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Jonathan Griffin, Brian Monahan, David Pym?, Mike Wonham, and Mike Yearworth
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Abstract. Assessing the value of investments in network security operations remains a challenging
problem. We suggest that an essential component of an analysis of this problem must be an account
of the structure of the system/network and the services it is intended to deliver. We apply the methods
of classical applied mathematics — using tools drawn from algebra, logic, probability theory, and
theoretical computer science — to represent systems, services, and information flows in order to
assess the value of network and security operations deployed in response to environmental threats and
the requirements of business alignment. We use Monte Carlo experimentation to explore the levels
of investment in, and trade-offs between, operations staff and security control devices necessary to
maintain network availability of value determined by a given Service Level Agreement. We conclude
that our methods deliver useful analyses and identify necessary future work required properly to
integrate models of spatially distributed networks, stochastic environmental behaviour, and system
value.

1 Introduction

Computer networks that are connected to the internet are now a predominant feature of business and
social life at all scales, from small businesses to multinational corporations, from individuals to gov-
ernments. Indeed, to operate efficiently, particularly in a distributed manner, many organizations, both
large and small, depend upon computer networking as an essential management tool through which most
operational activity is either coordinated or mediated.

Because of this dependence, any disruption of an organization’s network services can be extremely costly,
and might even threaten the continued existence of the organization as a functioning business entity. Be-
cause of the improving reliability of the physical infrastructure, combined with the inherent resilience of
high-level connections provided via packet switching and TCP/IP, a large proportion of network down-
time arises from security issues at the local network’s points of contact (‘endpoints’) with the outside
world. These endpoints include not only internet connections themeselves but also local client systems,
mail servers, web servers, database systems, and more.

Organizations typically respond to the occurrence of network security issues by investing in information
security operations [15–17, 35]. Such investments are considered necessary to protect the confidentiality,
integrity, and availability of an organization’s information systems against attacks, and represent sub-
stantial investments in technologies, tools, and human resources. The objective of these investments is
to allow the organization to maintain its operational (e.g., trading) activities and so security operations
investment decisions must be consistent with the organization’s overall operational and financial models.
Indeed, estimating the return on ICT investments must be based on a desire to avoid losses arising from
externalities, such as indiscriminate worms and viruses or highly focussed attacks. Such an analysis is
challenging [3, 2] and requires an approach to monetizing the loss of availability, integrity, and confi-
dentiality, and to estimating the risk of occurrence. Therefore, we should no longer regard ICT security
as being purely a technology issue, at least within the sphere of corporate business. Rather, it is helpful
to regard ICT security as a process — something that is done to create a smooth environment for the
organization’s operations — typically with specific cost objectives.
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In this paper, we explain an approach to assessing the value of investments in network security operations
that is based on systems analytics. We begin, in § 2, with an explanation of our perspective, paying par-
ticular attention to the rôle of systems modelling, including the need to understand information security
operations as a process, as opposed to a product or pure technology, and the influence of Activity-based
Costing. Then, in §§ 3.1, 3.2, and 3.3, we explain our modelling philosophy and the conceptual and
mathematical bases for our modelling approach, including an account of how our framework is realized
in our modelling tool. In § 4, we discuss the nature of network/security operations and discuss how, in
the context of availability, the value of security operations can be represented by the terms of the Service
Level Agreement (SLA) associated with its management, and explain the ket aspects of (i) a basic model
of the operational response to threats to a system, and (ii) a model of the operations required to support
the placement of security controls (such as firewalls and similar devices). In § 5, we give a detailed de-
scription of our model, as implemented in our modelling tool, Demos2000. We explain the structure of
the model in terms of our conceptual framework, and illustrate some key aspects of the code. In § 6, we
outline some of our experimental results, rendered as the output of Monte Carlo simulations. Finally, in
§ 7, we summarize our achievements to-date and discuss the research directions arising from our work.

The scope of this article is rather wide. For that reason, for our present purposes, we make illustrative,
rather than comprehensive, choices of citations of the literature.

2 Assessing the Costs and Benefits of Network Security Operations

2.1 The Systems Analytics View of Information Security Economics

In recent years, there has been a good deal of research activity addressing topics within what has become
known as information security economics. The scope of this field is, perhaps, well-drawn by the contents
of [9].

An examination of the contents of [9] reveals, however, a quite disparate collection of activities. We sug-
gest that an appropriate unifying framework for addressing the concerns of the economics of information
security is provided by an idea of systems analytics.

The key observations of systems analytics are, we suggest, the following:

– That the economics of information security is broadly concerned with two main issues:
1. Modelling the various markets in vulnerabilities (for example, [10]) and in the delivery of infor-

mation security operations, such as basic questions of strategy (for example, [21]) or the market
for security outscourcing (for example, [18]); and

2. Costing and valuing the investments in the security operations that are applied to the systems
that deliver services based on information that requires, at least to some extent, protection;

– That the value of information security operations can only be understood in the context of the sys-
tems, and the services delivered by those systems, to which they are applied;

– That, therefore, an appropriate basis both for analysing the markets in the delivery of information se-
curity operations and valuing the investments in security operations in particular systems is provided
a by systems modelling approach.

Implicit in each of these is the need to address, among many things, topics such as quantification and
measurement of risk (e.g., [31]).

In the context of ICT systems — surely the leading example of interest — we would emphasize that our
view of systems here includes (descriptions of) all of the following:

– The environment, including the threats, within which the system resides;
– The network and devices of the system;
– The services delivered by the system; and
– The users of the system, both external and internal.



In the context of information security economics, systems analytics is concerned, then, with providing
mathematically rigorous models of systems, in the sense described above, that are able to capture those
properties of the system (e.g., aspects of dynamics, of resource usage, of policies and protocols, of Ser-
vice Level Agreements, and so on) that are pertinent to answering questions about the two main issues
described above; that is, the markets in the delivery of information security operations, and the valuing
of investments in the security operations that are applied to specific systems. In this paper, we shall be
concerned with the latter issue.

2.2 Security Operations Processes

Information security operations — necessary to protect the confidentiality, integrity, and availability of an
organization’s information systems against attacks — represent substantial investments in technologies,
tools, and human resources. The objective of these investments is to allow the organization to maintain its
operational (e.g., trading) activities and so security operations investment decisions must be consistent
with the organization’s overall operational and financial models. Indeed, estimating the return on ICT
investments must be based on a desire to avoid losses arising from externalities, such as indiscriminate
worms and viruses or highly focussed attacks. Such an analysis is challenging (Anderson 2001), and re-
quires an approach to monetizing the loss of availability, integrity, and confidentiality, and to estimating
the risk of occurrence. Therefore, we should no longer regard ICT security as being purely a technology
issue, at least within the sphere of corporate business. Rather, it is helpful to regard ICT security as a
process that is executed in order to create a smooth environment for the organization’s operations. In
order to understand the value of operational processes, modern corporate management makes essential
use of metrics to assess impact upon business performance, so enabling an understanding of the conse-
quences of operational decisions for key indicators, such as shareholder value. For security, the question
that then arises is that of how to measure the level of security performance that these security-related
processes achieve [17]. In order to formulate this question precisely, it is necessary to understand the
goals of security operations and to have mechanisms for predicting the outcomes of specific processes.
Then it becomes possible to integrate ICT security investment decisions within an organization’s overall
operational and financial processes.

2.3 Activity-based Costing (ABC)

Traditional management accounting methods were typically not able to accurately manage and separate
direct costs (e.g., expenditure identified specifically with a particular business project) from indirect
costs (e.g., expenditure on services which cannot be economically identified with a particular project).
The indirect costs would be allocated across the identifiable projects, perhaps on a pro-rata overhead
basis. Such an allocation places burdensome overheads upon some projects, potentially distorting overall
performance assessment (e.g., projects that had otherwise adequate performance would appear to be
marginal due to the taxation imposed by allocation of indirect costs). As a result, management decision
making would be based upon a distorted view of expenditure, probably leading to poor performance,
poor profitability, or even operational failure.

ABC, introduced by Kaplan and Bruns, and Cooper, [20] and subsequent papers in the Harvard Business
Review, is in part a response to this confusing situation. The main idea is simple: determine what are the
operational (e.g., business) activities and what are their outputs (e.g., products, services) and accurately
determine their resource usage. Typically, the benefits result from the outputs of business activities and
the costs arise as a result of resource usage by those activities. Thus, more refined and accurate cost
structures are developed within which a more accurate allocation of costs can be achieved. In this way,
ABC identifies cause and effect relationships to which costs can be more accurately assigned and so
eliminates many sources of indirect cost. A substantial benefit is that management can more clearly
identify the sources and causes of high costs within the business. In some cases, costs may well be
deemed to be justified and accepted as the cost of doing business; in others, however, costs may exceed
the benefits achieved, suggesting possible re-evaluation and reorganization.



3 The Systems Analytics Approach

In this section, we explain informally the theoretical basis of our modelling technology by describing our
semantic analysis of the structure and dynamics of the systems that we aim to model.

We begin, in § 3.1, with an explanation of the style — that of classical applied mathematics in engineering
— used to construct our models, paying particular attention to the influence of Activity-based Costing
(ABC). In § 3.2, we give a brief account of the basic concepts of interest to us; then, in § 3.3, we give a
brief description of its mathematical realization in the synchronous calculus of resources and processes
(SCRP, for short) and an associated modal logic (MBI) [26, 27]. Next, in § 3.4, we introduce the language
of current modelling tool, Demos2000; then, in § 3.5 we give a brief summary of the extent to which our
framework is partially realized by the Demos2000.

Later, in § 5, we explain how each of the ideas we have explained in this section arises in a particular
model of interest.

3.1 The Modelling Process and Style

The use of mathematical models in engineering has a long and distinguished record of success. From
earthworks to suspension bridges, from bicycles to spacecraft, mathematical models are used to pre-
dict behaviour and give confidence that necessary properties of the constructions — such as capacity,
resilience, and cost — obtain.

Such applications of applied mathematics in engineering are useful, and usable, by virtue of the scientifi-
cally rigorous modelling methodology, summarized conveniently in the following diagram, in which the
left-hand side inhabits the physical world and the right-hand side the mathematical world:

start- observation
induction- model construction

finish-

�

consequences

experiment

6

�
interpretation

mathematical consequences

deduction

?

The modelling process begins with observations of the world, inducing the definition of a mathematical
model, of which properties are deduced. These mathematical consequences of the definition of the model
are then interpreted in the physical world and, experimentally, the extent of their validity is observed.
The cycle is repeated until a model that is judged to be sufficiently accurate is obtained. A critical aspect
of this approach concerns the choice of level of abstraction: it is important to represent in a model just
those features of the phenomenon of interest that are pertinent to the properties and questions of interest.

In the worlds of traditional (mechanical, civil/environmental and even, to a large extent, electrical and
electronic) engineering, the mathematical methods used are mainly those of calculus and differential
equations.

Our approach to systems modelling is to apply the classical modelling cycle to understanding large, com-
plex networks of information processing devices. In this world, the appropriate mathematical methods
are more discrete, being drawn from algebra, logic, theoretical computer science, and probability theory.

In order to apply these methods, we require a conceptual analysis of the relevant aspects of the systems of
interest. Our analysis, which distinguishes concepts of resource, capturing the essentially static compo-
nents of the system, of process, capturing the dynamic components of the system, of location, capturing
the spatial distribution and connectivities of the system, and of environment, within which the system
functions, is described in some detail in §§3.2 and 3.3.



From the perspective of addressing economic, or at least business-value, questions, a certain aspect of
our modelling style is important. Specifically, when deciding how to capture the relevant dynamics of a
system — such as the activities of a network’s security operations staff — we structure the representation
so as to reflect the activity-based costing (ABC) approach recalled in § 2.3 above.

Our use of stochastic, probabilistic, methods is critical. Systems inhabit complex environments within
which pertinent events occur. Typically, there is no realistic hope of our being able to model all of perti-
nent environmental events exactly. Indeed, typically that will evidently be impossible. Instead, we capture
the incidence of events upon our systems using probability distributions. For example, we might repre-
sent the arrival of requests at a web-server by a negative exponential distribution with a rate parameter
that gives a realistic representation of the load on the server. In general, such Markov-style methods set
up systems of queues within the structural framework of resources, processes, and locations.

Finally, we must validate our mathematical models against the external physical world. Our approach
is essentially that of Monte Carlo simulation: our models, though mathematically rigorous in a precise
sense described in the sequel, are coded in an executable language (described in §§3.4, 3.5, and Appendix
A).

3.2 The Conceptual Framework

Our conceptual framework for modelling the integrity and performance of systems is based on an analysis
of four key concepts.

Resource: Informally, we consider resources to be the consumable, static components of a system. Ex-
amples include computer memory, processor cycles, docking bays in a port, and money, among many
other similarly natural examples. Considering these examples, it is natural to require that it should
be possible to combine resources. For one example, two pots of money may be combined to form
another (larger) pot of money. For another, two regions of computer memory maybe combined pro-
vided they do not overlap. Conditions such as this latter one are known as separation conditions and
have been studied in some detail in, for example, ([29, 19, 30]). It is also natural to be able to com-
pare resources. For example, we might compare pots of money, as above, or the size of a region of
computer memory. For another example, resources might be regions of a file system ordered by an
access control régime such as the Bell-La Padula protection model.

Process: We consider processes to be the dynamic parts of systems, which manipulate — for example,
consume, move, combine — resources. For instance, the basic functions of an operating systems, or
the movements of a boat around a dock as it arrives, is loaded or unloaded, and departs. Fortunately,
there is a well-developed mathematical theory of processes [22, 23, 26, 27] which is well-suited to
our purposes. The key aspects of [26, 27] are sketched very briefly below, without theorems.

Location: The idea of location is an intuition derived from the physical concept of place. For one exam-
ple, regions of memory to which an operating system must write may be located on different chips.
For another, a port may have several docking bays and the choice of which to use for any given
boat may depend on the widths and depths of the access channels to the different bays. Considering
the various examples of location, it seems that a model should capture the following features: there
should be a notion of sub-location, a notion of connection between locations, and a notion of zoom-
ing in and out to consider more or less detail of the ‘map’. For more technical reasons, we also need
a notion of the product of locations. In the security domain, a concept of location arises naturally
and essentially. For example, an infection starts at some place(s) then spreads around the system
following an epidemiological pattern that depends, among other things, on the connectivity of the
system components. Understanding the topological properties of the system, such as connectivity, is
therefore essential to determining the appropriate deployment of countermeasures.

Environment: Systems, be they IT, social, business, or physical, are intended to perform functions
within an environment of events. In our framework, we capture the environment of events stochasti-
cally. That is, we assume that given classes of events occur — that is, are incident upon the system
of interest — with given probability distributions. For example, we might assume that boats arrive



at a port according to a negative exponential distribution with parameter. Given such an assumption,
it is then natural to understand the flow of resources between locations, described as a collection of
processes, as a system of queues.

3.3 The Mathematical Framework

Our mathematical framework reflects the conceptual structure outlined above. Each of the key concepts,
resources, process, and location, is captured mathematically by considering the basic mathematical prop-
erties that we expect of it. So, our methods are those of classical applied mathematics but using mathe-
matical tools drawn from logic, theoretical computer science, and probability theory.

Resource: We have seen that the key aspects of resource that we want to capture are unit, composition,
and comparison. Mathematically, we capture these properties by requiring that resources carry the
structure of a pre-ordered, commutative, partial monoid (subject to some mild algebraic conditions).
Specifically, we write

R = (R, ◦, e,v)

to denote the evident quadruple, consisting of an underlying set of resources (r, s εR), a composition
operation, r ◦ s, on resource elements, a unit, e, (i.e., the identity element for composition), and a
comparison relation, r v s, so defining the ordered monoid.

An example, corresponding to money, is given by the natural numbers combined using addition, with
unit zero, and ordered by less than or equals.

For SCRP, we take sets of resources R,S ( ε ℘(R), the powerset monoid over R) over such an
underlying monoid, lifting the monoidal structure in a straightforward way.

Composition: The composition of a set of resources is given by the set of compositions of ele-
ments of the underlying set. The unit is then e.

Comparison: There are some choices, one example being R v S if, for all r εR, there is an
s ε S, such that r v s.

Process: Our model of process is based on a development, SCRP, of Milner’s SCCS (Milner 1983) which
integrates our model of resource. The basic components of SCRP can be summarized as follows:

Actions: which carry the structure of a monoid — so any two actions a and b can be combined
to form a composite action, a#b, with a unit, 1;

Combinators: which allow processes to be built out of actions. The combinators we take are ac-
tion prefix, which allows the sequencing of actions, non-deterministic choice between processes,
concurrent composition of processes, a local binding of resources to processes, and recursion (via
constant definitions). Formally, the grammar of processes, E, is given as follows, following the
order of introduction above:

E ::= a | a : E | E + F | E × F | (νR)E | C:=E.

The connection between actions and processes is expressed using a modification function, µ, a partial
function that maps an action together with a resource to a resource. The meaning of this syntax is
given by an operational semantics, expressed as a collection of inference rules. For example, the rule
for action prefix

µ(a,R) defined

R , a : E a−→ µ(a,R), E
,

says that, provided the effect of the action a on the resource R be defined, then, with resources R
the process a : E can evolve by the action a to become the process E with resources µ(a,R) as
specified by µ. Another example is given by the rule for concurrent composition,

R , E
a−→ µ(a,R) , E′ S , F

b−→ µ(b, S), F ′

R ◦ S , E × F
a#b−→ µ(a#b, R ◦ S), E′ × F ′

,



provided the modification µ(a#b, R ◦ S) is defined. This rule expresses how we form a concurrent
process from its components. Notice that the composite resource is determined by the composition
in the resource monoid, where our separation conditions can be imposed. The rules for the other
combinators are expressed similarly. Finally, we remark that equality between SCRP processes is
given by bisimulation [22, 23]) relative to a given resource and modification function.

Location: Our model of location, capturing the conceptual requirements described above, is very simple.
We require a mathematical structure that supports the following:

– A collection of locations, L, L′, M , M ′, etc;

– Substitution of locations, M [L′/L], of a location L′ for a sub-location L of M . This idea
requires a suitable notion of arity of location, so that substitution suitably preserves connectivity;

– A notion of connection between locations L and M ;

– Finally, a product of locations.

Directed graphs provide a simple and natural example of a model of location.

Environment: As we have seen, we treat the behaviour of the environment stochastically. The simplest
way to understand the relationship the stochastic environment and the process-theoretic structure of
our models is via actions. An example will make things clear. Consider again the example of boats
in port. We have a process that describes the movements of a boat around the port. But how do we
initiate such a process? When a boat arrives at the port, according to the probability distribution for
such arrivals, such as negative exponential or Poisson, the first action in a boat process is initiated.
This happens for each incidence of a boat, and multiple boats execute in the system as concurrent
processes (see above). Note that this gives us an example of a separation condition; concurrent boats
may not share the same docking bay; their respective docking-bay resources must be separate.

Our mathematical framework admits also the possibility, not exploited in this paper, of providing a system
of logic, tailored to our model of resources and processes, in which system properties can be expressed.
The basic idea is to set up a logical judgement relating resources, processes, and their logical properties,
expressed as

R , E |= φ

and read as the property φ holds — that is, is true of — of process E relative to the set R of resources. The
relationship of truth between propositions, resources, and processes is defined inductively on the structure
of propositions, with a case of the induction for each of the logical connectives that is supported by the
semantics. A full discussion of the basics of this logic, called MBI, is provided in [26, 27] and is beyond
our present scope. For now, however, we remark that logical assertions might be used, for example, to
express access control policies for the system (model) described by the (SCRP) resource-process R,E,
so that the judgement R , E |= φ will hold just in case the system (model) is compliant with the policy.
MBI, standing for ‘modal BI’, is based on the logic of bunched implications, BI, introduced in [25, 28,
29, 14], and Hennessy-Milner logic [32]. The main point about BI is that it permits both ’additive’ and
’multiplicative’ logical connectives at the same level of abstraction as one another, thereby admitting,
when combined with modalities in the sense of Hennessy-Milner logic, a logical analysis of the global
and local properties of systems. This point may be seen quite quickly by considering the difference
between the additive and multiplicative conjunctions, ∧ and ∗, respectively. We have

R , E |= φ ∧ ψ iff R , E |= φ and R , E |= ψ,

which refers to the resource and process only locally. On the other hand, we have

R , E |= φ ∗ ψ iff S , F |= φ and T , G |= ψ,

where R is the composition of S and T , and where E is bisimilar (the appropriate notion of equality for
processes [22, 26, 27]) to F ×G. Notice here that the definition of the truth condition for φ ∗ ψ refers to
the global structure of the model of the system and, as a consequence, provides a logical characterization
of concurrent composition [26].



As in Hennessy-Milner logic [23], the connection between the logic and the dynamics of the processes is
facilitated by the modalities, [a] and 〈a〉. In MBI, these modalities have both additive and multiplicative
forms, analogous to the conjunctions described above. The additives may be seen as ‘temporal’ and the
multiplicatives as ‘spatial’ or ‘resourceful’. Specifically, we obtain a theorem [26, 27] to the effect that the
appropriate notion of equality for (SCRP’s) resource–processes corresponds exactly to logical equality in
MBI. The details of this theorem — a key part of our framework — are beyond the scope of the present
discussion.

All these logical ideas can be further enriched with our notion of location, leading to a logical judgement
of the form L , R , E |= φ which, when given with an account of how resources are located using
a modification function that is parametrized on locations, is read as property is true of the process E
relative to resources R located at L. An example of a logical formula of interest would be an expression
of an access control policy, with the overall judgement capturing the assertion that the system is compliant
with the policy.

The operational counterpart, depending on the same parametrized modification function, then takes the
form

L , R , E
a−→ L′ , R′ , E′,

where µ(a, L,R) = (L′, R′), with suitably parametrized rules for each of the combinators. The remain-
ing active strand of research in this area concerns the key security concept of access control. We can
consider a user or a group of users, or rôle, that is to say, a principal, to be a process that is being ex-
ecuted on a system; that is, relative to some resources that are situated at locations. Building on some
ideas introduced by [1] we are able to make mathematically precise their conception that impersonation
— hence groups, rôles, etc. — is a form of concurrent composition of the impersonated and impersonat-
ing principals. Using the ideas from logic to which we have alluded above, we can integrate specifications
of access control régimes.

3.4 The Demos2000 Modelling Language

Demos2000 (henceforth Demos2k) [12] is a semantically justified discrete event modelling/simulation
language implemented in Standard ML (see, for example, [24]) and freely available for download under
an experimental licence from HP (www.demos2k.org). Appendix A contains some further discussion of
Demos2k and the basic modelling concepts it supports directly. This work builds on [4].

In the next section we explain how Demos2k partially captures our conceptual framework.

3.5 Realizing the Conceptual Framework in Demos2k

The modelling language used in our examples, Demos2k, provides a partial realization and implementa-
tion of our mathematical model of our conceptual framework. Summarized below is the extent to which
Demos2k (see Appendix A) captures our framework, concentrating on just the key points.

Resource: Demos2k has several notions of resource, primarily bins and resources. Bins provide a basic
form of resource that is essentially counters: processes put elements in and may (then) take them out.
They have no in-built notion of composition or comparison beyond numerical ordering. Demos2k’s
resources provide stocks of elements for which concurrent processes (called entities) may compete.
Just as for bins, resources also have no in-built notion of composition or comparison.

Process: The basic notion of process in Demos2k is the entity. Entities may be thought of as (recursively
defined) sequences of actions (cf. the basic (recurisve) construct a : E in the definition of process
terms in § 3.3). Entities manipulate resources.

Location: There is no inherent notion of location in Demos2k. Location must be represented implicitly
in models. In particular, the model discussed in § 4.2 represents different locations implicitly. In more
complex models, the complexity introduced in this way would become difficult to manage.



Environment: Demos2k supports a very wide range of probability distributions for representing the be-
haviour of the environment and, indeed, stochastic aspects of the internal construction and operation
of models.

A process-theoretic semantics for Demos2k has been provided in [5–8], where theorems characterizing
precisely the interpretation of Demos2k’s constructs in mathematical theories of processes are given.
Formally, the semantics requires a stochastic extension of process algebra, such as that given in [33],
although the structural and stochastic parts of the semantics can be separated. Similar analyses, exploiting
SCRP’s built-in resource semantics, can be given in our setting (see [27] for a discussion).

4 Network Operations, Security Operations, and Systems Value

Network security operations are activities engaged in by network managers in order to protect the avail-
ability, confidentiality, and integrity of networks, including the constituent computer systems, and the
information that they process. From a certain perspective, availability may be seen as the primary con-
cern: if systems and the services they deliver are non-functional, questions of confidentiality and integrity
do not arise. In the remainder of this paper we are concerned with availability. The availability of the net-
work itself limits the availability of all items on the network.

Network security operations require investments in staff, devices, and software. The value of the avail-
ability of a network can be regarded as being determined by the cost of lack of availability as specified by,
say, a Service Level Agreement (SLA); that is, the supplier of a network security service will be required
to pay the customer (i.e., the user of the network) specified levels of compensation for specified levels
of lack of availability. In this paper, then, we study how network and security operations impact upon
system availability and we assume that value of the availability of a system is adequately represented by
the terms of (penalties for poor performance, etc.) the SLA associated with the operation of the network.
Availability, therefore, is a proxy for value in this work. Note that SLAs are applicable not only in the
context of contracts between organizations (such as in IT outsourcing) but also within organizations. We
suggest, therefore, that SLAs provide a both convenient and effective measure of value for our present
purposes.

In order to provide an example context within which to develop our analytic method, we have chosen
a model of a (hypothetical) system with 20,000 devices which equates to a high-end small- to medium-
sized enterprise (SME) or institution similar in size to a medium-sized European university. Given that
the parameters in the model have not been calibrated, we have chosen a ‘reasonable’ starting set and
then have first, in a basic threat model introduced in § 4.1 explored the number of security operations
staff required to give achievable utilization rates when exploring increased threat and reduced numbers
of operational staff. We then, in § 4.2, broaden and extend this model by explicitly introducing aspects of
network management related to security operations.

4.1 Sources of Costs

Sources of downtime, or lack of availability, of an ICT system can be characterized as follows [36]:

1. Fix time: the time taken to repair specific components of the system that have been compromised
or damaged by attack. Typically this would be cleaning or rebuilding a computer including the time
taken to recover data. This source of downtime arises from vulnerabilities;

2. Misconfiguration: lack of access to a significant business component of the system (e.g., a business
application, such as an enterprise relationship management system). By misconfiguration we mean
any configuration of the system incompatible with operation of business processes (e.g., authenti-
cation failure, incorrect assignment of rôle) which would require security operations resources to
resolve. Also note the principle of constant change, there is never a correct system configuration.
This source of downtime arises from lack of alignment;



3. Intrinsic reliability: the intrinsic reliability of the components that make up the system, the way
in which they are connected; and their dependency on operational level agreements in place for
break/fix constitute the usual domain of availability analysis and typically the focus of SLAs in
current IT Outsourcing (ITO) and application management contracts;

4. Network: a catch all for lack of availability caused by the network itself being swamped by non
authorized, non-business-related traffic, perhaps due to a Denial of Service (DoS) or worm attack.
This source of downtime arises from vulnerabilities.

We make an essential distinction between downtime arising from vulnerabilities (1, 4) and alignment
(2). Typical analyses of threat environments and attack profiles have tended to concentrate on the former.
Both, however, must be monetized for any derived SLA to be considered meaningful.

4.2 Classification of Security Controls

Security controls can be divided into a number of categories, according to the job they do, the threats they
protect against, and the data or protocol levels they examine (all of which are related). These controls
can be used to provide various forms of defensive measure for a particular network, with the defensive
effect they have depending upon their configuration and their network location. Most of these controls
can be implemented either on end hosts (such as individual computers) — host-based — or on network
equipment (on either dedicated devices or as enhancements of other devices, such as routers) — network-
based.

We give below a summary of the categories of network security controls whose behaviour we wish to
capture in our models:

Firewalls: These can be either host- or network-based. They provide filtering capabilites to restrict
network access to certain categories of traffic on certain ‘ports’;

IDS devices: Intrusion detection systems monitor the network, using a signature to identify undesirable
traffic;

IPS devices: Intrusion protection systems protect regions of the network — that is, identified collections
of locations — from undesirable traffic identified by IDS devices by taking appropriate inhibiting
actions (typically by blocking the identified traffic).

Other network security controls, that are beyond the scope of our present work, include application-
level gateways (such as web proxies), anti-virus tools (e.g., active scanning of computer memory for
malware), scanners (probe devices attached to the network to search for vulnerability to known attacks),
and so-called ‘pukkaware’ (particular bundles of hardware and software, chosen and configured to meet
particular policy standards).

Security controls devices have, essentially, fixed unit acquisition costs and their use incurs installation,
configuration, and operational (including servicing) costs. The security controls placement problem, then,
is to determine the optimal location for placing a limited collection of such devices on a network in order
to achieve the desired protection. Some discussion, in the absence of any consideration of the structure of
systems, has been given by, for example, [13, 11]. In making such an assessment, the following factors,
among others, must be considered:

– The location of the endpoints of the system at which exposures to threats can occur;
– Which are the locations on the network that are critical to organizational value owing, for example,

to the nature of their information throughput;
– The effects of necessary reconfigurations of the system, in response to threats and to realign with

changing organizational objectives.

Building on our basic security operations model [36], in this paper, we focus on the last of these three
concerns.



5 A Description of the Demos2k Models

We now turn to a more detailed discussion of our Network and Security Operations model as imple-
mented in Demos2k. This will follow our standard conceptual pattern of resource, process, location, and
environment that we introduced in § 3.2. We will further split this into an initial discussion of the basic
model (see [36]), followed by a discussion of our extended operations model introducing elements of
network management.

We illustrate our description with fragments of the Demos2K code for the model.

5.1 The Basic Security Operations Model

Broadly, our model captures the high-level operations and activities performed by the IT division of a
large organization, such as a medium-sized European university, to defending its IT assets (hardware,
software and information) from external attacks exploiting vulnerabilities in software deployed on the
endpoint devices (e.g., computers, desktops, etc.). The parameters for the Demos2k model corresponding
to Figure 5 are given in Appendix B.1, structured in accordance with the Demos2k principles presented
in Appendix A.

The diagrams given in Figures 5 and 3: both represent a high-level process view of causative spawning
dependencies in their respective models. The thick arrows represent event flows between processes and
queues. Processes decorated with circular arrows indicate ‘perpetual’ processes that continually execute,
consuming resources.

Resource: The principal resource of interest is security operations staff. Staffing levels is of interest
because of the interaction of regular activities (such as regular patching and signature distribution)
with more sporadic events (such as emergency patching and crisis handling).

Broadly, there are two kinds of staff resource represented in our model:

– General operations staff: These are systems security experts and administrators whose respon-
sibility is to oversee security-related business processes such as systems patching, 3rd-party
signature deployment, and secure repair. We envisage that such processes are largely automated
but nonetheless could require manual intervention involving human initiative to handle the dif-
ficult corner cases that may arise from time to time. Thus, despite extensive automation, expert
judgement will be required on occasion to resolve issues and ensure adequate completion of
tasks;

– Analyst operations staff: These are security strategy experts whose responsibility is to assess in-
coming threat intelligence to coordinate and assess security response to those threats. In partic-
ular, analyst staff must be knowledgeable about the current IT assets in the organization in order
to decide the level of threat posed by particular vulnerabilities and to decide what to do about
this. Typically this amounts to filtering the patches to be applied and thus expediting relevant
patches to ensure rapid application (prior to attack). Given the number and variety of systems
available, it is important to filter out the many patches that are not relevant to the organization
and to avoid wasting valuable time deploying them.

Note that we are also exploiting the full-time equivalent staffing model to abstract away neatly from
representing various personnel management issues such as staffing rotas, holidays, absences, etc..

Process: The following internal activities consume security operations staff resources:

– Business alignment: Continuous change management (relationship between users, resources,
and processes) which has been aggregated into a single business alignment services process;

– Secure repair: Repair/reinstatement of compromised or damaged machines;

– Patch management: including testing and deployment;



Fig. 1. Basic operations model [36]: High-level process flow diagram



– Workarounds: Implementing ad hoc ‘workarounds’ to provide further mitigating actions as nec-
essary;

– 3rd-party signature deployment: Deployment of 3rd-party signatures that are used when detect-
ing anomalous behaviour. As such, these signatures have to be provided and renewed on a regular
basis if they are to remain effective.

– Vulnerability assessment and threat analysis: Determining corporate patching deadlines and as-
sociated risk levels.

We illustrate how these processes are represented by discussing the repair process in terms of its
formal description in Demos2k; Figure 2 presents the Demos2k code.

The repair process consists of a perpetual process consuming repair items from the queue repairQ.
Staff are then allocated and the repair performed taking time, for example, hold(repairTime),
where repairTime is a stochastic quantity drawn from a normal distribution. The repaired system
is then rebooted. Finally, various counts such as availSys are updated to reflect that a system has
been repaired.

Location: The basic operations model pays little attention to location. Rather, it is concerned essen-
tially with the incidence of threats upon the system as a whole and the response of the system as
whole. As such, the basic model concentrates on modelling security management activities in terms
of aggregated quantities such as availSys, effectively assuming that spatial distributional aspects
have been safely incorporated. However, in our extended model, we explicitly introduce aspects of
network management and thus begin to acknowledge the rôle that networks and hence location plays
in security management.

Environment: A model for security management would be vacuous without some source of threat and
challenge. Accordingly, we introduce processes representing the development of exploits based upon
vulnerabilities in systems software. To counterbalance this, there are vulnerability intelligence activ-
ities underway as well as 3rd-party organizations developing patches and various kinds of signatures.
All of these activities are external to the large organization in question and are thus beyond its direct
control.

We have made the following simplifying assumptions about vulnerabilities, exploits and the effect
of patching:

– Vulnerabilities are naturally present in all systems — they do not need to be ‘caught’ or ‘in-
fected’;

– There is effectively an arbitrarily large number of vulnerabilities — we assume an endless supply
(valid because non-security updates always occur);

– Patching can never eliminate all future vulnerabilities — only the ones that are currently known
about by patch developers;

– Viruses, worms, and trojans (VWT) exploit vulnerabilities that remain on currently unpatched
systems. These VWT are the infection agents;

– Typically, there has to be some external access (e.g., via email or internet access) for VWT to
become active;

– The process of patching systems will eliminate certain vulnerabilities (hopefully prior to the
attack) and also repair the effects of the infective agents following an attack. This assumption
represents a substantial simplification: typically, the process will both failire to find all of the
vulnerable devices and, at least potentially, introduce new vulnerabilities.

We acknowledge that this is a radical simplification of the known threat space. For example, the
vulnerability intelligence capability could be split into, say, predictive and responsive (e.g., for 0-day
attacks) operations — but the present model suffices for our present purposes.



...

cons NsecOps = 4; // number of security operations staff
cons Nanalysts = 2; // number of security and network analysts

...

cons repairTime = normal(3*hrs, 10*mins);

...

res(lock, 1);
res(opsStaff, NsecOps);

...

bin(repairQ, 0);

...

class repair = {
local var repairDelaytime = 0;
local var staffNeeded = 0;

repeat{
req [ online == 1 ];
getB(repairQ, 1);

staffNeeded := staffForRepair;
getR(opsStaff, staffNeeded);

hold(repairTime);
hold(rebootTime);

putR(opsStaff, staffNeeded);

getR(lock, 1);
cRepaired := cRepaired + 1;
availSys := availSys + 1;
vulnerableSystems := vulnerableSystems - 1;
sync(check_range);

putR(lock, 1);
}

}

...

do repairStreams { entity(repair, repair, 0); } // Launch repair teams ...

Fig. 2. Repair process class in Demos2k



5.2 The Network & Security Operations Model

We assumed in our previous model that networks behave in a transparent and neutral manner with respect
to security matters. The security actions taken into account there focused upon the devices at the end-
points — these actions typically involved systems patching and the deployment of 3rd-party signatures.
We now broaden and extend our earlier model by explicitly introducing aspects of network management
related to security operations.

Specifically, we add into our earlier model the activities involved with reconfiguration of the network
and model its impact upon the business. Network reconfiguration is concerned with changes in network
connectivity between internal clusters of endpoint devices (e.g., computers, servers, desktops).

Networks may be reconfigured for several reasons:

Business alignment: As a part of some persistent realignment of business units and their processes, the
network may need to be reconfigured in order to provide additional access to some services or to
restrict access to others;

Security isolation: Temporary isolation measures to protect certain software and information assets,
perhaps from damage owing to an anticipated or ongoing networked attack. Such actions will typ-
ically partition the network in ways that are disadvantageous to some business activities but which
protect the integrity of the overall network. Clearly, such measures are expensive in terms of reduced
business activity (i.e., availability) and as such are regarded as extreme measures, taken as a least
undesirable option. Because these measures are temporary, there will be two periods of network
disruption: firstly, to enforce the isolation; and, secondly, to deliver it into its desired configuration;

Optimizing and reprioritizing access: Reconfiguring access in response to prevailing conditions, per-
haps as a response to some attack.

As such, there is inevitably some degree of short-term disruption to business users due to changes in
connectivity. Thus the survival security benefit due to a partitioning of the network has to be balanced
against the impact of the short-term disruption it causes.

As we have already seen in § 4, the security of the network itself involves placement of a number of
network security controls (e.g., firewalls) to both monitor network activity and also to protect it. Any
reconfiguring of the network raises the question of how to position network security controls to perform
these functions in an effective manner.

To be clear, we again follow our standard conceptual pattern of resource, process, location, and envi-
ronment used earlier. The parameters for the Demos2k model corresponding to Figure 3 are given in
Appendix B.2, structured as before in accordance with the principles from Appendix A.

Resource: As in our earlier model, the resources of interest are the operations staff, to which we now
add:

– Network operations staff: These are network security expert engineers and administrators whose
responsibility is to perform network reconfiguration operations, which may be significantly dis-
ruptive activities. In particular, network security controls may need to be reconfigured and repo-
sitioned within the network. This will hopefully be done virtually, but could potentially involve
physical relocation of equipment.

We further assume that the existing pool of analyst staff takes on the strategic activities of planning
the network operations activities, rather than to introduce a separate pool of staff. From a modelling
perspective, this just means we can increase the size of the analyst pool to allow for this.



Fig. 3. Extended model (incl. network management): High-level process flow diagram



class networkManagement = {
repeat{

req [ online == 1 ];

req [ networkTasks > 0 ]; // there are network tasks to be done ...

getR(lock, 1);
networkTasks := networkTasks - 1;

putR(lock, 1);

getR(analysts, 1);
hold(networkOpnsPlanning);
putB(netOpnsQ, 1);

putR(analysts, 1);
}

}

class networkOperations = {
local var networkDelayTime = 0;
local var netEfficencyFactor = 0;

repeat {
req [ online == 1 ];

getB(netOpnsQ, 1);

syncV(calc network delay, [], [networkDelayTime]);
hold(networkDelayTime);

getR(netStaff, staffForNetworkOpn);
hold(networkOperationTime);

putR(netStaff, staffForNetworkOpn);

getR(lock, 1);
cNetworkOpns := cNetworkOpns+1;
netEfficencyFactor := (1 - networkEfficiencyIncr);
networkEfficiency := netEfficencyFactor * networkEfficiency;
sync(check range);

putR(lock, 1);

entity(networkRestore, networkRestore(#netEfficencyFactor),
networkDisruptionTime);

}
}

class networkRestore(factor) = {
getR(lock, 1);

networkEfficiency := networkEfficiency / factor;
sync(check range);

putR(lock, 1);
}

Fig. 4. Networking management classes in Demos2k



Process: The new model introduces aspects of network management to handle and deal with network
reconfiguration tasks as described above. This model is a fairly direct extension of the previous
model; this will involve introducing some additional process elements, together with a number of
aspects that cut across some of the existing process elements. We shall focus here on the additions
required and their overall structure and shape. The diagram in Figure 3 presents a high-level process
view of the extended model.

Clearly we cannot represent the network in a direct or literal way; so we instead need to capture its
effects in terms of the coupling with the activities we have already modelled. This choice is a very
clear example of our need to choose levels of abstraction for our models that are appropriate for the
questions of interest.

The insight here is to introduce two numerical variables whose values will impact overall systemic
behaviour in our model:

– networkEfficiency: This numerical variable lies in the range strictly between 0 and 1,
and represents a ‘frictional’ effect acting upon all IT operations. The way this manifests itself
is through the introduction of longer delays into a number of the existing activities e.g., repair,
patching, etc..

Thus, a lower network efficiency means a slower, less responsive network having greater delay.
In business terms, this translates to a reduced level of business performance. A higher network
efficiency means lower delays and thus, potentially higher business performance. To be clear,
network efficiency is only one of several factors that would limit business performance in prac-
tice and certainly cannot by itself determine it.

We use network efficiency in the model to capture the effects of network disruption due to
network reconfigurations. As such, this is a dynamic quantity that can increase and decrease as
a result of these activities. For simplicity, we assume that the effect of network disruption is
transient and can thus recover after some amount of time.

– securityControlEffectiveness: This numerical variable lies in the range strictly be-
tween 0 and 1 and represents the overall, aggregated effectiveness of all the security controls
deployed within the network. The way this manifests itself is by qualifying the ‘potential attack
impact’ upon the endpoint devices.

What in practice influences and determines the effectiveness of security controls? There are
simply too many details to consider in depth here so we shall radically simplify the issue to a
consideration of the following two major aspects:

• Strategic placement within the network to monitor, filter and control traffic, in accordance
with corporate security policies. We reflect the quality of such placement in terms of the
maximum value that the security control effectiveness attains.

• Keeping up to date with the prevailing threat situation, in terms of 3rd-party detection and
filtration signatures. We model this aspect by allowing the security control effectiveness to
decay at a daily rate over time as a result of the increasing staleness of the 3rd-party signature
information. Naturally, whenever the 3rd-party signatures are renewed and deployed, we can
restore the security control effectiveness variable back to its maximum value.

The following Demos2k code fragment is added into a number of model processes whose activities
would be sensitive to network delay e.g., repair, patching, etc..

...
syncV(calc_network_delay, [], [networkDelayTime]);
hold(networkDelayTime);
...

where the class calcNetworkDelay represents a convenience function to calculate the network
delay time based upon the current value of networkEfficiency.



class calcNetworkDelay = {
local var delay = 0;
repeat{

getSV(calc network delay, [], true);

getR(lock, 1);
delay := networkDelay*(1/networkEfficiency - 1);

putR(lock, 1);

putSV(calc_network_delay, [delay]);
}

}

The formula networkDelay ∗ (1/networkEfficiency − 1) is used to specify the delay be-
cause as the networkEfficiency decreases towards zero, the delay effect increases unboundedly. In the
other direction, as the networkefficiency tends towards 1, the delay becomes zero i.e. as the network
efficiency improves, the delay becomes shorter. In particular, note that the constant networkDelay
is equal to the delay value when the network efficiency is 1/2.

We now briefly discuss the Demos2k code used to represent the network management processing,
presented in Figure 4. The perpetual class networkManagement repeatedly waits for a network
reconfiguration request (i.e., when networkTasks > 0 to enter the planning stage for network
operations. This consumes some analyst time followed by placing a planned job on the queue
netOpnsQ.

The perpetual class networkOperations represents the activity of a network operations work-
force team responding to network operations tasks from the queue netOpnsQ. Note that the effect
of network delay also affects networkOperations itself. We model the work being done here
by allocating network operations staff and then holding for a certain amount of time specified by
the stochastic constant networkOperationTime. Following this, various counts and values are
computed and updated. Finally, an instance of networkRestore class is launched which waits a
randomised period of time determined by networkDisruptionTime before restoring the net-
work efficiency.

A subtlety here is that networkRestore doesn’t merely reset back to the prior value of network-
Efficiency but instead performs an inverse operation (namely division) to the present value
of networkEfficiency at the time that it eventually executes. Since there may be other such
restoration processes with other randomised times, this randomises the time and the order in which
networEfficiency is restored. Because of this, it would be quite wrong to simply update with
the previous value of networkEfficiency. By performing an inverse operation we can guaran-
tee that the newly updated value is functionally linked to its immediately previous value. Because the
division operations can be reordered, we know that the intermediate values of networkEfficiency
always remains less than 1 and, more importantly, will return to its original value.

Location: The inclusion of network reconfiguration into our model clearly brings with it some concern
for location-dependent issues. As shown above, the effect of using and depending upon a network
is encoded in terms of the values of a couple of numerical variables. Such a model is useful and
adequate for performance related matters in which the systems behaviour and characteristics are
typically represented in terms of aggregated stochastically determined quantities.

However, there are spatial distribution questions involving location that cannot be answered purely
in this fashion - but which nonetheless have a significant impact upon the economic effectiveness
and efficiency of the network. One such issue concerns the effective placement of network security
controls within the network.

The problem is that network security controls need to be placed so as to maximize their impact in
reducing potentially harmful traffic and in controlling security access to different regions of the net-
work. Now, reconfiguring the network involves changing access permissions and the major routing



taken through the network. Both of these impacts will affect how the network security controls are
themselves configured and additionally, where they should be logically positioned in the network.

Furthermore, placing these network security controls effectively will require some appreciation of
where the business critical assets and traffic are. Thus, in some sense, it is necessary to prioritise the
placement of network security controls somehow according to the greatest need for network defense
and protection.

Once some estimate of this asset information is known, standard graph-theoretical techniques (from
operations research) might be applicable to assist in locating where best to place the controls on
the network to realize security protection value to business IT assets. The downside of not placing
network controls in line with business-asset value is that the wrong assets will get protected, leading
to poor value for money spent.

Environment: The environmental considerations for the earlier model apply equally for this model.

6 Experimental Results

We have used our model of network and security operations to conduct a number of simulations. The
model is generic; that is, it is not based on any specific organization, although quite clearly based on the
processes and resources one would expect to find in any organization of sufficient size to require them.
The value of developing the model is to make explicit certain relationships and dependencies between
internal IT functions (e.g., repairs, patching) and external event drivers (e.g., exploits). The simulations
performed are purely illustrative of the kind of effects and results that would be observed in a modelling
activity based on a specific organization tasked with providing data into decision making. Thus the results
obtained from the simulations presented here constitute conjectures or open questions relating to how a
particular organisation might behave in a certain situation; that is, the results have been generated in
isolation, rather than as part of an operational context designed to elicit data for hypothetical analyses
that feed into a decision making process.

The principal effect that we demonstrate in our model is the propensity for ‘crisis’ events to arise owing
to the IT systems of large organizations becoming overloaded by a backlog of work to be performed —
in our model this is represented by the growths of the repair and business alignment queues. When, in
executions of our model, these queues become too long and the general availability of the organization
suffers, a crisis situation is deemed to have arisen. At this point, the general operation of the organization
is suspended and a clean-up activity takes place — in our case, we have assumed this to take just two
days. The occurrence of such crisis events was observed in both models — and is illustrated graphically
in Figure 5.

Crises occur because IT service organizations could become overstretched (perhaps because of a rapid
sequence of attacks) and hence incapable of fulfilling their basic service obligations. The event precipi-
tating a crisis need not by itself be large in magnitude or scale — it could easily be a small event which
leads to the crisis itself, although it is also typically preceded by a gradual reduction of availability up to
that point.

6.1 The Basic Security Operations Model

In this brief section, we summarize the results obtained in our previous work (see [36]). In that paper, we
are mainly concerned about availability SLAs and the effect of security upon them. We have assumed
that, should an organization decide to use an availability SLA, then loss of availability can be adequately
monetized — thus linking availability to business value.

The model has been used to investigate two key questions: firstly, the impact, on predicted availability
of a system, of reducing the number of security operations staff resources; and, secondly, the impact on
availability and utilization of changes in the threat environment. We have chosen a system with 20,000
devices which equates to a high end small- to medium-sized enterprise (SME) or institution similar in size



Fig. 5. Graph of systems availability showing 5 crisis dips

to a medium-sized European university. Given that the parameters in the model have not been calibrated
we have choosen a ‘reasonable’ starting set and have explored the number of security operations staff
that gave achievable rates of utilization of staff when exploring increased threat and reduced numbers
of operational staff. This gives a baseline model in which 3 security operations FTE staff are required,
assuming single-site operation. In order to acquire reasonable statistics, each simulation run of 365 days
is repeated 100 times. Using the model as shown in Appendix B as a baseline we obtain an average
predicted availability of 98.15%. The corresponding average utilization of the security operations staff is
57.45%.

The broad outcome that can be observed is that the number of crises arising (captured in availability
terms) is inversely proportional to the numbers of FTE security staff available, but also proportional to
the vulnerability discovery rate (i.e., number of vulnerabilities discovered per unit time). Some further
details concerning these (indicative) results may be found in § 5 of [36].

6.2 The Network and Security Operations Model

We now briefly investigate, using our enhanced model, how the number of crises per year changes when
both the maximum value of security control effectiveness and the numbers of network and security oper-
ations staff available vary. Recall that the maximum value of the security control effectiveness parameter
is indicative of how well the overall security controls are placed, maintained, and operated within the
organization. This maximum value is used to initialize and periodically refresh the security control ef-
fectiveness parameter over time.

As with the previous study discussed above, our simulation runtime is taken to be 1 year (i.e., 365
days) and for each set of parameters (e.g., maximum value of security control effectiveness, numbers of
network staff), we again performed 100 independent simulation runs (i.e., a simulated century) for the
purpose of gathering acceptable statistics. Naturally all other variables are held constant. In particular, our
organization has 20000 systems under management and the rate at which vulnerabilities are discovered
is 36 per 365 days — approximately 1 every 10 days.



Our synthetic experiment has two main sets of parameters: the maximum value of security control ef-
fectiveness; and the numbers of network and security operations staff available. To explore the effects of
varying these parameters, we shall cluster each of these parameters as follows:

Maximum value of security control effectiveness [Max SCE]:

LOW MEDIUM HIGH

0.05 0.5 0.95

Numbers of Network and Security Operations Staff [N. & S. Staff]:

LOW MEDIUM HIGH

2 network, 2 security 4 network, 4 security 6 network, 6 security

Thus, there are 9 different combinations of results, presented in Table 1. The outcomes are presented
in terms of the most likely number of crises, and its probability, together with the probabilities of there
being fewer/more crises respectively.

N. & S. Staff Max SCE Most likely no.
of crises (prob.)

Prob. of fewer crises Prob. of more crises

2N, 2S (LOW) 0.05 (LOW) 5 (0.23) 0.16 0.61

0.5 (MEDIUM) 4 (0.22) 0.15 0.63

0.95 (HIGH) 2 (0.43) 0.36 0.21

4N, 4S (MEDIUM) 0.05 (LOW) 5 (0.21) 0.22 0.57

0.5 (MEDIUM) 5 (0.21) 0.42 0.37

0.95 (HIGH) 1 (0.47) 0.14 0.39

6N, 6S (HIGH) 0.05 (LOW) 3 (0.27) 0.08 0.65

0.5 (MEDIUM) 4 (0.29) 0.39 0.32

0.95 (HIGH) 1 (0.48) 0.20 0.32

Table 1. Number of crises vs max. security effectiveness and staffing levels

The clear message from these results is that it is clearly important to maximize the effectiveness of
security controls, even though doing so does not eliminate the risk of crises. This table also shows that it
is useful to employ sufficiently many of the right people. Specifically, for example:

– The difference between the first and second rows of the third column represents a shift of relative
impact from being against high SCE to being against medium and low SCE; and

– The difference between the second and third rows of the third column represents an overall reduction
in the number of crises (as a result of the larger staff numbers).

7 Discussion

We have shown how a mathematically rigorous conceptual modelling framework, partially captured in
executable form by the Demos2k modelling tool, can be used to represent and explore the levels of in-
vestment in, and trade-offs between, operations staff and security control devices (such as firewalls, IDSs,
and IPSs) by analyzing the consequences of such decisions for system availability. We have assumed that
the underlying value of system availability is captured by a Service Level Agreement.



Our experimental work has given good exemplary data, suggesting strongly that our approach is valuable,
and has raised some interesting questions:

– What are effective methods for designing experiments with which to explore complex models of the
kind we construct?

– Are there effective heuristics for determining the appropriate level of abstraction for a model? How
are we to resolve reliably the tension between our desire — indeed, policy — to avoid representing
detail and the level of detail sometimes necessary in the security domain?

– How can we effectively integrate models of spatially distributed networks, stochastic environmental
behaviour, and system value?

We have demonstrated a generic approach using an illustrative model. In practical application, the mod-
elling activity would take place in response to a specific requirement from an organization’s CIO or CISO
to provide analyses of business decisions about information security investments. For example, if we take
the simulation results presented in Figure 5 and Table 1 and assume that they were generated in response
to a previous crises similar to the sequence shown, then a reasonable conclusion might be that the organi-
zation must ensure that Max SCE is always high but no more than 4N and 4S staff are required because
the most likely number of crises in a year will always be close to 1. If this is unacceptable, however, a
decision would perhaps be to redesign some of the operational processes, in which case the model would
need to be changed and a similar set of simulations run. An excellent operational state, the embodiment
of systems analytics, would then be the continual checking between predicted behaviour and actual with
updating of the model as necessary.

More broadly, two other questions, at least, remain:

– Can we integrate our work, focussed on system/network value, with models of, for example, markets
in vulnerabilites and security operations services?

– Can we use our methods to assess the value of investments intended to protect not only availability
but properties such as confidentiality and integrity?
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A A Brief Summary of Demos2k

Demos2k is two things — firstly, it is a semantically justified discrete-event systems modelling language
(see § 3); and, secondly, it is a simulation-based environment to support the examination and exploration
of systems so described.

An advantage of this semantic justification activity is that, having done this work, it contributes exten-
sively to the integrity of the implementation, thus ensuring accuracy and fidelity of the simulation results
obtained using the tools. Broadly speaking, this means that Demos2k users can be highly confident in the
numbers produced during and resulting from their simulations and in the patterns of behaviour observed.



With this underpinning, we can be much more certain that our results are genuine consequences of the
model and not mere artefacts of simulation.

The Demos2k environment has been designed to support the precise examination of simulation oriented
descriptions of systems. These can be compiled or automatically rewritten into multiple representations
dependent upon the questions that must be asked of the model such as correctness, performance, avail-
ability, or agility, etc..

Systems descriptions written in Demos2k tend to be high-level, pleasingly short and to the point. The
modelling philosophy supported is very much akin to ‘extreme modelling’, where the systems ana-
lyst/modeller can rapidly construct high-level models representing the customer’s core business con-
cerns. A key contribution to this capability is the exploitation of probability theory to abstract away from
extraneous details.

We now outline the basic ‘shape’ of a typical Demos2k definition of a model. Although not syntactically
mandated in any sense, as a general rule Demos2k models/programs pragmatically adopt the following
pattern:

Constant definitions: Demos2k constants are special in that they may be defined in terms of probability
distributions — each time such ‘constants’ are evaluated during simulation, a fresh sample is taken
from the specified distribution. The probability distributions supported include standard distributions
such as Uniform, Binomial, Geometric, Negative Exponential, Normal, Poisson, and Weibull, as well
as arbitrary point/discrete distributions;

Global variable definitions: ”Variables are typically used to count the number of events of a certain
kind, or the number of times a particular process is activated;

Resource definitions: Resources represent pure synchronizations (in the process-calculus sense) and
can be claimed and released by means of ‘getR’ and ‘putR’ expressions;

Bin definitions: Bins represent synchronizable entities (note that the term ’resource’ is used in the rest
of the paper to encompass both the Demos2k notion of ‘resource’ and the Demos2k notion of ‘bin’,
as described here) into which some quantity of material may be placed and retrieved. These may be
used to provide the effect of one entity making a synchronous, concurrent process call on another;

Class definitions: Each entity is a concurrently executing instance of some class. Classes thus represent
the behaviour of entities in conventional procedural terms, by manipulating resources in some fashion
and by ’holding’ (letting time pass) for defined periods of time;

Initial model population, and entity creation: Run length control, typically a hold of some fixed du-
ration;

The (all-important) close statement: Ends the simulation run.

In this form, we may regard Demos2k descriptions as defining behaviour in terms of a Dijkstra-like
guarded command language. All active commands test the current system state. If the condition they
represent can be met then they are executed — otherwise they are blocked until such time as the condition
holds, if at all. Note that Demos2k simulations will typically run for a specified length of time. If either
deadlock or livelock arise during simulation runs then these situations are checked for pragmatically.
The major difference between process oriented simulation languages (like Demos2k) and pure guarded
command languages is that the conditions may have side effects, principally due to the assignment of
resource to the active entity. Hence change of state is mediated not only by assignments to variables, and
by the claim of resource, but also by entities becoming resources themselves.

Demos2k has been given a simple, elegant, and informative semantics [5–8], abstracting away from
the stochastic data collection, in the process calculi SCCS and CCS [22, 23]. It can be argued that the
representation of resource in the synchronous semantics (SCCS) is superior to that in the asynchronous
semantics (CCS) ([34]).



B The Demos2k Models

We include here the key parameter declarations required for our Demos2k models. These, taken together
with the code fragments used to illustrate § 5, should be sufficient for the reader to establish an under-
standing of the nature of our models.

B.1 Basic Security Operations Model

(*
Security operations model - Brian Monahan, David Pym & Mike Yearworth
version 1.5 - HYBRID of v1 & 2
19 July 2006 - update a

*)

///////////////////
// Constants
///////////////////

// Timescaling constants
cons days = 1;
cons hrs = days/24;
cons mins = hrs/60;
cons secs = mins/60;

// Simulation
cons holdTime = 365; // int: sim. period -- in days

// Parameters
cons totalSys = 20000; // number of desktop systems under management
cons NsecOps = 2; // number of operations staff
cons Nanalysts = 1; // number of security risk analysts

cons patchTeams = 4; // number of patch teams
cons repairStreams = 4; // number of repair streams
cons serviceTeams = 4; // number of biz align service teams

cons sysForAlign = 1; // number of systems needed per alignment request

cons maxPatchLimit = 30; // maximum number of systems patched concurrently by single team
cons lowerAvailLimit = 90/100; // lower limit of acceptable availability
cons max_days_unavailable_limit = 3; // maximum number of days consecutively unacceptable availability
cons max_repairs_limit = 850; // max acceptable length of repair queue

cons clearUpTime = 2; // number of days needed to clear up crisis

cons rebootTime = normal(10*mins, 1*mins); // avg. reboot time
cons patchDeployTime = normal(1*hrs, 15*mins); // avg. time to apply a patch to system
cons sigsDeployTime = normal(10*mins, 1*mins); // avg. time to update signatures

// Environment related
// ===================

cons vulnerabilityInterval = negexp(365/24); // Avg. time between vulnerability discovery
cons isExploitable = binom(1, 40/100); // Prob. of vuln. being exploitable
cons devExploitTime = negexp(19*days); // Avg. time to develop exploit
cons vulnDiscoveryTime = negexp(14*days); // Avg. time to discover/expose intell. on vuln.

cons sigsEffectiveness = uniform(10/100, 20/100); // level of effectiveness of signatures
cons attackEffectiveness = uniform(05/100, 85/100); // normalised measure of attack capability ...

cons attackDeploymentTime = negexp(20*days); // Avg. time to deploy an attack, given an exploit exists
cons isZeroDayAttack = binom(1, 1/10); // prob. of exploit being immediately deployable
cons isDeployableAttack = binom(1, 8/10); // prob. of exploit being eventually deployable
cons isExposable = binom(1, 9/10); // prob of vulnerability being exposable (i.e. subject of intell.)

cons patchDevTime = negexp(15*days); // Avg. time to develop patch
cons sigDevTime = negexp(5*days); // Avg. time to develop signatures

cons attackRounds = puni(1, 3); // Avg. number of attack attempts.
cons attackInterval = normal(2*days, 16*hrs); // Avg. time between attack attempts

cons dropStuffInterval = negexp(300*days); // Avg. time between environment dropping info.
cons canDropItem = binom(1, 1/1000); // prob. of environment dropping information

// Business related
// ================

// staffing limits
cons staffForPatching = 1; // number of staff needed for patching activity
cons staffForSigs = 1; // number of staff needed for updating sugnatures
cons staffForAlign = 1; // number of staff needed for alignment request
cons staffForRepair = 1; // number of staff needed for repairing systems

// biz alignment
cons bizAlignInterval = negexp((1/30)*days); // avg. time between requests
cons bizAlignTime = negexp(60*mins); // avg. time taken to complete biz align tasks.

cons someReassessment = puni(0, 3); // avg. number of vulnerability reassessments performed
cons vulnAssessTime = negexp(2*hrs); // avg. time taken to assess vulnerabilities
cons patchAssessTime = negexp(2*hrs); // avg. time taken to assess suitability of patches
cons assessmentInterval = negexp(1*days); // avg. time between vulnerability assessments

cons isVulnHigh = binom(1, 2/10); // prob of vulnerability being urgent
cons isVulnLow = binom(1, 7/10); // prob of vulnerability being non-urgent, but useful



cons repairQCheckInTime = normal(8*mins, 1*mins); // time taken to check in systems to repairQ
cons canQuickFix = binom(1, 1/10); // prob. of system being fixable quickly
cons repairTime = normal(3*hrs, 10*mins); // avg. repair time

cons patch_is_irrelevant = binom(1, 1/10); // prob. of patch being neither relevent nor useful

cons patchMaintenanceInterval = normal(14*days, 1*days); // avg. time between patch maintenance
cons sigMaintenanceInterval = normal(7*days, 1*days); // avg. time between sig. defence maintenance

cons systemsNeedingPatching = uniform(10/100, 95/100); // proportion of systems that need patching
cons sysNeedSigs = uniform(50/100, 90/100); // proportion of systems requiring signatures

///////////////////
// Variables
///////////////////

var day = 0;
var vulnerableSystems = 0;
var attackImpact = 0;

var sysAvail = 1;
var cSysAvail = 0;
var cStaffUtil = 0;

var availSys = totalSys;
var needsRepairs = 0;
var needsPatching = 0;

var online = 1;

var daysUnavailable = 0;
var manpowerUsedToday = 0;
var systemsAvailToday = 0;

...

///////////////////
// Resources
///////////////////

res(lock, 1);
res(analysts, Nanalysts);
res(opsStaff, NsecOps);

bin(vulnAssessQ, 0);
bin(patchPublishQ, 0);
bin(sigPublishQ, 0);
bin(bizAlignQ, 0);
bin(vulnHighQ, 0);
bin(vulnLowQ, 0);
bin(batchPatchQ, 0);
bin(repairQ, 0);

///////////////////
// Classes
///////////////////

// External processes/activities
// =============================

class vulnerable = { ... }
class devExploit = { ... }
class vulnIntelligence = { ... }
class devPatch = { ... }
class devSig = { ... }
class deployAttack = { ... }

// Corporate activities
// ====================

class bizAlignRequests = { ... }
class bizAlignService = { ... }
class vulnerabilityAssessment = { ... }
class assessment = { ... }

// Patch Management
class patchManagement = { ... }
class maintainPatch = { ... }
class maintainSigDefence = { ... }
class deployPatch = { ... }
class patchApplication = { ... }
class deploySig = { ... }
class attack = { ... }
class repairManagement = { ... }
class repair = { ... }

// Management
// ==========

class detectCrisis = { ... }
class crisisManagement = { ... }
class accounting = { ... }
class reporting = { ... }

///////////////////
// Entities
///////////////////

entity(vuln, vulnerable, vulnerabilityInterval); // generate vulnerabilities ...
entity(drop, dropStuff, dropStuffInterval); // allow environmental interference ...
entity(biz, bizAlignRequests, 0); // generate biz alignment requests ...

entity(vulnAssess, vulnerabilityAssessment, 0); // vulnerability assessment ...
entity(patchMgmt, patchManagement, 0); // patch management ...



entity(patchMtn, maintainPatch, 0); // maintain patching process ...
entity(sigDefMtn, maintainSigDefence, 0); // maintain signature defence process ...
entity(patchDep, deployPatch, 0); // deploy patches ...
entity(sigDefDep, deploySig, 0); // deploy defensive signatures ...
entity(repairMgmt, repairManagement, 0); // repair Management ...

do serviceTeams { entity(bizService, bizAlignService, 0); } // service biz alignment requests ...
do repairStreams { entity(repair, repair, 0); } // repair teams ...

// business mgmt & reporting
entity(range, checkRange, 0); // function to check ranges

entity(check, detectCrisis, 0); // check for crisis conditions
entity(accounts, accounting, 0); // perform accounting ...
entity(reports, reporting, 0); // perform reporting ...

// Run the simulation ...
hold(holdTime);
close;



B.2 The Network and Security Operations Model

(* Security & Network Operations model

by Brian Monahan, Jonathan Griffin, David Pym, Mike Wonham, Mike Yearworth

version 0.2, 26th February 2007

*)

///////////////////
// Constants
///////////////////

// Timescaling constants
cons days = 1; // time unit = days
cons hrs = days/24;
cons mins = hrs/60;
cons secs = mins/60;
cons msecs = secs/1000;

cons weeks = 7 * days;
cons months = 4 * weeks;
cons years = 365 * days;
cons centuries = 100 * years;

// Simulation
cons holdTime = 1*years; // simulation period

// Parameters
cons totalSys = 20000; // number of desktop systems under management
cons NsecOps = 4; // number of security operations staff
cons NnetOps = 4; // number of network operations staff
cons Nanalysts = 2; // number of security and network analysts

cons patchTeams = 2; // number of patch teams
cons repairStreams = 4; // number of repair streams
cons serviceTeams = 4; // number of biz align service teams
cons networkTeams = 2; // number of network operations teams

cons sysForAlign = 1; // number of systems needed per alignment request

cons maxPatchLimit = 30; // maximum number of systems patched concurrently by single team
cons lowerAvailLimit = 90/100; // lower limit of acceptable availability
cons max_days_unavailable_limit = 3; // maximum number of days consecutively unacceptable availability
cons max_repairs_limit = 850; // max acceptable length of repair queue

cons clearUpTime = 2; // number of days needed to clear up crisis

cons rebootTime = normal(2*mins, 20*secs); // avg. reboot time
cons patchDeployTime = normal(20*mins, 5*mins); // avg. time to apply a patch to system
cons sigsDeployTime = normal(5*mins, 1*mins); // avg. time to update signatures

cons minNetEff = 0.001; // Minimum Network Efficiency
cons maxNetEff = 1 - minNetEff; // Maximum Network Efficiency
cons networkDelay = negexp(2*hrs); // Network Delay at 1/2 network efficiency

cons securityControlDecay = 1/100; // percentage decay of security control "quality" per day
cons maxSecurityControlEffectiveness = 0.95; // maximum security control effectiveness

// Environment related
// ===================

cons vulnerabilityInterval = negexp(365/36); // Avg. time between vulnerability discovery
cons isExploitable = binom(1, 45/100); // Prob. of vuln. being exploitable
cons devExploitTime = negexp(19*days); // Avg. time to develop exploit
cons vulnDiscoveryTime = negexp(14*days); // Avg. time to discover/expose intell. on vuln.

cons sigsEffectiveness = uniform(10/100, 30/100); // level of effectiveness of signatures
cons attackEffectiveness = uniform(05/100, 85/100); // normalised measure of attack capability ...

cons attackDeploymentTime = negexp(20*days); // Avg. time to deploy an attack, given an exploit exists
cons isNoWarningAttack = binom(1, 1/10); // prob. of exploit being immediately deployable
cons isDeployableAttack = binom(1, 8/10); // prob. of exploit being eventually deployable
cons isExposable = binom(1, 9/10); // prob of vulnerability being exposable (i.e. subject of intell.)

cons patchDevTime = negexp(15*days); // Avg. time to develop patch
cons sigDevTime = negexp(5*days); // Avg. time to develop signatures

cons attackRounds = puni(1, 3); // Avg. number of attack attempts.
cons attackInterval = normal(2*days, 16*hrs); // Avg. time between attack attempts

// Business related
// ================

// staffing limits
cons staffForPatching = 1; // number of staff needed for patching activity
cons staffForSigs = 1; // number of staff needed for updating sugnatures
cons staffForAlign = 1; // number of staff needed for alignment request
cons staffForRepair = 1; // number of staff needed for repairing systems
cons staffForNetworkOpn = 2; // number of staff needed for network operations

// biz alignment
cons bizAlignInterval = negexp((1/30)*days); // avg. time between requests
cons bizAlignTime = negexp(60*mins); // avg. time taken to complete biz align tasks.
cons bizNeedsNetReconfig = binom(1, 5/100); // prob. of biz alignment needing reconfig of network

cons someReassessment = puni(0, 3); // avg. number of vulnerability reassessments performed
cons vulnAssessTime = negexp(2*hrs); // avg. time taken to assess vulnerabilities
cons patchAssessTime = negexp(2*hrs); // avg. time taken to assess suitability of patches
cons assessmentInterval = negexp(1*days); // avg. time between vulnerability assessments

cons isVulnHigh = binom(1, 2/10); // prob of vulnerability being urgent
cons isVulnLow = binom(1, 7/10); // prob of vulnerability being non-urgent, but useful



cons vulnNeedsNetWorkAround = binom(1, 10/100); // prob of response to vuln. needing reconfig of network

cons repairQCheckInTime = normal(15*mins, 2*mins); // time taken to check in systems to repairQ
cons canQuickFix = binom(1, 3/100); // prob. of system being fixable quickly
cons repairTime = normal(3*hrs, 10*mins); // avg. repair time

cons networkOperationTime = negexp(2*days); // time taken to perform network operations
cons networkDisruptionTime = negexp(15*days); // duration of disruptive effect upon network
cons networkEfficiencyIncr = uniform(1/100, 5/100); // change in efficiency due to disruption
cons networkOpnsPlanning = negexp(1*days); // time taken to plan network operations

cons patch_is_irrelevant = binom(1, 1/10); // prob. of patch being neither relevent nor useful

cons patchMaintenanceInterval = normal(14*days, 1*days); // avg. time between patch maintenance
cons sigMaintenanceInterval = normal(7*days, 1*days); // avg. time between sig. defence maintenance
cons patchDeployIntv = normal(1*days, 3*hrs); // time between patch deployment phases

cons systemsNeedingPatching = uniform(10/100, 95/100); // proportion of systems that need patching
cons sysNeedSigs = uniform(50/100, 90/100); // proportion of systems requiring signatures

///////////////////
// Variables
///////////////////

var day = 1;
var vulnerableSystems = 0; // number of systems potentially at risk
var attackImpact = 0; // potential for damage from an attack (variable)

var networkEfficiency = maxNetEff; // Efficiency of network (minNetEff <= networkEfficiency <= maxNetEff)

var securityControlEffectiveness
= maxSecurityControlEffectiveness;

// Effectiveness of network controls (between 0 and 1)

var sysAvailability = 1; // availability of systems (per day)
var cSysAvailability = 0; // cumulative/averaged availability of systems

var secStaffUtil = 0; // security operations staff utilisation (per day)
var cSecStaffUtil = 0; // cumulative/averaged security operations staff utilisation

var netStaffUtil = 0; // network operations staff utilisation (per day)
var cNetStaffUtil = 0; // cumulative/averaged network operations staff utilisation

var availSys = totalSys; // number of systems available
var needsRepairs = 0; // number of outstanding repair tasks to be done
var needsPatching = 0; // number of systems that need patching
var networkTasks = 0; // number of oustanding network tasks (not yet started/processed)

var online = 1; // indicator variable asserting if business is online

var daysUnavailable = 0; // count of consecutive days unavailable
var totalDaysUnavail = 0; // total number of days unavailable

...

///////////////////
// Resources
///////////////////

res(lock, 1);
res(analysts, Nanalysts);
res(opsStaff, NsecOps);
res(netStaff, NnetOps);

bin(vulnAssessQ, 0);
bin(patchPublishQ, 0);
bin(sigPublishQ, 0);
bin(bizAlignQ, 0);
bin(vulnHighQ, 0);
bin(vulnLowQ, 0);
bin(batchPatchQ, 0);
bin(repairQ, 0);
bin(netOpnsQ, 0);

///////////////////
// Classes
///////////////////

// External processes/activities
// =============================

class vulnerable = { ... }
class devExploit = { ... }
class vulnIntelligence = { ... }
class devPatch = { ... }
class devSig = { ... }
class deployAttack = { ... }

// Corporate activities
// ====================

class bizAlignRequests = { ... }
class bizAlignService = { ... }
class secMgmtVulnAssessment = { ... }
class assessment = { ... }

// Network reconfiguration

class networkManagement = { ... }
class networkOperations = { ... }
class networkEffect(factor) = { ... }
class calcNetworkDelay = { ... }

// Patch Management



class patchManagement = { ... }
class maintainPatch = { ... }
class maintainSigDefence = { ... }
class deployPatch = { ... }
class patchApplication = { ... }
class deploySig = { ... }
class attack = { ... }
class repairManagement = { ... }
class repair = { ... }

// Management
// ==========

class detectCrisis = { ... }
class crisisManagement = { ... }
class accounting = { ... }
class reporting = { ... }

///////////////////
// Entities
///////////////////

// Generators
entity(vuln, vulnerable, vulnerabilityInterval); // generate vulnerabilities ...
entity(biz, bizAlignRequests, 0); // generate biz alignment requests ...

// Perpetual processes
entity(vulnAssess, secMgmtVulnAssessment, 0); // security management and vulnerability assessment ...
entity(patchMgmt, patchManagement, 0); // patch management ...
entity(patchMtn, maintainPatch, 0); // maintain patching process ...
entity(sigDefMtn, maintainSigDefence, 0); // maintain signature defence process ...
entity(patchDep, deployPatch, 0); // deploy patches ...
entity(sigDefDep, deploySig, 0); // deploy defensive signatures ...
entity(repairMgmt, repairManagement, 0); // repair Management ...
entity(networkMgmt, networkManagement, 0); // network configuration Management ...

do serviceTeams { entity(bizService, bizAlignService, 0); } // service biz alignment requests ...
do repairStreams { entity(repair, repair, 0); } // repair teams ...
do networkTeams { entity(networkOpns, networkOperations, 0); } // network operations

// business mgmt & reporting
entity(check, detectCrisis, 0); // check for crisis conditions
entity(accounts, accounting, 0); // perform accounting ...
entity(reports, reporting, 0); // perform reporting ...

// Run the simulation ...
hold(holdTime);
close;


