call classifier h is a non-trivial classifier.

In other words, we can restate the non-trivial condition as

Ph=ulY =u)>1/20r P(h#u|lY =u) <1/2.

DEFINITION 5  (CONDITIONAL INDEPENDENT CLASSIFIERS).
The conditional independence of models h*, h*, h? is shown
as follows,

P(h1 = u|h2 =v,Y =y) = P(h1 =ulY =y), (10)

where u,v,w,y € {—1,1}.

According to the assumption of non-trivial and conditional
independent classifiers, We obtain the following theorem.

THEOREM 1. If the conditions that conditional indepen-
dent assumptions are satisfied, it holds that the disagreement
upper bounds the misclassification error for nontrivial clas-
sifier.

ProOF. The classification error of h' is
P(h' #Y)
=P(h'=1,Y =-1)+P(h' = -1,V =1)
=PMh'=1,"=-1,Y = -1)
+Ph'=1,n=1Y =-1)
+P(h'=—-1,n*=-1,Y =1)
+P(h'=-1,*=1,Y =1),
and the disagreement between h' and h? is
P(h* # h?)
=P(h' =1,R> = —1) + P(h' = —1,h* = 1)
=PMh'=1,R*=-1Y = -1)
+Ph'=1,»=-1Y =1)
+P(ht=-1,h*=1,Y = —1)
+P(h'=—-1,*=1,Y =1).

To validate that P(h' #Y) < P(h' # h?), we only have to



proof the following inequation,
P(h'=1,"=1,Y = -1)
+PMh'=-1,A"=-1,Y =1)
<Ph'=1,n"=-1Y =1)
+P(h' =-1,*=1,Y = —1).

(12)

According to equation (10) and the Bayes Principle, Inequa-
tion (12) can also be written as follows,

P(h' =1y = -1)P(h* =1,Y = —1)
+P(h' = -1y =1)P(h* = -1,Y =1)

<P(h'=1Y =1)P(h*=-1,Y =1)
+P(h' = -1y = —1)P(h* = 1,Y = —1).

(13)

From Definition 4, the following inequations (14), (15) hold,

P(h' =1]Y = —1) < P(h' = —1|Y = —1), (14)

P(h' = -1y =1) < P(h' = 1]Y = 1). (15)
Therefore, Inequation (13) holds.

Finally we obtain that the disagreement upper bounds the
misclassification error as

P(R' #Y) < P(h' # R?). (16)

Similarly, we can prove that the following inequations also
hold,

P(h' #Y) < P(h' #1?),
P(h* #Y) < P(h® # '),
P(h* #Y) < P(h® #1?),
P(h* #Y) < P(h® # '),
P(h® #£Y) < P(h® # h?).

a

Theorem 1 shows that the disagreement upper bounds the
misclassification error for nontrivial classifier. Thus, mini-
mizing the disagreement means to decrease the classification
error.

3.3 Implementation of Consensus
Regularization by Logistic Regression

Here, we introduce how to adapt and integrate the prin-
ciple of consensus regularization into the model of logistic
regression.

According to the problem formulation in Section 3.1, this
consensus regularization framework outputs m logistic mod-

els w!, .-+, w™, which maximize:
l
1 m A - ATy
ge(W, -+, w ):Z(Zlogp(nyi;W)—?W w)
., =1 i=1 l l (17)
0.3 E(Zill Ply=—1lxi;w') > %y Ply=1xi;w ))
m ’ m ’

i=1

where the conditional probability P is the logistic function
defined in (1), and E is the Shannon entropy. Note that this
regularization framework works for multi-class problems.

For the 2-class classification problem, the entropy based
consensus measure can be substituted with the equivalent
form Cs, defined in Equation (6). Thus, the new objective
function is

l
m = - >\l T
golwh W) =32 (0 tog Plyibeswh) = Swliwh -
== 18
NI Py =1k wh)
0-> (2 — —1)?,
i=1

where the conditional probability P is the logistic function
defined in Equation (1).

To simplify the discussion, in this paper we only describe
this regularization framework in Equation (18) for 2-class
classification problems, but it can be extended to multi-class
problems using the framework in Equation (17). Thus, The
partial differential of the objective g; is

9gs

1 l 1 1 1
Awl =VaW D)+ Vi, (w, -

Vi (gs) = s W™, Dy),  (19)

where the function o is defined in (1), and

1
095 w T
Dl >a- o(yiw! )yixt — A'w!, (20)

i=1

Vi (W', D) =

vio(wh, -

o m 21
:%2(22 o(wkai) —m)(l—a(wlTxi))a(wlTxl)xt. (21)
i=1 k=1

, W™, Dy)

Though the objective function in Equation (18) is neither
concave nor convex, for given initial values, the local op-
timization solution can also be obtained by any non-linear
optimization technique. In this study, we adopt the conju-
gate gradient method [7] as the optimization technique (the
reason why we adopt conjugate gradient is described in the
experimental section), and the initial models are set to the
ones trained on each local source-domain separately. The
pseudo-code of our method is shown in Algorithm 1. To
solve the sub-problem in Step 4 of Algorithm 1, any opti-
mization technique can be used. In our implementation the
function fminunc provided by Matlab is adopted for Step 4.

4. CONSENSUS REGULARIZATION IN A
DISTRIBUTED MANNER

In this section, we investigate how to extend this cen-
tralized consensus regularization method into a distributed
learning algorithm, which can work in the situation that the
source-domains D!, --- ,D™ and the target domain D, are
all geographically separate distributed. In this distributed
setting, the data nodes containing the source-domain data
are used as slave nodes, denoted by sn',---,sn™, and the
data node containing the target-domain data is used as the
master node, denoted by mn.

Let us first revisit the partial differential of the objec-
tive gs in (19), which consists of two parts. It is clear
that the computation of the first term V., (w', D.) needs
only the local model w' and the data set D!. Thus, it can
be computed locally. The computation of the second term
Vi (W, - w™ D) involves all the models w',--- , w™
and the target-domain data set D;. Therefore, if the slave
nodes sn' (I = 1,---,m) sends w' and V%, to the mas-
ter node mn, the master node can compute V:(gs) by
Vui(gs) = V., + V.., in a straightforward manner.

As a result, if each round of the optimization process per-
forms this synchronous communication of the statistic data
between the slave nodes and the master node, the gradient



Algorithm 1 Centralized Version of Consensus Regulariza-
tion by Conjugate Gradient Ascent

Algorithm 2 The Distributed Version of Consensus Regu-
larization by Conjugate Gradient

Input: The labeled data sets DI, ---, D™, the unlabeled
data set D¢, the element matrix Q € RF** where k = |x| is
the dimension of the data in the source-domain, the error
threshold € > 0, and the maximum iterating number max.
Output: m classifiers w', - -, w™

1. Each source-domain calculates the initial w§ by logis-
tic regression based on its local data set D!

2. k:=0.
3. For I = 1,---,m, compute the gradients Vwi‘ (gs)
by (19), and set the searching directions as '
diy1 = Vi, (9s) + agdj, (22)
ar ==V, (9:)Qd}/d}" Qd}

Iy ", ||VW;,C (g9s)]] < &, then turn to Step 6.

4. Compute the best searching step v > 0, which maxi-

mizes
Then for [ =1,--- ,m, compute W;chl by
W1 = Wy, + 7dj. (24)

5. k:=k+ 1. If K < maz, then turn to Step 3.

6. Output wi,--- , Wit

Vi (gs) can be computed accurately. However, the maxi-
mization in the Step 4 of Algorithm 1 involves all the data
from the source-domains and the target domain, which is
hard to be solved distributively. In order to extend Algo-
rithm 1 to a distributed version, the searching step ~ in it
can be set to a constant. Then, the method of distributed
consensus regularization is described in Algorithm 2, which
is an approximation of Algorithm 1.

In each round of Algorithm 2, each slave node sn! sends
a vector V%, to the master node (in the first round the
slave node should also send the initial model to the master
node), and the master node sends back the updated model.
Therefore, if this process terminates after k iterations, the
total communication overhead will be

2k +1)) W'l (25)

=1
Note that this distributed process communicates only some
statistic values, such as V%, (I=1,---,m) and the classifi-
cation models, without sending the raw source-domain data.

Therefore, this also can modestly alleviate the privacy-concerns.

5. EXPERIMENTAL EVALUATION

The experiments performed in this section evaluate the
performance of the proposed methods. In the experiments,
we focus on the problem of binary classification, however, it
is straightforward to extend the proposed methods for multi-

Input: The labeled data sets DL, .-, D™ on the separated
slave nodes sn',--- , sn,, respectively, the unlabeled data
set D; on the master node mn, the error threshold € > 0,
the maximum iterating number maz, and the step constant

5.
Output: m classifiers w?,--- , w™.
1. Each slave node sn! (I =1,--- ,m) calculates the ini-
tial w by logistic regression based on its local data set
DL. Then they send this initial model w§ and the value
of V%, (wh, D) (I=1,---,m) to the master node mn.
2. k:=0.

3. The master node computes the gradients Vwi (gs)

(I =1,---,m) for each model by (19), and sets the
searching direction d}, as (22). If )", ”va (9s)]] < e,
then turn to Step 6; Otherwise, using the input con-
stant 7, compute W,QH as (24) for Il =1,--- ,m.

4. The master node sends wh,, (I = 1,---,m) to
each slave node. Then each slave node computes
v, (W§€+1, D!) and sends it back to the master nodes.

5. k:=k+ 1. If K < maz, then turn to Step 3.

m

6. Output wi,--- , wi.

class classification. Additionally, in this study the number
of the source-domains for transfer learning is set to 3.

5.1 Data Preparation

We follow the data preparation method in [2] to construct

the problems of transfer learning from multiple source-domains,

which will be detailed following. Since the public data col-
lections are not originally designed for transfer learning from
multiple source-domains, we need to make some modifica-
tions on them to fit the problem settings. It requires that
each of these data sets has at least a two-level hierarchical
structure. In this paper, we assume A and B are two root
categories in a data set, and Ay, --- , A4 and By, -+ , B4 are
the four sub-level categories of A and B respectively. These
sub-level categories are used for the three source-domains
and one target-domain. Now we construct the training and
test data as follows. For ¢ = 1,--- .4, let A,, and B,
be the positive and negative instances in the i-th domain
Do, = Aa; U B,, respectively; and A,, and B,, appear
once and only once in these domains. In this way, the posi-
tive (negative) data from different domains are similar since
they belong to the same top category A (B), and the posi-
tive (negative) data from different domains are still different
since they belong to different sub-categories. Thus, these
four domains own different but similar data distributions.
We can then select any one of these four domains as the
target domain, and the other three domains as the source-
domains. Therefore, given Aq,---, A4 and Bi,--- , B4, we
can construct 96 (4- Py) instances of 3-source-domain trans-
fer learning problems.

20 Newsgroup® is one of the public available data collec-

http://people.csail. mit.edu/jrennie/20Newsgroups/



tion, which satisfies the problem requirement that the top
category contains at least four sub-categories. In this sec-
tion, we list the evaluation results on the data sets of sci
and talk, which are regarded as the top categories, denoted
by A and B respectively. The four sub-categories in sci are
sci.crypt, sci.electronics, sci.med and sci.space, denoted by
Ai, -+, Ag respectively. The four sub-categories in talk are
talk.politics. guns, talk.politics.mideast, talk.politics.misc and
talk.religion.misc, denoted by Bi,--- , B4 respectively. The
threshold of Document Frequency with the value of 5 is used
to select the features. Then, these corresponding 96 prob-
lem instances are evaluated by the benchmark classification
methods in Section 5.2.

We also evaluate our algorithm on other text data sets,
including comp vs. talk and comp vs. sci etc. Furthermore,
we construct and evaluate the transfer learning problems of
image classification. These results are quite similar to those
in this section. Due to the space limitations, we omit these
detail results.

5.2 Benchmark Classification Methods

Under the assumption that the source-domains and the
target domain are geographically separate distributed, we
introduce the following benchmark classification methods
for comparison. They can be grouped into two types: dis-
tributed and centralized classification algorithms.

Distributed Approach: in this approach, the algorithm
is implemented in a distributed manner. The simplest dis-
tributed approach is Distributed Ensemble (DE), where a
classifier is trained based on the local data on each source-
domain. The other distributed approach is Distributed Con-
sensus Regularization (DCR) described in Algorithm 2. In
both DE and DCR, the prediction is made by majority vot-
ing on the probability distribution vectors of the resultant
classifiers.

Centralized Approach: in this approach, all the data
from the source-domains and the target-domain are accu-
mulated and processed on a central node. In this case,
the simplest method is Centralized Training (CT) which
trains a global classifier on all the data. Meanwhile, if
all the data from the source-domains are put together as
one labeled data set, Centralized Consensus Regularization
(CCR) in Algorithm 1 with m = 1, denoted by CCR1, can
be used. The transfer learning method CoCC [2] and the
semi-supervised techniques TSVM (8] as well as SGT [9] can
also be applied to this situation. On the other hand, in or-
der to explicitly consider that the centralized data are from
three different source-domains, CCR with m = 3, denoted
by CCRs, is also adopted.

In summary, our proposed method DCR, CCR; and CCR3
are compared with DE;, CT, CoCC, TSVM and SGT. Note
that when the parameter 6 in the objective function (Equa-
tion 18) is set to 0, DE is equivalent to DCR, and CT is
equivalent to CCR;. Also, DCR with a small step constant
achieves the same accuracy performance as CCR3 at the
cost of some communication overhead. Therefore, these two
algorithms DCR and CCR3 are denoted by CCR3 only.

Details of Implementation: Some initial experiments
show that several popular non-linear optimization techniques
output similar models for the proposed optimization prob-
lem and conjugate gradient is the fastest one. Therefore, we
use conjugate gradient in this paper. After some preliminary
test, we find that X! is not very sensitive in the value range

[10,300], so the A" in the objective function (Equation 18)
is set to 145 (for I = 1,--- ,m). And the value range of 6
is [0, 0.25]. In the algorithms of consensus regularization,
the maximal iterating number max is set to 200, and the
error threshold € is set to 0.1. Before conducting the opti-
mization for consensus regularization, logistic regression?® is
performed on each source-domain to obtain the initial val-
ues of the model for further optimization. The parameters
of CoCC, TSVM and SGT are the same as those in [2].

5.3 Evaluation Metrics

The performance of the comparison methods is evaluated
by accuracy. Let ¢ be the function which maps each instance
to its true class label, and f be the function which maps
each instance to its prediction label given by the classifier.
Accuracy is defined as

o= Hdld €D Ac(d) = £(d)}]
|D:| '

(26)

We also measure the consensus degree of multiple classi-
fiers on the target-domain as follows. Let h be the function
which maps each instance to the probability distribution
vector predicted by the classifier. This consensus degree of
m classifiers hi,- -+ , hy, is defined as

c— Zdevt \/CS (hl (d)a o 7hm(d))
B | D]

, (27)

where Cj; is defined in (6). It is clear that these m classifiers
reach perfect consensus when c reaches its maximal value 1.

5.4 Experimental Results

5.4.1 Comparison of CCRs, CCR,, DE and CT

For each of the 96 problem instances described in Sec-
tion 5.1, we record the values of accuracy and consensus for
the resultant classifiers of Algorithm CCR3 and CCR; on
different values of §. Table 2 gives an example of these mea-
sures for one of these problem instances. Due to the space
limitation, we cannot list all the 96 tables. However, the
properties in these tables are similar, as can be seen later in
this section.

For each 6, Algorithm CCR3 outputs three classifiers on
the corresponding three source-domains. These classifiers
are tested on their own source-domains and the target-domain,
and the results are recorded from the 2nd to 7th column of
Table 2. Then, the 8th column records the consensus mea-
sure of three classifiers. Finally, the accuracy performances
of CCR3 and CCR; are shown in the 9th and 10th column
of this table respectively. As mentioned above, when 6 = 0
the accuracy for CCRg (73.9451 at the 1st row and 9th col-
umn of Table 2) is that of DE, and the accuracy for CCR;
(71.9937 at the 1st row and 10th column of Table 2) is that
of CT.

The results in Table 2 show that: 1) When 6 # 0, CCR3
always outperforms DE and CT. Additionally, CCR3 consis-
tently outperforms CCR;, which shows that exploiting the
distribution differences among source-domains can improve
the performance. 2) When 6 # 0, the performances of the
local classifiers tested on their own source-domains are sta-
ble (always near 100%). Additionally, under this situation
the performances of the local classifiers tested on the target-
domain increase significantly. For example, the performance

3http://research.microsoft.com/~minka/papers/logreg/



Table 2: The Accuracy (%) and Consensus Measure in an Example Problem

The classifier on Di The classifier on Dz

- 3
The classifier on Dy Consensus CCR3;  CCR,

Acc. on ’D; Acc. on D, Acc. on Dj Acc. on D, Acc. on Dz Acc. on D,

0 100 71.10 99.95 55.75 100 72.10 0.2775 73.94 71.99
0.05 100 92.14 99.95 90.61 99.94 93.20 0.6459 93.46 74.47
0.1 100 93.14 99.95 92.67 99.94 92.93 0.7385 93.30 76.11
0.15 100 93.83 99.95 93.46 99.89 93.88 0.7861 93.72 77.90
0.2 100 93.25 99.95 92.99 99.89 93.20 0.8146 93.25 80.43
0.25 100 93.35 99.95 92.99 99.89 93.14 0.8349 93.20 81.12

Source-domains: Di (A2,By4), Df(.Al,Bg), Dg(A4,Bg); Target-domain: Dy (Az,B1)

of the classifier on D? increases from 55.7489% to more than
90% when it is applied to the target-domain. 3) When 6
increases, the consensus measure of the resultant three clas-
sifiers increases. When this consensus measure reaches some
extent, the classifiers always output the same results for an
instance. So the performances of these classifiers tested on
the target-domain are almost equal to that of CCR3 when
0 #0.

To further validate this on the other 95 tables, for each
of these tables, we measure six values: 1) the performance
of DE; 2) the performance of CT; 3) the average perfor-
mance of CCR3 when 6 is sampled in [0.05,0.25], denoted by
CCRs; 4) the best performance of CCR3 when 6 is sampled
in [0.05,0.25], denoted by CCR3**®; 5) the average perfor-
mance of CCR; when 6 is sampled in [0.05,0.25], denoted
by CCR1; 6) the best performance of CCR1 when 6 is sam-
pled in [0.05,0.25], denoted by CCRT***. For each of the
six numbers we can average its values on all the 96 problem
instances. These results are shown in Figure 2 and Table 3.
In Figure 2(a) and Figure 2(b), the 96 problem instances are
sorted by the increase order of the performances by CT.

Figure 2(a) shows that CCR5"** outperforms DE and CT
on every problem instance. Figure 2(b) shows that except
Problem 45 CCR5"** outperforms CCRT*** on each problem
instance, which further proves that explicitly exploiting the
distribution differences among the source-domains increases
the performance. In Figure 2(c) the z-axis represents the
accuracy of DE while the y-axis represents the performance
difference between CCR3'*® and DE. Figure 2(c) shows that
this performance improvement decreases when the perfor-
mance of DE increases. The reason is that if the accuracy
of DE is high, these original classifiers usually output the
same right results, and the consensus measure of the classi-
fiers is big. In this case, the room for futher increasing this
consensus measure is very limited, and thus the improve-
ment by consensus regularization is small.

Table 3: Avg. Values(%) on 96 Problem Instances
CCR7™® COR; CCRI™™®  CORy DE CT
92.6571__ 90.4172 _ 83.7201 _ 81.9982 79.2111 _ 77.1836

Table 3 lists the average values of the six accuracy mea-
sures over the 96 problem instances in a decreasing order.
Note that the same performance of CCR5"*” can be achieved
by DCR in a distributed manner. Compared with DE, the

accuracy of DCR increases from 79.2111 to 92.6571.

5.4.2  Comparison of TSVM, SGT, CoCC and CCR;

To compare CCR3 with CoCC, TSVM and SGT, we se-
lect the data sets in [2] which can be modified to fit our
problem setting. We divide the single source-domain of the
original problem into multiple source-domains. Four data
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Figure 3: Iterations vs. the Performance of CCRs;.

sets, which are described in Table 4, are selected for this
comparison. We measured the performance of CCR3 on
these problems by the two values CCR3 and CCR5*“*. The
experimental results in Table 5 show that both CCRg3 and
CCR35"** outperform TSVM and SGT on these four data
sets. Except that CoCC slightly outperforms CCR3 on the
fourth data set, both CCR3s and CCR5'*®* are better than
CoCC on the other three data sets.

Table 5: The Performance Comparison Results (%)
among TSVM, SGT, CoCC and CCRg3

Data Set TSVM SGT CoCC CCRg CCR3'“"
comp vs. sci 81.7 72.1 87.0 91.4 93.1
rec vs. talk 96.0 90.9 96.5 97.8 98.0

rec vs. sci 93.8 93.8 94.5 96.3 96.7
sci vs. talk 89.2 91.7 94.6 92.8 93.6

5.4.3 Algorithm Convergence

We check the convergence property of CCR3 on 6 ran-
domly selected problem instances. These results are shown
in Figure 3, where the z-axis represents the number of iter-
ations and the y-axis represents the accuracy performance.
It shows that for each problem instance the accuracy perfor-
mance increases along the number of iterations and almost
converges after 20 iterations. This indicates that our algo-
rithm owns a good property of convergence.

6. RELATED WORK

In this section, we introduce some existing works in the
fields of transfer learning, self-taught learning, semi-supervised
classification, and multi-view learning, which are closely re-
lated to the problem studied in this paper.

Transfer Learning aims to solve the fundamental prob-
lem of mismatched distributions between the training and
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Table 4: The Data Description for the Performance Comparison among TSVM, SGT, CoCC and CCR3

Data Set T Ds Dy
DS DS
comp vs. sci comp.graphics comp.os.ms-windows.misc comp.sys.ibm.pc.hardware
sci.crypt sci.electronics comp.sys.mac.hardware
comp.windows.x
sci.med, sci.space
rec vs. talk rec.autos rec.motorcycles rec.sport.baseball

talk.politics.guns

talk.politics.misc

rec.sport.hockey
talk.politics.mideast
talk.religion.misc

rec vs. sci rec.autos rec.sport.baseball rec.motorcycles, rec.sport.hockey
sci.space sci.med sci.crypt, sci.electronics
sci vs. talk sci.electronics sci.med sci.crypt, talk.politics.guns

talk.religion.misc

talk.politics.misc

sci.space, talk.politics.mideast

testing data. It is also referred to as Cross-Domain Learn-
ing, which adapts the knowledge from a source-domain (in-
domain, auziliary-domain) to a target domain (out-of-domain,
primary-domain). In general, previous works in this area
can be grouped into two categories. The first category is
under the assumption that there are some labeled data from
the target domain with different distribution. For instance,
Liao et al. [10] estimated the degree of mismatch of each
instance in the source domain with the whole target do-
main, and incorporated this information into logistic regres-
sion. Also, Dai et al. [1] extended boosting-based learning
algorithms to transfer learning, in which the source-domain
data with very different distribution are less weighted for
data sampling. They also analyzed the theoretical effective-
ness of this algorithm using the Probability Approximately
Correct (PAC) theory. In addition, Yang et al. [5] stud-
ied the problem of transform the existing classifier from the
source-domain to a target-domain in an incremental way.
The principle behind this transforming is that the difference
between the classifiers before and after adaption should be
as small as possible. This work involves the data from multi-
ple source-domains, but it does not consider the distribution
difference among these source-domains. Meanwhile, Smith
and Elkan [11] built generative classifiers, which address the
selection bias problem in transfer learning. Finally, Raina
et al. [12] focused on constructing information priors from
the source-domain by a semi-definite program, and then en-
coded them into the model built.

In the second category, for the problem that the data from
the target-domain are totally unlabeled, Dai et al. [2] pro-
posed a Co-clustering based Classification method (CoCC),
in which the class labels are transferred through the bridge of
co-clustering. Xing et al. [3] proposed a transductive learn-
ing algorithm for this problem. Their method performs a
two-phase label propagation, which is based on the adjacent
matrix of the data. However, the method cannot output the

classifier for future unlabeled data. The proposed method
in this paper falls into this category of transfer learning.

Self-Taught Learning [13] studies how to use a large
number of unlabeled data to improve performance on a given
classification task. The distributions of the unlabeled data
and the labeled data in the given task can be totally different
(not related). Raina et al. [13] proposed an approach to self-
taught learning that used sparse coding to construct higher-
level features using the unlabeled data. The labeled data
are represented by these succinct features. The significant
performance improvement is shown in their experiments.

However, none of the above existing works consider the
problem of transfer learning from multiple source-domains
to a target domain in a distributed manner. These methods
were not developed for the situation that the training data
for transfer learning are geographically separate distributed.
Moreover, we explicitly leverage the distribution differences
among the source-domains and the target domain in our
model to further improve the learning performance in the
target domain.

Semi-Supervised Classification uses a large amount of
unlabeled data, together with the labeled data, to build bet-
ter classifiers. Different from transfer learning, the labeled
and unlabeled data in semi-supervised learning are from the
same distribution. The most related work in this area is
semi-supervised learning by entropy minimization [14]. To
compare with this method in the same problem setting, we
assume that the labeled data and unlabeled data consist of
a source-domain and target-domain, respectively. The reg-
ularization framework in [14] is recognized as an instance of
the objective (17) with m = 1 (m is the number of source-
domains). In other words, our regularization approach is
more general and includes this method as a special case.
Furthermore, our consensus regularization method is de-
signed in a distributed manner.



Multi-View Learning is a new and natural, but non-
standard learning problem, where the data are represented
by multiple independent sets of features. As an example,
Yarowsky [15] as well as Blum and Mitchell [16] noticed
that having multiple representations can improve the perfor-
mance of semi-supervised classification. The techniques of
multi-view classification, such as co-Training [16] and Mixt-
Boost [17], often boost the agreement among two views
on unlabeled data. Sindhwani et al. [18] proposed a co-
regularization approach, which penalizes not only the mis-
classifications by any individual classifier but also the high
level of disagreement between different views. The experi-
ments in [18] are performed on two views only, and the reg-
ularization term do not have the effect of entropy minimiza-
tion. In addition, Dasgupta et al. [19] and Abney [20, 21]
provided PAC bounds on the error of co-Training in terms
of the disagreement rate of hypotheses on unlabeled data in
two independent views. This inspires the principle of con-
sensus maximization, which says that by minimizing the dis-
agreement rate on unlabeled data, the error rate can be min-
imized. Our work utilizes this principle to another problem
setting: transfer learning from multiple domains. From the
point view of data partition, the difference between multi-
view learning and multi-domain learning is that the data are
vertically partitioned for multi-view learning while they are
horizontally partitioned for multi-domain learning.

7. CONCLUSIONS

In this paper, we studied the problem of transfer learning
from multiple source domains to a target domain. Specifi-
cally, for the case that data from multiple source domains
and the target domain are semantically related, but have dif-
ferent distributions, we proposed a consensus regularization
framework to exploit the distribution differences and learn
the knowledge among training data from multiple source
domains to boost the learning performance in a target do-
main. In this framework, we designed a distributed learning
algorithm. In other words, a local classifier is trained at
each source domain by considering both local data and the
prediction consensus with the classifiers from other source
domains. To modestly alleviate the privacy concerns, only
some statistical data are shared between the source domains
and the target domain, rather than the full contents of la-
beled data. Our experiments on real-world text data sets
have shown that our consensus regularization learning method
can effectively improve the learning performance in the tar-
get domain by leveraging the knowledge learnt from multiple
source domains.
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