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As the complexity of IT systems increases, performance management and
capacity planning become the largest and most difficult expenses to control.
New methodologies and modeling techniques that explain large-system 
behavior and help predict their future performance are now needed to effectively
tackle the emerging performance issues. With the multi-tier architecture 
paradigm becoming an industry standard for developing scalable client-server 
applications, it is important to design effective and accurate performance 
prediction models of multi-tier applications under an enterprise production 
environment and a real workload mix.  To accurately answer performance
questions for an existing production system with a real workload mix, we design 
and implement a new capacity planning and anomaly detection tool, called R-
Capriccio, that is based on the following three components: i) a Workload
Profiler that exploits locality in existing enterprise web workloads and extracts a
small set of most popular, core client transactions responsible for the majority of
client requests in the system; ii) a Regression-based Solver that is used for 
deriving the CPU demand of each core transaction on a given hardware; and iii) 
an  Analytical Model that is based on a network of queues that models a multi-
tier system.  To validate R-Capriccio, we conduct a detailed case study using the 
access logs from two heterogeneous production servers that represent
customized client accesses to a popular and actively used HP Open View 
Service Desk application. 
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Abstract. As the complexity of IT systems increases, performance management
and capacity planning become the largest and most difficult expenses to control.
New methodologies and modeling techniques that explain large-system behavior
and help predict their future performance are now needed to effectively tackle
the emerging performance issues. With the multi-tier architecture paradigm be-
coming an industry standard for developing scalable client-server applications,
it is important to design effective and accurate performance prediction mod-
els of multi-tier applications under an enterprise production environment and a
real workload mix. To accurately answer performance questions for an existing
production system with a real workload mix, we design and implement a new
capacity planning and anomaly detection tool, called R-Capriccio, that is based
on the following three components: i) a Workload Profiler that exploits locality in
existing enterprise web workloads and extracts a small set of most popular, core
client transactions responsible for the majority of client requests in the system;
ii) a Regression-based Solver that is used for deriving the CPU demand of each
core transaction on a given hardware; and iii) an Analytical Model that is based
on a network of queues that models a multi-tier system. To validate R-Capriccio,
we conduct a detailed case study using the access logs from two heterogeneous
production servers that represent customized client accesses to a popular and
actively used HP Open View Service Desk application.

1 Introduction

As IT and application infrastructures become more complex, predicting and controlling
the issues surrounding system performance and capacity planning become a difficult
and overwhelming task. For larger IT projects, it is not uncommon for the cost fac-
tors related to performance tuning, performance management, and capacity planning
to result in the largest and least controlled expense. Application performance issues
have an immediate impact on customer satisfaction. A sudden slowdown can affect a
large population of customers, can lead to delayed projects, and ultimately can result in
company financial loss. It is not unusual for a piece of new hardware to be added into
the infrastructure to alleviate performance issues without fully understanding where the
problem really is.

?? This work was largely completed in the summer of 2006 when Qi Zhang did an internship at
HPLabs. Currently, Qi Zhang is employed by MicroSoft and can be reached at the following
address: qizha@microsoft.com.



With complexity of systems increasing and customer requirements for QoS grow-
ing, the research challenge is to design an integrated framework of measurement and
system modeling techniques to support performance analysis of complex enterprise sys-
tems and to explain large-system behavior. Predicting and planing future performance
is of paramount importance for the commercial success of enterprise systems.

Large-scale enterprise development projects are relying more and more on the Service-
Oriented Architecture (SOA) design. This approach provides a collection of mecha-
nisms and interfaces for a dynamic enterprise IT environment to connect applications
where classic, data-processing legacy systems can be integrated with agile, web-based
front-end applications. Application servers provide a standardized platform for devel-
oping and deploying scalable enterprise systems. As a result of this, application servers
are a core component of an enterprise system and an integral part of a new trend towards
building service-oriented architectures. Today, the three-tier architecture paradigm has
become an industry standard for building scalable client-server applications.

In multi-tier systems, frequent calls to application servers and databases place a
heavy load on resources and may cause throughput bottlenecks and high server-side
processing latency. Typically, preliminary system capacity estimates are done by using
synthetic workloads or benchmarks which are created to reflect a “typical application
behavior” for “typical client requests”. While capacity planning based on synthetic
workloads or benchmarks can be useful at the initial stages of design and develop-
ment of a future system, it may not be adequate for answering more specific questions
about an existing production system. Often, a service provider does need to answer the
following questions:

– How many additional clients can be supported by the existing system i) while still
providing the same performance guarantees, e.g., response time under 8 sec., and
ii) assuming that new clients perform similar activities as already existing clients in
the system, i.e., the system processes the same type of workload?

– Does the existing system have enough available capacity for processing an addi-
tional service for N number of clients where the client activities and behaviors are
specified as a well-defined subset of the current system activities?

– If the current client population doubles, then what is the expected system response
time?

– If the client activities and behaviors change over time, how is the performance of
the system affected?
In this work, we propose a new capacity planning framework, called R-Capriccio,

for practical capacity evaluation of existing production systems under “live” workloads
that can provide answers to all of the above questions. R-Capriccio can assist in pro-
viding answers for advanced “what-if” scenarios in system capacity analysis where the
evaluated system operates under a diverse workload mix. R-Capriccio is comprised of
the following key components:

– Workload profiler: The profiler extracts a set of most popular client transactions,
called core transactions, to characterize the overall site workload and the most
popular client sessions at the site.

– Regression-based solver: Using statistical regression, the solver approximates the
resource cost (CPU demand) of each core transaction on a given hardware. Thus
a real workload mix can be directly mapped into the corresponding CPU demand
requirements.

– Analytical model: For capacity planning of multi-tier applications with session-
based workloads, an analytic model based on a network of queues is developed,
where each queue represents a tier of the application.



Another important problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software re-
lease is introduced and unexpected performance problems are observed, it is important
to separate performance issues that are caused by a high load of incoming workload
from the performance issues caused by possible errors or inefficiencies in the upgraded
software. R-Capriccio can be used to distinguish the performance issues that are not
caused by the existing system workload and essentially be used as an alarm to identify
anomalies in the system operation.

For most production multi-tier services the I/O traffic (both network and disk) is
not a system bottleneck. The memory requirements increase linearly with the number
of concurrent users in the system [2] and can be computed in a straightforward way. In
this work, we concentrate on systems with CPU bottlenecks and evaluate the capacity
requirements for support of a given workload with a specified constraint on the latency
of user response times. This additional latency constraint makes this modeling problem
non-trivial and challenging.

A prerequisite for applying our framework is that a service provider collects the
following information:

– the application server access log that reflects all processed client requests and client
activities at the site, and

– CPU utilization at all tiers of the evaluated system.
Thus the problem is to approximate the CPU costs of different client transactions at
different tiers, and then use these cost functions for evaluating the resource requirement
of scaled or modified transaction workload mix in order to accurately size the future
system.

To validate our approach, we use a 1-month long access logs and CPU utilization
data from two heterogeneous application servers that provide customized client access
to a popular and actively used HP service: Open View Service Desk (OVSD). We
demonstrate that the proposed regression method provides a simple, but powerful solu-
tion to accurately approximate CPU transaction costs for both heterogeneous applica-
tion servers under study. We use the results of the regression method to parameterize an
analytic model of queues. We then use the analytic model to complete the last step of the
capacity planning process and derive the maximum number of clients that the studied
application servers can support for a given workload mix under different constraints on
transaction response times.

The rest of the paper is organized as follows. Section 2 provides a detailed workload
analysis and a workload profiler. Section 3 introduces our regression-based method for
deriving the CPU cost of the site transactions. Section 4 presents the analytic model for
predicting multi-tier application performance. Section 5 presents related work. Finally,
a summary and conclusions are given in Section 6.

2 Workload Characterization

In this section, we analyze a 1-month trace collected from the heterogeneous application
servers at the OVSD business portal during July 2006. This trace has a detailed infor-
mation about each processed request, including its arrival and departure time, request
URL, and client session ID.



2.1 Units of Client/Server Activities

Since often service providers are interested in capacity planning rules for their pro-
duction systems under live, real workloads, we need to understand properties of these
workloads, and identify a set of workload characteristics that are essential for a capacity
planning framework.

We first define client activity as follows. Typically, a client communicates with a
web service (deployed as a multi-tier application) via a web interface, where the unit of
activity at the client-side corresponds to a download of a web page. In general, a web
page is composed of an HTML file and embedded objects such as images. A browser
retrieves a web page by issuing a series of HTTP requests for all objects: first it retrieves
the main HTML file and after parsing it, the browser retrieves all embedded images.
Thus, at the server side, a web page retrieval corresponds to processing of multiple
smaller objects that can be retrieved either in sequence or via multiple concurrent con-
nections. It is common that a web server and application server reside on the same
hardware, and shared resources are used by the application and web servers to generate
main HTML files as well as to retrieve page embedded objects 3. In the access logs
that we obtained from the OVSD application server, there are both types of entries: web
page requests and subsequent entries for embedded images. The HTTP protocol does
not provide any means to delimit the beginning or the end of a web page: this is why
it is very difficult to accurately measure the aggregate resources consumed due to web
page processing at the server side. In this work, we define a transaction as a web page
accessed by the client (also called web page views).

Client access to a web service occurs in the form of a session consisting of multiple
individual transactions (web pages). For example, in an e-commerce site, placing an
order through the web site involves further requests relating to selecting a product,
providing shipping information, arranging payment agreement, and finally receiving a
confirmation. Thus, for a customer trying to place an order, or a retailer trying to make
a sale, the real measure of such a web service performance is its ability to process
the entire sequence of individual transactions needed to complete a higher-level logical
transaction. The number of such concurrent client sessions that a multi-tier system can
support without violating transaction response time is a measure of system capacity.

In this section, we present the analysis of OVSD workload performed by our Work-
load Profiler:

– first, it characterizes a set of client transactions and extracts the distribution of
transactions over time;

– second, it characterizes a set of user activities by analyzing and extracting the
session characteristics over time.

2.2 Transactions

In our analysis, we consider a reduced trace that contains only transactions (web page
views) as discussed above. We omit all embedded images, style sheets, and other format-
related primitives. Moreover, we further distinguish a set of unique transaction types
and a set of client accesses to them. For static web pages, the URL uniquely defines
a file accessed by clients. For dynamic pages the requests from different users to the

3 It is common for applications in many production systems implemented using the PHP web-
scripting/application development language [15].



same web page URL may appear as requests to different URLs due to the client-specific
extension or a corresponding parameter list. We carefully filter out these client-specific
extensions in the reduced trace.

There are 984,505 transactions in the reduced trace. Fig. 1 illustrates the number of
transactions in each hour. It reflects a typical enterprise diurnal access pattern, i.e., high
loads during work hours, and low loads during nights and weekends. In addition, the
studied workload exhibits a regular and predictable load pattern.

Overall, in the reduced trace, there are 756 different unique transactions (or transac-
tion types). Fig. 2 shows the cumulative distribution function (CDF) of client accesses
to different transaction types ranked by the transaction popularity. The transaction with
rank 1 represents the most popular transaction type. Fig. 2 reflects that the studied
workload exhibits a very high degree of reference locality: i.e., a small subset of site
transactions is responsible for a very high percentage of client accesses, e.g.,

– the top 10 transaction types accumulate 79.1% of all the client accesses;
– the top 20 transaction types are responsible for 93.6% of the site accesses;
– the top 100 transaction types account for 99.8% of all site accesses.

This characterization is consistent with earlier works [5–7] that have demonstrated that
web server and e-commerce workloads exhibit a high degree of reference locality.
Complementary to the characterization of the most frequently accessed files, we also
see that the percentage of the files that are requested only a few times over an entire
month is very high for this site. These rarely accessed files may play a less important
role in the capacity planning framework, as we demonstrate later.
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Fig. 1: Arrival rate of transactions for each hour
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Fig. 3: Arrival rate of the first 6 most popular transactions across time.

Fig. 3 shows the arrival rates of the transactions for the 6 most popular types over
time, and Fig. 4 shows the percentages of these transaction types in the workload mix
over time. Each point in these figures corresponds to the statistics of one hour. The
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Fig. 4: Portions of the transactions belonging to the second top 6 popular transactions across time.

figure shows that the transaction mix is not stable over time. During weekends, 20% of
the entire transactions are of the second popular transaction type, 10% are of the fifth
one and another 10% are of the sixth one, while the transactions of the most popular
type are only about 5%. However during peak time in workdays, 40% of the transactions
are of the most popular type, but even during the same workday, the transaction mix
changes from hour to hour.

Traditional capacity planning methodologies usually examine peak loads and sys-
tem utilization to conclude on the number of clients that can be handled by the system.
These methods aim to accommodate variations in load while assuming that the set of
workload transactions is stationary, i.e., that the distribution of different transaction
types is fixed. Many of industry standard benchmarks are built using this principle [3, 4].
But real workloads rarely exhibit this feature as shown by the analysis above. Therefore,
instead of focusing on loads solely, a robust capacity planning methodology must also
consider the changing workload mix since the system capacity directly depends on the
types of user activities.

2.3 Sessions

Understanding user activities at the session level is essential for capacity planning,
as the number of concurrent sessions in the trace is actually a representation of the
number of concurrent clients handled by the system. Fig. 5 displays the arrival rate
of new sessions over time, which follows the same trends as the transaction arrivals.
Additionally, it indicates that the high load of transactions during peak time is mainly
due to the increased number of customers.

Fig. 6 shows the CDF of client session durations. A session duration is defined as
the time between the beginning of the first transaction and the end of the last transaction
with the same session ID. The most typical session duration is around 600 seconds. It
is related to the timeout parameter in the application server: if a session is inactive for
600 seconds it is timed out by the server. Fig. 7 gives the CDF of the session length, i.e.,
the number of transactions within each session. Most sessions have a small number of
transactions, i.e., 93.1% of the sessions have less than 10 transactions, and 37.6% of the
sessions have only one transaction. We will use the session duration and session length
in computing client think time presented in Section 2.4.

Since the traces are collected independently at two application servers supported by
heterogeneous machines with different CPU speeds, we turn to the workload in each
server to further understand the session-based behavior of users.
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2.4 Workloads of Different Servers

In this sub-section, we present the workload and utilization analysis of each of the two
application servers, which then is used by our capacity planning framework to show
that the framework can effectively support heterogeneous resources.

The two application servers handle client requests after a load balancing point.
Fig. 8 shows that the load balancing in this system works well. A similar number of
transactions are dispatched to each of the two servers, and both exhibit the characteris-
tics of the entire workload as described above. 4 Server 2 has a faster CPU. As a result,
its CPU utilization is lower compared to server 1 (see Fig. 9). Most of the time, CPU
utilization in both servers is under 10%. Note that for each weekend, there is a spike of
CPU utilization which is related to administrator back-up tasks.
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Fig. 9: Average CPU utilization of each appli-
cation server.

Fig. 10 shows the average number of concurrent sessions over time processed sep-
arately by server 1 and by server 2. During peak time, there are about 60 concurrent

4 The workload mixes and the transaction popularity ranking at each server are similar to the
entire system. We do not report the figures here due to space limitation.



sessions for each server, but during the weekends, the number of concurrent sessions
decreases to 10. Comparing Fig. 10 and Fig. 8, there is some inconsistent behavior. In
days 15-16 and days 22-23, there is a larger number of sessions in server 2. However
these sessions generate fewer transactions comparing to those in server 1.

The above behavior can be partially explained by the measured think time (see
Fig. 11). Typically, the client think time is measured from the moment the client receives
a transaction reply to the moment the client issues the next transaction. Larger think
time leads to a slower arrival rate of transactions issued to the server by this client
session. In the studied trace, as illustrated by session durations and lengths in Fig 6-7,
most sessions become inactive after issuing several transactions till they are timed out.
Therefore, this inactive time is also considered as think time. Overall for both servers,
the average think time is oscillating around 120 seconds. The large think time in days
15-16 and days 22-23 of server 2 even reaches 600 seconds. These measured think times
are used in the analytic models in Section 4.
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Fig. 11: Average think time in each application
server.

2.5 Summary of Workload Analysis

To summarize, the following observations have to be taken into account for an accurate
capacity planning and performance evaluation of production systems with live work-
loads:

– The transaction mix varies over time and hence can not be treated as a fixed, sta-
tionary distribution.

– The workloads exhibit a strong locality property.
– Most of users have a high think time.

The Workload Profiler collects a set of the following metrics over time: i) the average
CPU utilization, ii) the number of different transactions, iii) the number of concurrent
sessions, and iv) the client think times. These metrics are collected for each time win-
dow of 1 hour (this is a tunable tool parameter) and for each application server. These
metrics can then be used to parameterize the analytic model in Section 4.

3 CPU Cost of Transactions

In this section, we use a statistical regression-based approach for an efficient approxima-
tion of CPU demands of different transaction types. We have introduced this approach
in our earlier paper [25], where we evaluated it by using a testbed of a multi-tier e-
commerce site that simulates the operation of an on-line bookstore, according to the
classic TPC-W benchmark [24]. With the knowledge of CPU demands of transactions



one can easily compose the resource requirement of scaled or modified transaction
mixes. Thus, this methodology can be directly applied to production systems and can
be used for explaining large-scale system behavior and predicting future system perfor-
mance. In this section, we analyze challenges for applying this method to production
systems operating under live, real workloads, and introduce an optimization technique
that enables an efficient use of the proposed approach.

3.1 Regression Methodology

To capture the changes in server workload we observe a number of different transactions
over fixed length time intervals, denoted as monitoring windows. The transaction mix
and system utilization are recorded at the end of each monitoring window.

Assuming that there are totally M transaction types processed by the server, we use
the following notations:

– T is the length of the monitoring window;
– Ni is the number of transactions of the i-th type, where 1 ≤ i ≤ M ;
– UCPU is the average CPU utilization during THIS monitoring window;
– Di is the average service time of transactions of the i-th type, where 1 ≤ i ≤ M ;
– D0 is the average CPU overhead related to activities that “keep the system up”.

There are operating system processes or background jobs that consume CPU time
even when there is no transaction in the system.

From utilization law, one can easily obtain Eq. (1) for each monitoring window [8]:

D0 +
∑

i

Ni · Di = UCPU · T . (1)

Because it is practically infeasible to get accurate service times Di (since it is an over-
constrained problem), we let Ci denote the approximated CPU cost of Di for 0 ≤ i ≤
M . Then an approximated utilization U ′

CPU can be calculated as

U ′

CPU =
C0 +

∑

i Ni · Ci

T
. (2)

To solve for Ci, one can choose a regression method from a variety of known methods
in the literature. Finding the best fitting method is outside of the scope of this paper.
In all experiments, we use the Non-negative Least Squares Regression (Non-negative
LSQ) provided by MATLAB to get Ci. This non-negative LSQ regression minimizes
the error

ε =

√

∑

j

(U ′

CPU,n − UCPU,n)2j ,

such that Ci,n ≥ 0, where j is the index of the monitoring window over time.

3.2 Applying Regression to a Production System with Live Workload

We use the one-month trace analyzed in Section 2 to evaluate the accuracy of the
regression-based method described above. For each 1-hour time window 5 the Workload
Profiler provides the average CPU utilization as well as the number of transactions Ni



Table 1: An example of transaction profile in server 1

Time (hour) N1 N2 N3 N4 · · · N756 UCPU (%)
1 21 15 21 16 · · · 0 13.3201
2 24 6 8 5 · · · 0 8.4306
3 18 2 5 4 · · · 0 7.4107
4 22 2 4 7 · · · 0 6.4274
5 38 5 6 7 · · · 0 7.5458
· · ·

for the i-th transaction type, where 1 ≤ i ≤ M . The OVSD trace profile has the format
shown in Table 1.

When we first introduced and applied the regression-based technique for evaluating
the transaction cost in [25], there were only 14 different transaction types in TPC-W.
The analysis of OVSD workload revealed that the real workloads often have a much
higher number of transaction types, e.g., OVSD workload operates over 756 different
transaction types. In order to apply the regression technique to OVSD workload we
would need to collect more than 756 samples of 1-hour measurements. Such a collection
would require to observe this workload for more than 1-month before we would collect
enough “equations” for evaluating the OVSD transaction cost.

The workload analysis presented in Section 2.2 shows that the studied workload
exhibits a very high degree of reference locality, i.e., a small subset of site transactions
is responsible for a very high percentage of client accesses, e.g., the 100 most popular
transactions already cover 99.8% of all client accesses. From the other side, there is a
high percentage of transactions that are rarely accessed, i.e., so called, “one-timers”.
We divided the original 1-month trace in two halves. The additional workload analysis
revealed that there are 203 transactions that are accessed only once in the first half of
the trace, and which are not accessed in the second half of the trace. Similarly, there are
189 transactions that are accessed only once in the second half of the trace, and which
are not accessed in the first half of the trace. The non-negative LSQ regression used in
this paper returns “0” as a typical value for “rare” variables, since there is not enough
information in the original set of equations to produce a more accurate solution.

So, the question is whether accurate performance results can be obtained by ap-
proximating the CPU cost of a much smaller set of popular (core) transactions. In other
words, if we use regression to find the CPU cost of a small number of core transactions,
can this small set be useful for an accurate evaluation of the future CPU demands in the
system?

Following this idea, we only use the columns N1 to NK and UCPU in Table 1
to approximate Ci for 1 ≤ i ≤ K. The approximated U ′

CPU of every hour is then
computed by these N1 to NK and C1 to CK values.

We also consider the results produced by the non-negative LSQ regression method
when K is equal to 10, 20, 60 and 100 transactions respectively. We use the relative
error of the approximated utilization as the metric to validate the regression accuracy.
For every hour, the relative error of the approximated utilization is defined as

ErrorR =
|U ′

CPU − UCPU |

UCPU

. (3)

5 In [25], we showed that a larger monitoring window improves the accuracy of regression
results. For the production system under study a monitoring window of 1 hour produced the
best results.



We divide the OVSD trace into two parts. The first half is used as a training set to solve
for the CPU cost Ci using the non-negative LSQ regression method. The second half
is treated as a validation set. Because the administration jobs during weekends might
introduce a significant noise to the CPU utilization, the training set for the regression
consists of data from workdays only.

The regression method produces similar results for the two heterogeneous applica-
tion servers in the system. Figs. 12-13 show the CDF of the relative errors for training
and validating sets for servers 1 and 2, respectively.

The regression results can be summarized as follows:

– Overall, the non-negative LSQ regression achieves good results for all examined
values of K, i.e., when the regression method is applied to approximate the CPU
cost of the top 10, 20, 60, or 100 most popular transactions. For the training set, at
least 60% of the points have relative errors less than 10%, and at least 90% of the
points have relative errors less than 20% (see Figs. 12(a) and 13(a)). The method’s
accuracy for the validating set is only slightly worse (see Fig.12(b), 13(b)).

– Larger K achieves a higher accuracy for the training set. However, this improve-
ment is not significant: for K = 100 there is only a 4% improvement compared to
the results with the top 10 transactions.

– The larger values of K, e.g., K = 100, show a worse prediction accuracy for
the validating set compared to K equal to 10 or 20 core transactions as shown in
Fig. 12 - 13. These results again can be explained by the workload properties. While
we consider 100 most popular transactions, the last 80 of them only responsible for
6% of the client requests. These transactions have an irregular access pattern. Some
of those transactions appear only in the first or second half of the trace (while not
being a “one-timer”). As a result, computing the individual cost of these transac-
tions does not help to evaluate the future CPU demands, and introduces a higher
error compared to the regression based on a smaller transaction set.
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Fig. 12: Server 1. CDF of relative errors under a different number of of core transactions chosen
for a regression method: (a) training set, (b) validating set.
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Fig. 13: Server 2. CDF of relative errors under a different number of core transactions chosen for
a regression method: (a) training set, (b) validating set.



Regression produces the best results when a representative set of core transactions
is used, and rarely accessed transactions are omitted. Therefore it has the ability to
“absorb” some level of uncertainty or noise present in real data. The additional CPU
overhead that is due to the rarely accessed transactions is “absorbed” by the CPU cost
of the core transactions. Consequently, a small additional CPU usage by the distinct and
rarely accessed transactions is accounted via the CPU cost of the most frequently and
consistently accessed core transactions.

We conclude that considering the top 20 core transactions (i.e., K = 20) leads to
the most accurate results. Note that the top 20 transactions are responsible for 93.6% of
the total transactions in the analyzed trace. Therefore, selecting the top K transactions
that account for 90% - 95% of all client accesses for the regression method results in
a good representative subset of the entire workload. The regression solver produces
a solution for 200 equations with 20 variables only in 8 millisecond. In general, the
common least squares algorithms have polynomial time complexity as O(u3v) when
solving v equations with u variables, and hence, can be efficiently used as a part of on-
line resource evaluation method [1]. Combining the knowledge of workload properties
with statistical regression provides a powerful solution for performance evaluation of
complex production systems with real workloads.

3.3 Anomaly Detection

Shortened product development cycle, frequent software updates, and more complex
integration dramatically increase the risk of introducing poorly performing applications.
Consequently, another problem that needs to be addressed is a preliminary analysis of
performance issues that often occur during the application updates and new software
releases: this is also known as anomaly detection. Typically, when a new software
release is introduced and unexpected performance issues are observed, it is important
to make sure that these performance issues are not caused by the current workload, i.e.,
system overload due to a higher rate of client requests. When the system performance
can not be explained by the existing workload mix in the system, it suggests that the
observed performance issues might be caused by the latest software modification. Thus,
it is important to evaluate the resource usage caused by the existing transaction mix
in the system, and to generate the alarm events when system utilization significantly
deviates from the predicted utilization value computed from the existing workload.

Using the observed workload mix we compute expected CPU utilization of the
system U e

CPU by Eq. 2 and compare it against the measured CPU utilization Um
CPU for

the same time period. The service provider can set a threshold Th that defines allowed,
acceptable deviation of expected system utilization U e

CPU from the observed utilization
Um

CPU . When Ue
CPU − Um

CPU

Ue
CPU

≥ Th (4)

our tool generates an alarm event.
Fig. 14 demonstrates the anomaly detection feature of the tool for the OVSD trace

with Th = 2. Our method accurately predicts CPU utilization caused by this mix.
Over weekends our method has generated the alarm warnings (marked with circles in
Fig. 14) indicating that something else, besides the transaction processing, happens in
the system.

During these time intervals the predicted and observed utilizations are drastically
different. Our method correctly identifies a non-typical CPU utilization caused by a set



of additional administrative tasks, extensively performed over weekends (see remarks
about this in Section 2.4), and which had nothing to do with the processed transaction
mix.

While in this paper, we defined an anomaly situation as one where observed CPU
utilization significantly exceeds predicted CPU utilization, one can consider a sym-
metrical situation where observed CPU utilization is significantly lower than predicted
CPU utilization as a result of transaction mix, and verify the reasons behind it: for
example, it might be related to unavailable embedded objects in the serviced web pages
due to some storage subsystem problems. Currently, we are working on optimizing the
regression technique that provides a better support for anomaly detection as well as on
designing a technique for tuning the threshold parameters that minimize false positive
alarms.

4 Capacity Planning

Modern Internet servers typically employ a multi-tier structure consisting of web servers,
application servers and databases as given in Fig. 15. Each tier gets the requests from
its preceding tier, and may generate certain requests to its successor. For scalability, a
tier may consist of several replicated servers. These servers may be heterogeneous, and
a dispatcher may employ a special load balancing strategy for distributing the incoming
requests across the replicated servers.

Due to the session-based client behavior, a multi-tier system is usually modeled as
a closed system with a network of queues (see Fig. 16). The number of clients in the
system is fixed. When a client receives the response from the server, it issues another
request after certain think time. This think time is modeled as an infinite server Q0 in
Fig. 16. Once the service time in each queue is obtained, this closed system can be
solved efficiently using Mean-Value Analysis (MVA) [8].

Workload characterization of real traces in Section 2 shows that the workload mix
changes over time, and hence the service time could not be modeled as a fixed dis-
tribution for the entire lifetime of the system but one can treat the workload as fixed
during shorter time intervals (e.g., 1 hour). R-Capriccio performs the capacity planning
procedure for each monitoring time window of 1 hour and then combines the results
across these time points to get the overall solution 6.

6 For the TPC-W benchmark and most production multi-tier services CPU is a typical system
bottleneck. However, in practice, when one needs to make a projection of the maximum
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Fig. 14: Anomaly detection with R-Capriccio.
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Fig. 15: A multi-tier structure of a server.
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Fig. 16: Queuing network modeling of a multi-tier closed system.

4.1 MVA

MVA is based on the key assumption that when a new request enters a queue, this
request sees the same average system statistics in the system as without this new request.
Fig. 17 presents a description of the detailed MVA algorithm [22].

The visit ratio Vi (definition in Fig. 17) is controlled by the load balancing policy.
For example, if the load balancing policy used is equally partitioning the transactions
across all servers, then the number of visits Vs to server s in tier l is equal to 1/ml,
where ml is the number of servers in tier l.

Note that the original MVA (as in Fig. 17) takes the number of clients N as input,
and computes the average performance metrics for a system with N clients. In capac-
ity planning, the number of clients is unknown. In the contrary, the model needs to
be solved for exactly this unknown variable. Here, we assume that the Service Level
Agreement (SLA) specifies a threshold ΓR (i.e., upper bound) of the average transac-
tion response time. Then the condition in step 2 of MVA is changed to the following
condition: “while R ≤ ΓR do”.

4.2 Case Study

In this section, we demonstrate how R-Capriccio helps to answer the following capacity
planning question:

– How many clients can be supported by the existing system:
• providing the desirable performance guarantees, e.g., response time under ΓR,

and
• assuming that the system processes a given (varying, non-stationary) type of

workload?
The detailed sequence of steps performed by R-Capriccio is summarized in Fig. 18.

achievable system throughput, additional “back of the envelope” computations for estimat-
ing memory and network requirements under the maximum number of concurrent clients are
required to justify this maximum throughput projection.



Inputs:
N = number of clients
Z = think time
L = number of servers
Si = service time per visit to the i-th queue
Vi = number of visits to the i-th queue

Outputs:
X = system throughput
Qi = average number of jobs at the i-th queue
Ri = average response time of the i-th queue
R = system response time (excluding think time)
Ui = utilization of the i-th queue

1. Initialization: for i = 1 to L do Qi ← 0
2. Iterations:

for n = 1 to N do
a. for i = 1 to L do

Ri = Si(1 + Qi)

b. R =

L
X

i=1

RiVi

c. X =
n

Z + R
d. for i = 1 to L do Qi = XViRi

3. for n = 1 to L do
a. Xi = XVi

b. Ui = XSiVi

Fig. 17: The MVA algorithm [8].

The first two steps of R-Capriccio that use the Workload Profiler and the Regression-
based Solver have been presented in the previous two sections. We use the same work-
load as input to the third step of the analytic model. In the case study, we had to limit
our capacity planning exercise to the application server tier (which is a bottleneck tier
in the OVSD service) because we could not get relevant CPU utilization measurements
at the database tier (this particular database was shared across a few different services,
and we had only access to the OVSD part of the application servers).

Since the traces are collected from the two servers independently, we treat each
heterogeneous server as an independent system. Later, we show how to combine the
capacity planning results from those heterogeneous servers together.

All the experiments are conducted for the top 20 most popular transaction types,
i.e., K is set to 20. Following step 3.a. in Fig. 18, we approximate the average service
time for each 1-hour time interval for both servers as shown in Fig. 19. Because server 2
has a faster CPU, it is expected that it has a smaller service time than the server 1. The
number of concurrent sessions (clients) and the think time are measured for each time
interval as shown in Fig. 10 and Fig. 11, respectively. For each time interval there is a
vector of parameters representing the average think time, the average service time, and
the number of concurrent clients. We solve the problem for each server by applying the
MVA model at each time interval.



1. Workload profiler:
For each monitoring window w, and each server s:
a. collect the number of transactions Ni,s,w of each type i;
b. collect the average utilization Us,w .
For each monitoring window w:
a. select the top K most popular transaction types;
b. collect the transaction mix in the system,

i.e., the percentage pi of the transactions for type i
for all 1 ≤ i ≤ K;

c. collect the average think time Zw .

2. Regression-based solver:
For each server s:

Compute the cost function Ci,s for each transaction
type i as described in Section 3, where 1 ≤ i ≤ K.

3. Analytical model:
For each monitoring window w:
a. approximate the service time Ss for each server s as

Ss =
PK

i=1
pi · Ci,s;

b. compute the maximum number of clients MAXw can
be handled with average response time less than ΓR

using MVA algorithm.
Build the profile with entry as (w, MAXw).
Find the minimal MAXw value X .

X is the number of concurrent customers the system can support
with the average transaction response time less than ΓR

Fig. 18: The R-Capriccio Framework.
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Fig. 19: Approximated service time using the CPU cost of the top 20 transaction types.
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Fig. 20: Server 1. Measurements versus analytic model: a) Throughput of transactions; b) CPU
utilization.

Fig. 20(a) shows the validation results by comparing the throughput of the analytic
model and the measured transaction throughput of server 1. The analytic model captures
the real system behavior well, i.e., 90% of the relative errors are below 18.7%.



Fig. 20(b) compares the average measured utilization over time with the utilization
results provided by the analytic model. We observe a nearly perfect match between
the measured and analytic results. Except for the utilization spikes observed in the real
system measurements over weekends that are due to special administration-related tasks
as discussed in Sections 2.4 and 3.3. Our method predicts a much lower CPU utilization
using the observed transaction mix for these time periods. This presents an additional
functionality of R-Capriccio that can help in generating “alarm” conditions when pre-
dicted utilization for processing the existing workload significantly deviates from the
system measurements. The analytic results for server 2 show a similar performance
trends and are not presented here for brevity.

Fig. 21 and Fig. 22 illustrate the CDF of the maximum number of clients that can be
supported by server 1 and server 2 under the changing OVSD transaction mix over time,
where the transaction response time is limited by ΓR equal to 1, 3, 6 and 10 seconds
respectively. These results are computed using the same think time and service time as
in the above experiments.
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Fig. 21: Server 1: CDF of the maximum number
of clients under different threshold ΓR of the
average response time.

Fig. 22: Server 2: CDF of the maximum number
of clients under different threshold ΓR of the
average response time.

The summary of results are shown in Table 2. As expected, server 2 has a much
higher capacity than server 1. Higher values in threshold ΓR allow for a larger number
of clients to be supported by the system.

Table 2: Maximum number of clients under different ΓR

ΓR(sec) Server 1 Server 2 Total
1 472 1349 1821
3 528 1478 2006
6 565 1534 2099

10 608 1580 2188

The capacity of the entire application server composed of these two heterogeneous
servers is determined by the load balancing policy as well. For example, if the SLA
defines that the average transaction response time is not higher than 1 seconds, the
studied application server can handle 1821 concurrent clients but only if the load bal-
ancer is aware of the heterogeneous capacity of these two servers and can split the load
proportionally to server capacity. If the load balancer partitions transactions equally,
capacity reduces to 944, just half of the previous one. Such a big difference indicates



the significant impact of a load balancing policy on system capacity as heterogeneous
CPU speeds must be taken into account.

5 Related Work

Performance evaluation and capacity planning of software and hardware systems is a
critical part of the system design process [8]. There is a number of capacity planning
techniques proposed for different popular applications.

Among these techniques, queuing theory is a widely used methodology for model-
ing a system behavior and answering capacity questions [16–18]. Modeling of a single-
tier system, such as a simple HTTP server, has been studied extensively. Even for a
multi-tier structure which is employed ubiquitously for most servers, the system is usu-
ally abstracted as the most bottle-necked tier only: in [16], only the application tier for
the e-commerce systems are modeled by a M/GI/1/PS queue; similarly in [19] the appli-
cation tier with N node cluster is modeled by a G/G/N queue. Recently B. Urgaonkar
et al. proposed analytic models for both open and closed multi-tier systems [17, 18].
These models are validated by synthetic workloads running in real systems. However
the expense of accurately estimating model parameters, i.e., service times and visit
ratios, from each server log makes this model difficult to apply in production envi-
ronments. Direct measurements in [18] do not characterize transactions as we do in this
paper. Moreover, existing capacity planning methods are based on evaluating the system
capacity for a fixed set of typical user behaviors. Once the service time is estimated, it
is consistent throughout the planning procedure. This approach does not consider the
fact that a changing workload for the same system has different service times and may
result in different system capacity. Our experiments show that such techniques as those
in [18] may fail to model a real system because of its dynamic nature.

In this paper, we use a similar closed multi-tier model as in [18], but in contrast
to [18] or other examples in the existing literature of capacity planning, we propose a
methodology that does not need a controlled environment for analytic model param-
eterization. Instead of characterizing the overall service time of every server, we use
a statistical regression method to approximate the service cost of individual transac-
tions. This CPU cost function together with the transaction mix help to approximate the
system service time that varies with the changing transaction mix.

The use of statistical methods in capacity planning has been proposed in the early
80’s [9, 8], but the focus was on a single machine/cluster that is much simpler than
current large-scaled multi-tiered systems. Recently statistical methods are getting more
attention in computer performance analysis and system performance prediction. In [20]
the authors use multiple linear regression techniques for estimating the mean service
times of applications in a single-threaded software server. These service times are cor-
related with the Application Response Measurement package (ARM) data to predict
system future performance. In [21],[23] the authors focus on transaction mix perfor-
mance models. Based on the assumption that transaction response times mostly consist
of service times rather than queueing times they use the transaction response time
to approximate the transaction service demand. The authors use linear regression to
identify performance anomalies in past workloads and to scrutinize their causes. We
do not use measured transaction response times to derive CPU transaction demands
(this approach is not applicable to the transactions that themselves might represent a
collection of smaller objects). One of their basic assumptions is that the transaction mix
consists of a small number of transaction types.



We have introduced a statistical regression-based approach for the CPU demand
approximation of different transaction in our earlier paper [25], where we evaluated
this approach by using a testbed of a multi-tier e-commerce site that simulates the
operation of an on-line bookstore, according to the classic TPC-W benchmark [24].
However, TPC-W operates using only 14 transaction types. Among the contribution of
the current paper is a novel approach that illustrates how the regression-based technique
can be applied to the production sites with large set of transaction types. By applying
the regression to a set of popular, so-called “core” transactions (that are responsible for
90% - 96% of the site traffic) we are able to obtain the accurate estimates of transaction
CPU cost that can be used for a variety of anomaly detection and capacity planning
tasks in the production sites with real, live workloads.

6 Conclusion

In this paper, we present R-Capriccio, a new capacity planning framework which pro-
vides a practical, flexible and accurate toolbox for answering capacity planning and
anomaly detection questions for multi-tier production systems with real workloads.
More importantly, it can be used for explaining large-scale system behavior and pre-
dicting future system performance.

We used the access logs from the OVSD application servers to demonstrate and
validate the three key components of R-Capriccio: the workload profiler, the regression-
based solver, and the analytic model. In our capacity planning framework, we identify
the set of most popular core transactions and sessions for building a site profile, compute
transaction cost, and size the future system under the real workload. In order to derive
the resource cost of each core transaction (i.e., CPU time required for corresponding
transaction processing), we observe a number of different core transactions over fixed
length time intervals and correlate these observations with measured server utilization
for the same time interval. Using a non-negative least-squares regression method we
approximate the resource cost of each core transaction. The statistical regression works
very well for estimating the CPU demands of transactions that themselves might repre-
sent a collection of smaller objects and where the direct measurement methods are not
feasible.

While this paper concentrates on evaluating the CPU capacity required for support
of a given workload, we believe that regression methods can be efficiently applied for
evaluating other shared system resources. We plan to exploit this avenue in our future
work.
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