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Significant work has been conducted in the past to understand the
thermodynamic variables and parameters that influence the environmental
conditions of the rooms vis-a-vis the computer room air conditioning (CRAC) 
units, racks and servers.  A considerable amount of data had been collected from
environmental sensors located at various locations within data centers,
measuring the supply and return air temperatures in the CRAC units and both 
inlet and outlet temperatures in the racks. 

This work describes the analysis done to discover and classify trends and
patterns and relationships within temperatures and air flow data in a data center.
Initially exploratory data analysis (EDA) techniques were used for reduction of 
data, visualization of deterministic behavior and identification of normal or
abnormal environmental behavior in the control process.  Principal Components
Analysis (PCA) was used to capture the variables that contain the information 
about the influence of CRAC units over the racks. 
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Abstract

Optimization of data center performance for reduction
in power and cooling costs is crucial to the growth of IT
services both in enterprise and consumer sector. Significant
work has been conducted in the past to understand the
thermodynamic variables and parameters that influence
the environmental conditions of the rooms vis-a-vis the
computer room air conditioning (CRAC) units, racks and
servers. A considerable amount of data had been collected
from environmental sensors located at various locations
within data centers, measuring the supply and return air
temperatures in the CRAC units and both inlet and outlet
temperatures in the racks.

This work describes the analysis of environmental data
collected from such sensors to discover and classify trends
and patterns and relationships within temperatures and air
flow data in a data center. Data mining techniques have
been used to extract knowledge from historical data to im-
prove the dynamic monitoring and control of data center
power and cooling resources. Initially exploratory data
analysis (EDA) techniques were used for reduction of data,
visualization of deterministic behavior and identification of
normal or abnormal environmental behavior in the control
process. Since the most important part of the analysis is to
understand the influence of the CRAC units over the racks,
Principal Components Analysis (PCA) was used to capture
the variables that contain most of that information.

1. Introduction

Data center thermal management challenges have been
steadily increasing over the past few years due to rack
level power density increases resulting from system level
compaction [1], [2] and energy demands. Cost effective
management of such high power levels in the data center
with reliable cooling solutions is essential to support the
pervasiveness of computing needs. Nonetheless, energy

consumption of data centers has also been severely in-
creased by over-designed air handling systems and rack
layouts that allow the hot and cold air streams to mix. Lack
of local temperature sensors for monitoring and control has
contributed to this gap in knowledge of air flow patterns and
thermal management issues in conventional data centers.

With the advent of Smart Cooling [3], local temperature
sensing is becoming a key part of datacenter thermal man-
agement. In the past, temperature sensing has been crucial
for test cases and experimental needs [4]. However, signif-
icant research needs to be done to analyze and understand
the immense amount of data collected from these sensors
during runtime. Expedient evaluation [5] and inferencing
is needed at runtime to reap the benefits of an adaptive
control system [6], [7]. In this paper, we explore the
application of data mining techniques, statistical methods
[8], exploratory data analysis [9] techniques, and principal
components analysis on temperature data sets collected
from production data centers in HP Labs, Palo Alto for
development of expert systems and advising solutions for
runtime management.

2. Data Center Layout

Figure 1 displays a typical state-of-the-art data center
air-conditioning environment with under-floor cool air
distribution. Computer room air conditioning (CRAC)
units cool the exhaust hot air from the computer racks.
Energy consumption in data center cooling comprises work
done to distribute the cool air and to extract heat from the
hot exhaust air. A refrigerated or chilled water cooling coil
in the CRAC unit extracts the heat from the air and cools it
within a range of 10� to 18�. The flow of chilled water is
controlled by an internal mixing valve that operates based
on the air temperature measured at the return of the CRAC
unit.

The air movers in the CRAC units pressurize the plenum



with cool air. The cool air enters the data center through
vented tiles located on the raised floor close to the inlet of
the racks. Typically the racks are laid out in rows separated
with hot and cold aisles as shown. The cold aisles supply
cold air to the systems and the hot aisles receives hot air
from the systems. A multitude of other equipment layout
configurations and non-raised floor infrastructures exist
and are applicable to the present study [10].

Figure 1. Typical Raised Floor Data Center
Configuration

Each one of the racks in the datacenter has attached a set
of five sensors at the inlet, and other five at the outlet. For
this paper has been considered only the inlet sensors at the
front denoted by T1, T2, T3, T4 and T5 from bottom to top
(see Figure 2).

Figure 2. Rack Inlet Temperature Sensors

The rack units are grouped by rows (see Figure 3). Rows
A, Aext, B, Bext, C and G were selected in order to cover
different locations within the datacenter for the analysis.

Figure 3. Data Center Layout

To understand the effect the CRAC units on the rack
temperature sensors, perturbation experiments were con-
ducted. CRAC unit temperature setpoint and air flow rates
were changed to perturb the thermal equilibrium in the
datacenter. The goal of the experiments were to better
understand the transient fluid mechanics and heat transfer
in a dynamic datacenter. Such knowledge can help in
identifying potential anomalies and operational issues in
datacenter operation [11].

3. SmartCooling Data Mining

A large amount of data had been collected over 2
years from the data centers located at Hewlett-Packard
Laboratories running several experiments in order to un-
derstand the dynamic interaction existing between CRAC
unit temperatures and the corresponding responses over
the rack sensors. Automation of knowledge discovery and
development of predictive control are some of the key goals
of this research effort. Data mining techniques provide
methods for reduction of raw data for analysis and tools
for extraction of significant patterns for model development.

In this first approach to understand the influence of the
CRAC units over the racks was used Exploratory Data
Analysis and Principal Components Analysis in order to
gain a deep insight into the raw data and to identify the
significant variables that are acting over the whole system.

Here are presented the outputs from two of the con-
ducted experiments, the first one with a perturbation length
of 30 minutes (Figure 4a) called experiment A, and the
second one of 60 minutes (Figure 4b) called experiment B.
The plots show the progressive perturbation of CRAC Unit



1 (CU1) through CRAC Unit 6 (CU6). The perturbation of
each CU starts when the previous CU is reaching its lowest
temperature. For example, at index time 70 (Figure 4a),
CU1 is reaching its lowest temperature (see first subplot),
and at the same time is starting the perturbation over CU2
(see second subplot), and so on over the other CUs.

Figure 4. Perturbation over CRAC Unit Supply
Temperatures

The response of the rack sensors to that perturbations
are recorded simultaneously. Figure 5 shows the sensor
response of the sensors located in different rack units for
the two experiments. Initially, the response of the sensors
appears to be identical for different periods of time.

The following subsection describes the results obtained
from the Exploratory Data Analysis of this raw data.

3.1. Exploratory Data Analysis (EDA)

EDA enables greater insight into a raw data set. In this
work it was used specially to test underlying assumptions
such as randomness and distribution fitting. 13 racks are
randomly selected from a datacenter for analysis. For the
purposes of this paper, outputs from rack A7 sensors are

Figure 5. Rack Inlets Temperatures

obtained from the two experiments. Figure 6 shows the
response of each one of the sensors from that rack for the
two experiments.

The first test was conducted to determine the random-
ness of the data. Using lag-plots as shown in Figure 7, it is
possible to visualize a strong relation between the current
temperature, denoted Y and the previous, denoted Yi−1.
This relation suggests the presence of a deterministic nature
of the data, indicating the choice of model that can be built
from the data. In this case, an auto-regressive model could
be the most suitable for this data.

Figure 6. Sensor Response Temperatures at
Rack A7

Understanding the shape of the distribution is necessary
to create the appropriate predictive model. In that context,
the second test was conducted to determine the distribu-
tion that best fit the data [12]. Figure 7 also shows the
normal probability plot for both data sets. These plots in-



Figure 7. Lag Plot and Normal Probability Plot
for Rack A7

dicate that normal distribution does not adequately fit the
data. Probability Plot Correlation Coefficient Plot (PPCC)
[13] is used to identify the kind of distribution appropri-
ate for the data. The shape parameter λ is obtained using
Tukey Lambda PPCC calculator [14]. This parameter in-
dicates whether a distribution is short or long tailed, thus
describing the best-fit family distribution for the data. In
this case, Tukey Lambda PPCC plots for both data sets, con-
clude that U-shaped distribution families are appropriate for
this purpose. This conclusion is confirmed by looking the
histogram of the data set in Figure 8 where it is noticed the
presence of low and high extreme values, which indicates
the low and high limits of the temperatures within the data-
center.

Figure 8. U-shaped Distribution

The relation between air supply temperatures of the
CRAC units and the temperature response of the rack units
for the two experiments are shown in Figures 9 and 10. The
scatter plots show the variation of temperatures of rack A7
with air supply temperatures for all the CRAC units.

The most probable sensor response is shown for a
range of CRAC unit air supply temperatures. The gaps
corresponds to the abrupt transition between successive
perturbations in each CRAC unit. Since the variation in
the first data set (experiment A) is higher than that for
the second one (experiment B), the data is much more
dispersed. Unlike that in the former experiment, the data
is more concentrated in each one of the stages of the
performed experiment in the later case.

Following analysis of relationship between the CRAC
units and the sensors, cross-correlation coefficients were
calculated (see Figure 11) for rack A7. The highest cor-
relation coefficient corresponds to CRAC Unit 1 and CRAC
Unit 2. This output can be easily explained by the location
of the rack as shown in Figure 3. Rack A7 is located in
Row A which is closer to CRAC Unit 1 and CRAC Unit 2.
CRAC Unit 1 correlations, however, decrease with height
of the sensor. The lower sensors (T1 - T3) show a high cor-
relation due to direct influence of air supply from the CRAC
Unit 1 through the vent tiles. Sensors T4 and T5 are located
close to the top of the rack and are affected by secondary air
flows from other directions.

Figure 9. Crac Units Supply Temperatures Vs.
Sensor Temperatures (Experiment A)

3.2. Principal Components Analysis (PCA)

Having gathered details about data set through EDA,
Principal Component Analysis was conducted to identify



Figure 10. Crac Units Supply Temperatures
Vs. Sensor Temperatures (Experiment B)

Figure 11. Correlation Coefficients respect to
Crac Units Temperatures

the significant influences among the CRAC Units. Based
on the inference from the plot of correlation coefficients
(see Figure 11), the analysis can be extended to look for
the correlated data between the recorded time series for
each sensor in each rack unit. PCA is used to reduce
dimensionality in the data set, while maintaining the
variation present in the data set [15].

Let X be the raw data matrix of dimension m × n,
where m corresponds to the total of observations (tj , j =
0, ...,m− 1) and n corresponds to the total number of sen-
sors (column vectors xl, l = 0, ..., n − 1). Figure 12 illus-
trates the configuration of the matrix.

Figure 12. Input Data Matrix

The goal of PCA consists in finding an orthonormal ma-
trix V such that the set of correlated variables X be trans-
formed into a new data set Y of uncorrelated variables with
maximum variance. This transformation is presented in
Equation (1) as follows:

Y = V X (1)

The set of vectors vi, i = 0, ..., k − 1 forms a new basis
for the data set X and are called the Principal Components
of X . These vectors have the following properties:

1. They are the eigenvectors of CX , the covariance matrix
of X

CX =
1
m

XXT (2)

where XT is the transpose of X

2. The covariance matrix of Y , referred to as CY is a di-
agonalized matrix such as each element CYi is the co-
variance of X along vi. The elements of CY are known
as the eigenvalues of CX

3. The projection of Y into the original space is given by

X̃ = Y V (3)

It is obtained in such a way that the squared error∑
m

∥∥∥X − X̃
∥∥∥2

be minimum.



According to [16], the vector columns of Y are the
hidden variables for X . Hidden variables are detected with
the occurrence of anomalies in the process. In this case,
the CRAC unit perturbations are equivalent to anomalies.
The variation in the energy of the signal is captured by the
number of hidden variables detected. The occurrence of a
change in the energy of the signal increases the number of
hidden variables. If the energy remains stable, the number
of hidden variables is reduced. Detection of a single hidden
variable indicates normal behavior.

A small subset of racks were selected to demonstrate
the utility of this technique. The selection was based on
knowledge the physical location of the racks to capture
inter-row and intra-row (or inter-rack) variations. The first
subset corresponds to rack units A1, A4 and A7, and the
second subset corresponds to rack units B2 and B7, in
order to compare the behavior of the two rows of racks in
the data center. Figure 13 illustrates the specific location of
each one of those racks within the datacenter.

Figure 13. Location of racks within datacenter

The raw data was normalized using Equation (4) before
analysis for detecting hidden variables.

X̄ = (X − µ) /σ (4)

Figure 14 show the supply air temperatures of CRAC
Units 1, 2 and 3 in experiment A and Figure 15 for
experiment B. The vertical lines over the plots indicate
the most significant index time where the number of
hidden variables increased. Three runs for detecting hidden
variables were executed. Run 1 included rack units A1, A4,
and A7 (magenta line). Run 2 included rack units B2 and
B7 (cyan line). Run 3 included all five rack units together
(green line).

These plots indicate that the increase in the number
of hidden variables coincides with the perturbations of

Figure 14. Hidden Variables (Experiment A)

Figure 15. Hidden Variables (Experiment B)

the CRAC Units 1, 2 and 3 labeled as P1, P2 and P3
respectively. In Figure 14, perturbation P1 was detected by
run 1, perturbation P2 by run 2, and perturbation P3 by run
3. In Figure 15, perturbations P1 and P2 were detected by
run 1 and perturbation P3 by run 3. Looking at the Figure
13, these CRAC units are affecting the response of the
rack sensors. The detection of hidden variables took less
iterations when all the racks are analyzed together (A1, A4,
A7, B2, and B7).

The estimation of time of ocurrence of a perturbation
at rack level is very useful to further analysis of the
correlations between the CRAC units and the racks. Similar
detection can be used to perform change point detections
and identify any periodicity in perturbations.

4. Conclusions

With the development of complex IT and facility
infrastructure, rising energy costs and evolving data center
service scenarios, it is important to understand the need
for an expert management system that can manage the life
cycle of the data center services. Although composite and
advanced numerical models have been developed to design
datacenter energy and thermal management infrastructure,
none exist for real time management. Techniques like Ex-
ploratory Data Analysis and Principal Component Analysis
are a necessity for the development of such models in real
time. This paper is an attempt to lay the foundation for



such an approach.

The current work was focused on reduction of raw data
to gain a deep understanding of the influence of CRAC
Units over rack sensors. EDA was useful in discovery of
the deterministic nature of data and thus guide the building
of an auto-regressive model. Creation of such models will
help i providing future predictions about the energy and
cooling management within the data center.

Identification of hidden variables by using PCA neces-
sitates further analysis of multiple time series in order to
determine accurately the location of change points across
correlated data. This makes it possible to build a robust
model for the thermal management in the data centers as
well as to improve its physical deployment of resources.
The comparison of two different experiments of different
duration helps to estimate the characteristic time periods
that can increase the statistical significance of the study.

Although much remains to be done in this area, such
an analysis of environmental data is crucial to gather in-
ferences from past performance, to control the present en-
semble and to predict (or prevent) the occurrence of critical
events within future datacenters.
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