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This report relates to the field of image restorations and features extracting from
noisy and blurred images. Since their introduction in a classical paper by Rudin,
Osher and Fatemi, Total Variation (TV) minimising models have become one of 
the most popular and successful tools for image restorations. Whilst invariance
under affine transformations is very important for many image processing tasks, 
the total variation functional is not invariant under general affine transformation.
In the current report we introduce for the first time a new affine invariant
regularization functional which has many properties similar to total variation 
and can be used for affine invariant denoising and restoration tasks. The explicit
formula for calculation of this regularization functional is given. 
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Abstract

This report relates to the field of image restorations and features extracting from noisy 
and blurred images. Since their introduction in a classical paper by Rudin, Osher and 
Fatemi [2], Total Variation (TV) minimising models have become one of the most 
popular and successful tools for image restorations. Whilst invariance under affine
transformations is very important for many image processing tasks, the total variation 
functional is not invariant under general affine transformation. In the current report we 
introduce for the first time a new affine invariant regularization functional which has 
many properties similar to total variation and can be used for affine invariant
denoising and restoration tasks. The explicit formula for calculation of this 
regularization functional is given.

Introduction

Variational models have been extremely successful in a wide variety of restoration 
problems (denoising, deblurring, blind deconvolution, and impainting), and remain 
one of the most active areas of research in image processing and computer vision. 
Variational models exhibit the solution of these problems as minimizers of 
appropriately chosen energy functionals.

Assume that a given image 0u is noisy and blurred: 

0 .u Ku n= +
Then the Bayesian restoration energy proposed in [2] is 

(1)                                          0 0[ | ] ( ) [ | ]E u u TV u E u uλ= +
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for a certain tuning parameter 0λ > , and ( ) :TV u u= ∇∫ denotes the total variation of 
u . Used as a regularization term, the TV functional is particularly relevant in 
recovering piecewise smooth functions without smoothing the sharp discontinuities, in 
contrast with other regularization functionals generally based on a quadratic norm.

The revolutionary aspect of the model (1) is its regularization term ( )TV u that allows 
for discontinuities, but at the same time disfavours oscillations. However, this 
regularization term is not invariant under general linear transformation. This limits 
application of this method for image registration problems and for analysis of images 
obtained under different angles.

Affine invariant total variation energy

Since we are going to introduce an affine invariant energy we will think about 2R as 
an abstract two dimensional real vector space V without any preselected basis. Let 

: Ru V → be any smooth enough function on V with compact support.  V is 
commutative locally compact group, so it has a well defined invariant Haar measure 

( )dxµ defined up to constant. This Haar measure is a multiple the standard Lebesgue 
measure, but we want to construct everything “coordinate free”. Now, using the 

function u and the measure ( )dxµ , we define a norm  u
⋅ on the same vector space 

V . Let v V∈ be any vector from V . The derivative vL u of the function u in direction 
of the vector v is defined as usual by

0

( )( )( ) .v
t

du x tvL u x
dt =

+
=

vL u does not involve any inner product or norm on V . We defined u
v as 

(2)                                          ( )( ) ( ).vu
V

v L u x dxµ= ∫
Now ( , )

u
V ⋅ is the two-dimensional Banach space that we shall associate with u . Its 

unit ball 1( ) { : 1}uB u v V v= ∈ ≤ is a symmetric convex body in V and our new 
affine invariant total variation energy of u is defined as 

1

1( ) ,
( ( ))

ATV u
Vol B u

=

where 1( ( ))Vol B u is just µ − measure of 1( ).B u This ATV energy is obviously 
invariant under linear measure preserving transformation. Moreover, as was shown in 
[4] the following Sobolev-type inequality holds 

2( ) ,
L

ATV u const u≥ ⋅
which opens the way for using functional analysis techniques to analyse these ATV-
type models. For practical calculation another expression for 1( ( ))Vol B u is more 
useful. If we introduce any Euclidean structure on V then 
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1

2
1

1( ( )) ,
2 v L

S

Vol B u u dv−= ∇∫
where 1S is the unit circle with canonical measure dv and 1 2

1 2v
u uu v v
x x

∂ ∂
∇ = +

∂ ∂
in the 

orthogonal coordinate system ( 1 2 1 2( , ), ( , )x x x v v v= = ).

Remark. 1) 
3/2

2( ) ( )ATV u TV u
π

≤ . To see this, note that from the Hölder inequality 

and Fubini’s theorem we have 
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∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

where 0v is any fixed unit vector. From this we have 
1

1 2 ( )
( ( ))

TV u
Vol B u ππ

≤ which 

implies 
3/ 2

2( ) ( )ATV u TV u
π

≤ .

2) If data has additional smoothness then we can define p-version of ATV by using 
pL norm in (2).

Conclusions

In this report we have introduced new affine invariant total variation energy. Using 
this energy as a regularization term results in affine invariant total variation models. 
This ATV energy  has the following

Advantages:

1) ATV energy is bounded from above by total variation energy 
ATV(u) • 2 p-3/2 TV(u)

and thus is capable of handling edges. This is because edges are precisely the 
case of finite TV.

2) Stability and efficiency of TV models heavily depend on Sobolev inequality 
(Sobolev inequality allows to prove existence of decompositions and to 
control error in numerical schemes). New proposed ATV energy satisfies the 
same inequality.

3) Since ATV is affine invariant by construction, the results of restoration will 
also be affine invariant.

4) Despite of being affine invariant ATV energy can be effectively calculated in 
any orthogonal coordinate system.
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