

Orphal: API Design Challenges for Open Router Platforms on Proprietary
Hardware

Jeffrey C. Mogul, Praveen Yalagandula, Jean Tourrilhes, Rick McGeer, Sujata Banerjee, Tim
Connors, Puneet Sharma
HP Laboratories
HPL-2008-108

Keyword(s):
open router platforms, TCAMs

Abstract:
Most switch vendors have launched “open” platform designs for routers and switches, allowing
code from customers or third-party vendors to run on their proprietary hardware. An open
platform needs a programming interface, to provide switchlets sufficient access to platform
features without exposing too much detail. We discuss the design of an abstraction layer and API
designed to support portability between vendor platforms, isolation between switchlets and both
the platform and other switchlets, high performance, and programming simplicity. The API
would also support resource-management abstractions; for example, to allow policy-based
allocation of TCAM entries among multiple switchlets.

External Posting Date: September 21, 2008 [Fulltext] Approved for External Publication

Internal Posting Date: September 21, 2008 [Fulltext]

To be published and presented at HotNets 2008 Workshop (Calgary, Canada), October 6-7, 2008

© Copyright HotNets 2008

Orphal: API Design Challenges for Open Router Platforms on
Proprietary Hardware∗

Jeffrey C. Mogul, Praveen Yalagandula, Jean Tourrilhes, Rick McGeer,
Sujata Banerjee, Tim Connors, Puneet Sharma

HP Labs, Palo Alto
{Jeff.Mogul,Praveen.Yalagandula,Jean.Tourrilhes,Rick.McGeer,Sujata.Banerjee,Tim.Connors,Puneet.Sharma}@hp.com

ABSTRACT

Most switch vendors have launched “open” platform de-
signs for routers and switches, allowing code from cus-
tomers or third-party vendors to run on their proprietary
hardware. An open platform needs a programming in-
terface, to provide switchlets sufficient access to plat-
form features without exposing too much detail. We dis-
cuss the design of an abstraction layer and API designed
to support portability between vendor platforms, isola-
tion between switchlets and both the platform and other
switchlets, high performance, and programming simplic-
ity. The API would also support resource-management
abstractions; for example, to allow policy-based alloca-
tion of TCAM entries among multiple switchlets.

1 INTRODUCTION

Traditionally, router and switch1 platforms have either
been commodity platforms running open but slow im-
plementations, or proprietary hardware running closed
but fast implementations. Most router vendors currently
follow the closed-but-fast model, which gives them com-
plete control over system quality, but has become a bar-
rier to innovation.

Recently, major router vendors have initiated pro-
grams to provide open router platforms (ORPs), which
allow third parties to develop software extensions for
proprietary hardware. ORPs potentially support faster
deployment of novel networking features; for example,
one could deploy Stanford’s OpenFlow [20] on an ORP.

While the typical vendor’s approach to an ORP is to
provide a Linux environment running on an x86 proces-
sor as part of the platform, the traditional Linux API is
the wrong abstraction. These boxes are interesting pre-
cisely because they have specialized hardware features
that standard Linux does not (should not) support.

We need an ORP API that offers controlled access
to these hardware features. Ideally, this API would ex-
pose all of the functionality and performance of mod-

∗This is an expanded version of a paper in Proc. HotNets 2008
1We use “router” and “switch” interchangeably in this report.

ern router hardware, while maintaining the useful prop-
erties of commodity operating systems: software porta-
bility between vendors, isolation between software com-
ponents, easy management, etc. Such an API would also
be the boundary between open-source upper layers, and
lower layers that the router vendors insist on maintaining
as proprietary trade secrets.

Previously, Handley et al. [12, 13] described XORP,
an eXtensible Open Router Platform. XORP provides a
nice abstraction for building relatively high-performance
routers on top of commodity platforms. While XORP
potentially could run on a proprietary-hardware open
router platform (PHORP), we are not aware of such an
implementation. We also believe that XORP’s abstrac-
tions, such as its Forwarding Engine Abstraction (FEA),
expose too little of the power of modern router hardware,
and do not sufficiently address the scarcity of certain
hardware resources.

In this report we explore the design requirements
for an “Open Router Proprietary-Hardware Abstraction
Layer,” or Orphal. Orphal’s goals include support for
portability of third-party components between different
proprietary platforms; isolation between these compo-
nents; exposing as much of the hardware’s functionality
as possible; and managing scarce hardware resources.

Casado et al. [6] argue that software-only routers are
not fast enough, network processors are too complex to
program, and hardware-based designs (including com-
modity forwarding chips) have been too inflexible. They
propose a redesign of hardware-level forwarding mech-
anisms to provide a clean, simple, and flexible interface
between hardware and software. We agree with them that
the best path to flexible and efficient routers depends on
co-evolving router hardware, extensible router software,
and a clean interface between them.

Figure 1 shows how Orphal fits into a PHORP archi-
tecture. Orphal sits above the vendor-proprietary hard-
ware and software, and also above the commodity hard-
ware and operating system, although we see no reason to
modify the standard OS APIs. (The figure shows Linux
as the OS, but it could be any reasonable OS, and per-
haps a virtual-machine layer as well.) In practice, Or-
phal would be implemented as a combination of device

1

x86

Linux

OpenFlow

Ethane

software
Vendor

hardware
Proprietary

Orphal

. Click

XORP

Figure 1: Layering in an open router platform
drivers and user-mode libraries.

One or more switchlet modules run above Orphal. In
the figure, we show two: a Click [15]+XORP stack, and
an OpenFlow [20]+Ethane [5] stack, but these are just
examples. This is not an “active networks” approach; we
expect switchlets to be installed by the router’s owner.

This report describes some of the design challenges
for Orphal. We first describe a high-level overview of
a plausible design. Then, for concreteness, we focus on
issues related to one particular kind of specialized hard-
ware: Ternary Content Addressable Memories (TCAMs)
used for line-rate lookups. This is motivated by our ex-
perience porting OpenFlow (see sec. 4).

2 ORPHAL API DESIGN OVERVIEW

Orphal’s goals include resource management; controlled
sharing; isolation; hardware reprogrammability; perfor-
mance; portability; and manageability. Orphal differs
from the API of a general-purpose OS mostly because
Orphal must expose interesting, router-specific hardware
without sacrificing run-time efficiency.

Resource management A high-performance router is
inherently a real-time environment, with potentially
scarce resources both in the commodity computation
platform, and in the proprietary hardware. Routers are
often required to enforce QoS requirements, which can-
not be maintained if the router itself mis-manages its re-
sources. Orphal needs to support resource management,
including allocation of resources among switchlets, con-
sistent with the overall QoS policy and performance con-
straints of the system.

Which resources need to be managed? We can as-
sume that the commodity OS will manage commodity-
hardware resources (CPU, RAM, stable storage), while
Orphal will manage router-specific resources such as
TCAM entries, hash-table entries, buffer space, pro-
grammable ASICs, etc. We also want to manage power-
related resources (powering down idle line cards, per-
port rate scaling, etc.) using Orphal. One challenge
is to define Orphal’s resource management so that it is
portable across a range of router hardware with various
interesting kinds of resources; we believe that this can
be done using vendor-specific switchlets that Orphal in-
vokes via upcalls (see section 2.1).

Controlled sharing Orphal must provide controlled
sharing of abstract resources such as forwarding-table
entries, as well as the real resources (such as hash-table
and TCAM entries) used to implement these abstrac-
tions.

For example, if two switchlets want to control the ac-
tions for packets for a given destination – e.g., a firewall
switchlet and a QoS switchlet – how should Orphal de-
cide which switchlets get that control? If two switch-
lets want to process the same packet, which one gets it
first? We believe that prior work on kernel packet fil-
ters [22, 27] provides some useful models; for example,
Orphal could assign precedence (priority) levels to each
switchlet, and let each switchlet declare whether lower-
precedence switchlets should see the packets it handles.

Isolation One goal of an ORP is to allow composition
of switchlets from different third-party component ven-
dors. While we need not assume that switchlets might
be malicious, the potential remains for unexpected “fea-
ture interactions.” (This is a problem even when all com-
ponents come from the same vendor.) Two switchlets
running on top of Orphal should not accidentally inter-
fere with each other, either directly or indirectly. Thus,
the system must prevent switchlets from interfering with
each other’s code and private state. Isolation is usually
accomplished either with a process-like abstraction, or
using a virtual machine abstraction. This choice is likely
to be made by the router vendor, and Orphal should sup-
port either model, as transparently as possible.

Hardware reprogrammability We expect some
router platforms to provide programmable hardware
(not just configurable hardware, such as TCAM tables).
For example, an ASIC in the packet-processing fast
path could support programmability for deep-packet
inspection (DPI) operations [14]; NetFPGA [23] is
another example. Given these programmable features,
should Orphal provide an API allowing switchlets to,
for example, push arbitrary microcode into an ASIC,
or would it be safer to simply provide access to a
platform-defined library of such functions?

Performance Orphal must deal with many
performance-related issues, such as support for multi-
core parallelism in switchlet execution; prioritizing CPU
sharing among switchlets; rate-limiting features of the
platform; etc. We do not yet have enough experience
discuss these issues further.

Portability Orphal must expose the platform’s hard-
ware details enough to support high performance, but
without exposing too much detail: that would compro-
mise portability, and perhaps isolation. This is a difficult
challenge, especially since we lack enough experience to

2

know what really matters. We describe, in sec. 4, our ini-
tial experiences trying to map OpenFlow’s 10-tuple flow-
description model onto a TCAM that supports 5-tuples.

Manageability Routers must already address many
management issues, such as port and routing-protocol
configuration. The introduction of open router architec-
tures creates a new problem: given a multitude of sepa-
rately developed switchlets, how does the router admin-
istrator create and preserve a stable configuration?

XORP, for example, provides a “router manager pro-
cess” (rtmgr) [26] to handle some of these issues. Sup-
port for proprietary hardware probably complicates this
task, because the introduction of a new switchlet can cre-
ate new resource conflicts (e.g., not enough TCAM en-
tries) and new feature interactions (competing uses for a
given TCAM entry).

We believe the router manager will have to check that
the system can support the switchlet’s minimal require-
ments (e.g., that there are enough available TCAM en-
tries for the switchlet to function) and to provide rollback
to a previous configuration if a new one causes trouble.

The manager will also have to monitor each switch-
let’s dynamic resource consumption, including special-
ized hardware resources, so that the router administrator
can make informed decisions.

We also expect administrators will want to upgrade a
switchlet to a new version without rebooting the entire
router. This may require Orphal support, especially to
cleanly undo the hardware-related effects of an old (or
failed) switchlet. For example, when a switchlet fails or
is removed, its updates to the TCAM should be reversed.

2.1 What is a switchlet?

A switchlet is simply a module that runs on top of Orphal,
with its own address space and thread(s) of control.2 Or-
phal will support several switchlet categories, including:
• per-packet switchlets: These are invoked, simi-

larly to Click elements [15], to handle specific pack-
ets. Since high-performance router designs try to
avoid handling most packets in software, per-packet
switchlets are mostly useful for exceptional packets.

• per-flow switchlets: Some router functions, espe-
cially for monitoring and sometimes for firewalling,
are invoked once or a few times per flow. This
is less likely to cause performance problems, al-
though given mean flow lengths in the ballpark of
12 UDP packets to 50 TCP packets [2], such switch-
lets might still be reserved for exceptions.

• control-plane functions: These functions, such
as routing protocols, management protocols, etc.,

2Others have defined “switchlet” in different ways [1, 7, 24], but we
can’t think of a better term.

typically are not directly related to the packet-
forwarding fast path, and so are often handled in
software. XORP provides a useful framework for
these functions.

• optimizer/helper modules: We expect that the pro-
cess of matching higher-level abstractions needed
by switchlets to the lower-level hardware abstrac-
tions will require the use of optimization algo-
rithms. Orphal invokes these via upcalls to opti-
mizer switchlets. This form of policy-mechanism
separation allows third parties to develop improved
versions of these modules.
Optimizer modules can also be used, for example, to
provide a backing store for space-limited hardware
resources. For example, Orphal could manage the
hardware TCAM as a cache for a larger table man-
aged by an optimizer module, in much the same way
that an OS kernel manages a hardware Translation
Buffer as a cache for its page tables.
Additional “helper” switchlets can be used to pro-
vide policy-mechanism separation for functions
such as detecting inter-switchlet conflicts in TCAM
entries.

Orphal needs to balance switchlet portability against
aggressive use of hardware functions that might not be
present on all platforms. Thus, a switchlet can provide
an optional software implementation for a function, to
be used if Orphal cannot provide the necessary hardware
support (either because it isn’t there, or because it is over-
subscribed).

For example, consider a Click module, such as the
existing NetFlow package, that is most naturally imple-
mented in hardware if the hardware is available. The
module author could supply both a hardware-based (e.g.,
NetFPGA) version and a (less efficient) software-based
version, and Orphal could transparently instantiate the
most efficient version possible. (This leaves open the
question of whether Orphal could feasibly change be-
tween versions dynamically; state synchronization and
QoS maintenance might make this difficult.)

2.2 Example of Switchlets

We describe our initial experience implementing Open-
Flow, and how it might be structured as switchlet, in sec.
4. Beyond that, here is a brief list of examples:
• Specialized firewall switchlets could be triggered

by DPI hardware to check unusual flows against se-
curity policies.

• Specialized monitoring switchlets could report on
suspicious patterns of flow creations.

• NAT switchlets might require access to pro-
grammable packet-header rewriting hardware.

• Dynamic VLAN switchlets could implement setup

3

protocols used to establish VLAN membership.

3 API DESIGN ISSUES

The goal of Orphal is to provide a clean interface
between router-specific programmable hardware, and
switchlets running on general-purpose CPUs within the
router platform. Routers often have a number of inter-
esting hardware features, such as programmable DPI en-
gines, TCAMs for route lookups, and other route-lookup
hardware such as hash tables and programmable header
extractors. Future routers might have additional spe-
cialized hardware, such as programmable packet-header
rewriters.

In this report we limit our detailed discussion to
TCAMs, since they are widely used for high-speed for-
warding, present some interesting challenges, and are the
focus of our current implementation work (see sec. 4).

3.1 TCAM API and Resource Management

Most high-performance router hardware includes
Ternary Content Addressable Memories (TCAMs).
One can think of a CAM as a table whose rows each
include a tag field to match against; the CAM returns the
matching row (if any). In a TCAM, tag-field entries are
composed not just of binary 1s and 0s, but also “X” or
“don’t care” values. TCAMs thus allow more compact
representations of lookup tables whose tag values can
include wildcards. Routers use TCAMs for functions
such as IP address lookups and firewall lookups, where
these wildcards are common.

While TCAMs are often the preferred solution for
lookup functions, various TCAM parameters are con-
strained by expense (TCAM structures take a lot of
die area) and power consumption (a TCAM lookup
requires all rows to be active, and TCAMs consume
ca. 15W/chip [28].) Thus, TCAMs present some chal-
lenges for an open router platform, and we explore these
as an example of a larger set of challenges that the API
must meet:
• Limited tag-field size: TCAM tag widths are typ-

ically limited, often to ca. 144 bits (enough for
an IP/TCP 5-tuple) [21]. A single TCAM entry
might therefore be insufficient to support a firewall-
entry match in a single lookup, since (especially
with IPv6), too many packet-header bits must be
checked. This can force the hardware to support
multiple lookups per packet. The API must allow
switchlets to express such multi-lookup rules.

• Limited number of rows: TCAMs are typically
limited to a few thousand rows. Thus, the platform
must treat TCAM rows as a scarce resource, to be
allocated among potentially competing switchlets,

and the API must allow switchlets to express re-
source requirements.

• Multiple “owners” for one row: Two different
switchlets might want packets that match the same
TCAM row (e.g., “all TCP packets to port 80”); the
API needs to manage these conflicts. (See sec. 3.4.)

• Multiple matching rows: Because TCAMs sup-
port wildcards, two different rows might match the
same packet. But TCAM-based designs always re-
turn the lowest-index entry that matches the packet.
Two switchlets might create distinct TCAM entries
that either overlap, or where one covers the other;
what should the system do in this case? The API
needs to manage these conflicts, too. (See sec. 3.4.)

• TCAM optimization: Given an abstract set of
matching rules, one can generate an optimized set of
TCAM entries that provide the most compact (and
hence most space- and energy-efficient) representa-
tion [19, 21].

• TCAM update (insertion) costs: TCAM-based
designs generally must trade off efficient lookups
against insertion costs, which can be as high as
O(n) in the number of rows [10]. The API might
need to manage this tradeoff; it might also need
to synchronize between updates and lookups (or
else lookups could yield bad results during up-
dates) [25].

3.2 A typical TCAM-based hardware design

Figure 2 sketches part of an idealized TCAM-based hard-
ware design, to make some of these design challenges
concrete. Each line card would have an instance, possi-
bly serving several ports.

An incoming packet is first processed by a pseudo-
header generator, adding to the real packet header such
fields as a VLAN tag, the ID of the port where the
packet arrived, etc. Assuming that the TCAM is not
wide enough to do a full lookup in one step, the header
extractor manages a multi-stage lookup; it recognizes
certain high-level patterns (e.g., “IPv4 packet” or “IPv6
packet”), extracts the header fields used in each stage
(e.g., first the layer-2 headers, then the layer 3+4 head-
ers), passes these to the TCAM, and decides whether to
do the next lookup stage.

Many routers use one or more hash tables in addition
to the TCAM. Hash tables provide a cheaper mechanism
for doing exact-match lookups, such as “what’s the next
hop for this flow?”, while TCAMs are appropriate for
more complex lookups – especially those including wild-
cards – typical of QoS and firewall (access control list)
functions. For firewall functions, the line card might also
include a port-range classifier, since arbitrary ranges of
port numbers (e.g., “1023–65535”) could consume too
many TCAM entries. Liu [18] described a range classi-

4

Input port

Input port

Input port

header
Generator

Pseudo−

Sequencer/combiner

Header
Extractor

L3 fields
L3 addrs
L2 fields
L2 addrs

L4 fields
L4 ports

Expanded
headers

Metadata

Metadata

Metadata

Packet

Packet

Packet

Packet
action

Port−range

TCAM

Hash table

classifier

Figure 2: Idealized TCAM-based lookup path

fier that uses a modest-sized RAM-based lookup table.
Additional sequencer/combiner logic coordinates the

multiple lookup stages and combines partial results to
generate a final result, indicating the action to take with
the packet, such as the next-hop address and the output
switch port.

The TCAM, of course, is a programmable resource,
but potentially so are the other functional blocks
(pseudo-header generator, header extractor, port-range
classifier, hash table, sequencer/combiner).

Unlike a more abstract API such as XORP, Orphal ex-
poses all of these distinct programmable resources, since
they have differing characteristics that could be exploited
by sophisticated switchlets.

3.3 What should the TCAM API expose?

There are many ways to organize TCAMs and the asso-
ciated hardware, and if switchlets are to be portable be-
tween hardware platforms, the API must either hide this
variation, or expose it in a useful way. Given the chal-
lenges listed in section 3.1 (and there are others), perhaps
it is implausible to create an API that provides any gen-
erality across models and vendors. However, we suspect
that by choosing the right level of abstraction for expos-
ing the TCAM hardware, Orphal can meet its goals.

For example, XORP exposes a high-level “forward-
ing engine abstraction” (FEA), but Orphal must expose
a lower-level abstraction if the switchlets are to exploit
specialized hardware features. There are things that can-
not be expressed explicitly at the FEA level – for exam-
ple, that certain rules should be stored in the hash table
instead of the TCAM.

There is a useful API abstraction intermediate between
a raw-hardware “TCAM row” and a high-level “forward-
ing table entry.” Although a TCAM optimizer mod-
ule will need access to the raw row-level version (“put
these bits here”), most switchlets will use a paravirtu-
alized view of the TCAM (PV-TCAM), which will en-
able Orphal to provide the controlled sharing, isolation,
and resource management properties described in section
2. PV-TCAM rows look almost like real TCAM rows,

but with some additional meta-information, and without
a fixed mapping to actual hardware rows.

The TCAM-user API will need to provide certain
functions, including (among many others):
• tcamAddRow(tag, action, ordering): Used to add

a row with a given tag value and action, and an intra-
switchlet value to control how rules are ordered.
Returns either an opaque handle for the row, or a
failure indication.

• tcamDeleteRow(handle): does the obvious thing.
• tcamGetRow(handle): returns the corresponding

TCAM entry, including statistics.
• tcamRegisterInterest(handle, callbackFunc-

tion): specifies a switchlet function to be called
with each packet that matches the row; the default
is no callback. This is the way that switchlets can
receive packets and/or discover flows.

• tcamConflictCallback(handle, callbackFunc-
tion): If another, higher-priority switchlet creates a
TCAM row that conflicts with the one associated
with the handle, this callback informs the current
switchlet that the row has been reassigned to the
other switchlet’s purposes. Section 3.4 discusses
conflicts in more detail.

The TCAM-optimizer API will need to provide certain
functions, including (among many others):
• Loading a set of TCAM rows: The optimizer’s

output needs to be loaded into the TCAM; possi-
bly this will require some synchronization so that
packets are not processed when the TCAM is in an
inconsistent state.

• Obtaining the abstract state of the TCAM
database: The optimizer’s input from Orphal will
consist primarily of the union of the TCAM-user
requests, plus some policy settings provided by a
management layer.

• TCAM usage statistics: Typically, TCAMs sup-
port hit counters for each row.

5

3.4 TCAM row conflicts

Multiple switchlets might try to create conflicting TCAM
rows. Orphal’s approach is to detect these conflicts and
resolve them using an inter-switchlet priority ranking.
(This seems like the simplest approach, but we are ex-
ploring others.) When a low-ranking switchlet tries to
create a new row that conflicts, Orphal simply rejects the
attempt. However, a high-ranking switchlet can create a
row that conflicts with an existing lower-ranking row, in
which case Orphal removes the low-ranking row, inserts
the new one, and informs (via tcamConflictCallback)
the low-ranking switchlet that it has lost the row. Orphal
lets the switchlets figure out what to do in that case.

It is not easy to define what a “conflict” is, and
conflict-checking is an expensive (NP-complete) pro-
cess [19], so checking should not be embedded in Or-
phal per se. Instead, Orphal supports plug-in conflict-
checking implementations using “helper” switchlets.

4 OUR EXPERIENCE WITH OPENFLOW

OpenFlow [20] is a centrally-managed flow-based net-
work where switches are simple forwarding engines that
classify packets into flows and act on them according to
a policy supplied by a central controller. We are port-
ing OpenFlow to a commercial switch, the HP ProCurve
model 5406zl, and here report some of the challenges.

OpenFlow could run entirely in the switch’s software,
but that would not support line-rate forwarding, so we
need to use the TCAM hardware. The controller ex-
pects a flexible flow classifier, so the tricky part is to
match OpenFlow’s flow descriptions (a 10-tuple of phys-
ical ingress port and VLAN IDs; Ethernet source, desti-
nation and type; and the standard IP/TCP 5-tuple) with
what the hardware supports. The challenges include:
• Limited number of TCAM rows: means not all

flows can be classified in hardware. So, we insert a
final wild card entry in the TCAM to divert packets
from other flows to the software stack. We try to
minimize such slow-path packets by keeping busy
flows in the TCAM.

• Limited tag-field size: TCAM widths (e.g., 144
bits) are typically chosen to support lookup on the
IP/TCP 5-tuple (32+32+16+16+8 = 104 bits).
OpenFlow’s 10-tuple, which includes 48-bit MAC
addresses, is too big for such TCAMs. However,
our switch supports multiple TCAM lookups/packet
at line rates, so we support the OpenFlow tuple with
a multi-stage lookup.

• Updating TCAM is not instant: As mentioned be-
fore, updating the TCAM consumes time and dis-
rupts data path. On the other hand, if the TCAM is
not updated quickly with new flow rules, packets for
those flows will be sent to the software stack, limit-

ing peak performance. Batch updating is a possible
solution for this problem.

• Other possible hardware limitations: Not all
router hardware supports a flexible and pro-
grammable sequencer/combiner block (Fig. 2).
Routers might hardcode this function, and allow
only few combinations of subsets of fields to act as
search keys for the TCAM. In such cases, we would
only use the TCAM to match those flows that can
be expressed using the existing hardware. For the
remaining flows, one could either exploit other pro-
grammable blocks, or else these flows would have
to be diverted to the software stack. In a network
with a mix of devices with different hardware lim-
itations, the centralized controller could perform a
global optimization, designing different flow spec-
ifications for the individual devices to match their
hardware limitations, while still enforcing the end-
to-end policies for individual flows.

When a packet arrives for an unknown flow, the Open-
Flow forwards it to the central controller, which updates
that switch (and perhaps others) with new flow-specific
forwarding rules. Using Orphal, we could implement
OpenFlow as a switchlet that forwards no-match pack-
ets to the controller, and installs controller-supplied re-
sponses into the forwarding table. The controller deals in
10-tuples; we intend to use a helper switchlet to convert
these into patterns that the switch’s TCAM can handle.
This helper could also be used by other switchlets, such
as firewalls.

5 ADDITIONAL RELATED WORK

Others have proposed abstraction layers for network im-
plementation, but at higher levels than Orphal. For exam-
ple, NOX provides “an execution environment for pro-
grammatic control over the full network,” [11] rather
than focussing on router-level control. Decasper et al.
described a XORP-like system, called Router Plugins,
for NetBSD on commodity hardware [8]. Lakshman et
al. [16]. described SoftRouter, an Ethane-like design
with a protocol to control forwarding elements, but at
a higher level of abstraction than Orphal.

The IEEE P1520 Working Group worked to define
a set of open network programming interfaces [3], al-
though apparently the attempt died several years ago.
Most of P1520 was clearly at a higher level than Or-
phal; its “CCM-interface” dealt with “physical elements”
(probably also at a higher level) and was “not a program-
ming interface, but a collection of [remote management]
protocols” [3].

Possibly the first use of the term “switchlet” was by
van der Merwe and Leslie [24], who described a way to
run multiple control architectures within the same ATM

6

network. Their switchlets managed subsets of the re-
sources on an ATM switch, in a design reminiscent of
OpenFlow [20], and at a higher layer of abstraction than
Orphal.

There is a lot of prior work on TCAMs. In addition to
the work cited earlier, Dong et al. [9] describe some in-
teresting TCAM optimizations that support range specifi-
cations without special hardware. Other recent papers on
TCAM algorithms include Lakshminarayanan et al. [17]
and Bremler-Barr and Hendler [4].

6 SUMMARY

Open router platforms offer tremendous flexibility, but
exploiting the rich variety of router hardware creates
complexity. Our goal for Orphal is to tame that com-
plexity; we hope to demonstrate working systems in the
near future.

REFERENCES

[1] D. S. Alexander and J. M. Smith. The Architecture
of ALIEN. In Proc. Intl. Working Conf. on Active
Networks, pages 1–12, 1999.

[2] M. Arlitt. Personal communication, 2008.
[3] J. Biswas, A. A. Lazar, S. Mahjoub, L.-F. Pau,

M. Suzuki, S. Tortensson, W. Wang, and S. We-
instein. The IEEE P1520 standards initiative for
programmable network interfaces. Commun. Mag-
azine, IEEE, 36(10):64–70, Oct 1998.

[4] A. Bremler-Barr and D. Hendler. Space-Efficient
TCAM-based Classification Using Gray Coding. In
Proc. INFOCOM, pages 1388–1396, 2007.

[5] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: taking con-
trol of the enterprise. In Proc. SIGCOMM, pages
1–12, Aug. 2007.

[6] M. Casado, T. Koponen, D. Moon, and S. Shenker.
Rethinking Packet Forwarding Hardware. In Proc.
HotNets, Oct. 2008.

[7] N. da Fonseca, A. Castro, Jr., and A. Rios. A
procedure for resource allocation in switchlet net-
works. In Proc. GLOBECOM, volume 2, pages
1885–1888, Nov. 2002.

[8] D. Decasper, Z. Dittia, G. Parulkar, and B. Plat-
tner. Router plugins: a software architecture for
next generation routers. In Proc. SIGCOMM, pages
229–240, 1998.

[9] Q. Dong, S. Banerjee, J. Wang, D. Agrawal, and
A. Shukla. Packet classifiers in ternary CAMs can
be smaller. In Proc. SIGMETRICS, pages 311–322,
2006.

[10] B. Gamache, Z. Pfeffer, and S. P. Khatri. A fast
ternary CAM design for IP networking applica-
tions. In Proc. ICCCN, pages 434–439, Oct. 2003.

[11] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an
Operating System for Networks. In SIGCOMM
CCR, July 2008.

[12] M. Handley, O. Hodson, and E. Kohler. XORP:
an open platform for network research. SIGCOMM
CCR, 33(1):53–57, 2003.

[13] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and
P. Radoslavov. Designing extensible IP router soft-
ware. In Proc. NSDI, pages 189–202, Boston, MA,
2005.

[14] HP ProCurve. ProVisionTM ASIC: Built
for the future. http://www.hp.com/rnd/
itmgrnews/built_for_future.htm.

[15] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click Modular Router. TOCS,
18(3):263–297, 2000.

[16] T. Lakshman, K. Sabnani, and T. Woo. Softrouter:
An open extensible platform for tomorrow’s inter-
net services. In Proc. PRESTO, 2007.

[17] K. Lakshminarayanan, A. Rangarajan, and
S. Venkatachary. Algorithms for advanced packet
classification with ternary CAMs. In Proc.
SIGCOMM, pages 193–204, 2005.

[18] H. Liu. Efficient Mapping of Range Classifier into
Ternary-CAM. In Proc. Hot Interconnects, pages
95–100, Aug. 2002.

[19] R. McGeer and P. Yalagandula. Minimizing Rule-
sets for TCAM Implementation. Tech. Rep. HPL-
2008-106, HP Labs, 2008.

[20] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: enabling innovation in
campus networks. SIGCOMM CCR, 38(2):69–74,
2008.

[21] C. R. Meiners, A. X. Liu, and E. Torng. Algo-
rithmic Approaches to Redesigning TCAM-Based
Systems. In Proc. SIGMETRICS, June 2008.

[22] J. Mogul, R. Rashid, and M. Accetta. The packet
filter: an efficient mechanism for user-level net-
work code. In Proc. SOSP, pages 39–51, 1987.

[23] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
A Programming Model for Reusable Hardware in
NetFPGA. In Proc. PRESTO, Aug. 2008.

[24] J. E. van der Merwe and I. M. Leslie. Switchlets
and Dynamic Virtual ATM Networks. In Proc. 5th
IFIP/IEEE Intl. Symp. on Integrated Network Man-
agement, pages 355–368, 1997.

[25] Z. Wang, H. Che, and S. K. Das. CoPTUA:
Consistent Policy Table Update Algorithm for
TCAM without Locking. IEEE Trans. Comput.,
53(12):1602–1614, 2004.

[26] XORP Project. XORP Router Manager
Process (rtrmgr) Version 1.4. http:

7

//www.xorp.org/releases/1.4/docs/
rtrmgr/rtrmgr.pdf, 2007.

[27] M. Yuhara, B. N. Bershad, C. Maeda, and J. E. B.
Moss. Efficient packet demultiplexing for multiple
endpoints and large messages. In Proc. USENIX
Winter Tech. Conf., pages 153–165, 1994.

[28] F. Zane, G. Narlikar, and A. Basu. Coolcams:
power-efficient TCAMs for forwarding engines. In
Proc. INFOCOM, volume 1, pages 42–52, 2003.

8

